首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
JAVIER GONZALEZ  MICHAEL WINK 《Ibis》2010,152(4):761-774
Nucleotide sequence data (cytochrome b) and ISSR genomic fingerprints were used to analyse the genetic variation and population differentiation in Thorn‐tailed Rayadito, a widespread Patagonian forest bird. We included samples from eight populations of Thorn‐tailed Rayadito covering most of the distribution range of the species: from fragmented patches of Olivillo forest in northern Chile to Isla Navarino forests in the extreme south of South America. Low levels of genetic diversity were found among populations, with a large within‐population molecular variance indicating high levels of gene flow. The multivariate and cluster analyses based on ISSR markers show that the subspecies bullocki (from Mocha Island) differs significantly from all other populations. The subspecies fulva (Chiloé Island) shows less differentiation than bullocki, sharing several alleles with continental populations. Bayesian analyses suggest that the Mocha Island population contributes most to the total genetic diversity observed in the species. Mantel tests revealed no significant correlation between geographical distance and pairwise genetic distance and cytochrome b sequence analyses failed to detect differentiation among subspecies. Mocha Island might have been a palaeorefuge and this population may have diversified by genetic drift after the last glacial maximum. There is also the possibility of a postglacial colonization of the Thorn‐tailed Rayadito from an austral palaeorefugium, supporting a multiple refugia hypothesis. This study illustrates the usefulness of the rarely used ISSR genomic fingerprint method in avian phylogeography.  相似文献   

2.
Variation in the avian vocal signals emitted may have a significant impact on species evolution. Vocal divergence in suboscine species like Giant Antshrike (Batara cinerea) may be associated with selective adaptation, since learning has little influence on vocal development and variation in acoustic structure cannot be attributed to learning deviation. Consequently, tracheophone suboscine species are ideal subjects to explore vocal variation, since cultural evolution does not seem to influence vocal variation in this group. Environmental conditions may determine the selection of vocal features because acoustic transmission could be attenuated under certain conditions of temperature, humidity and vegetation cover. Here, we examined vocalizations of Giant Antshrike and assessed possible acoustic variations between two disjunct groups (Andean and Atlantic), correlating the differences to the environmental structure. Univariate and multivariate analysis show temporal and spectral differences between both groups. Andean individuals produce vocalizations with longer duration, faster trill rates, shorter syllable duration and higher frequencies. Environmental features are different between the two populations, and they are correlated to the acoustic structure of vocalizations. Temporal variations arise directly from climatic influence, while spectral divergence could be a secondary effect of morphological adaptation to habitat structure.  相似文献   

3.
Geographical variation of bird vocalizations may be related to factors influencing sound production and sound propagation. If birds, e.g. the Great Antshrike (Taraba major), produce vocalizations that develop normally in the absence of learning, these variations may reflect evolutionary divergence within species. In this case, vocal variation could be influenced by habitat structure, since abiotic features and vegetal cover affect sound propagation through environment. Selective pressures may be acting on populations in different ways, which could culminate in a process of speciation. Thus, we searched for structural variation of Great Antshrike vocalizations between subspecies and sought for relationships between these vocal variation and environmental structure. We found variations in frequency and time features of vocalizations among subspecies, which are correlated to latitude, elevation and climate. We also observed an increase in vocal differences along with an increase in distances between individuals, which could reflect isolation of subspecies and the vocal adaptation to different environments.  相似文献   

4.
Contact zones between subspecies or closely related species offer valuable insights into speciation processes. A typical feature of such zones is the presence of clinal variation in multiple traits. The nature of these traits and the concordance among clines are expected to influence whether and how quickly speciation will proceed. Learned signals, such as vocalizations in species having vocal learning (e.g. humans, many birds, bats and cetaceans), can exhibit rapid change and may accelerate reproductive isolation between populations. Therefore, particularly strong concordance among clines in learned signals and population genetic structure may be expected, even among continuous populations in the early stages of speciation. However, empirical evidence for this pattern is often limited because differences in vocalisations between populations are driven by habitat differences or have evolved in allopatry. We tested for this pattern in a unique system where we may be able to separate effects of habitat and evolutionary history. We studied geographic variation in the vocalizations of the crimson rosella (Platycercus elegans) parrot species complex. Parrots are well known for their life-long vocal learning and cognitive abilities. We analysed contact calls across a ca 1300 km transect encompassing populations that differed in neutral genetic markers and plumage colour. We found steep clinal changes in two acoustic variables (fundamental frequency and peak frequency position). The positions of the two clines in vocal traits were concordant with a steep cline in microsatellite-based genetic variation, but were discordant with the steep clines in mtDNA, plumage and habitat. Our study provides new evidence that vocal variation, in a species with vocal learning, can coincide with areas of restricted gene flow across geographically continuous populations. Our results suggest that traits that evolve culturally can be strongly associated with reduced gene flow between populations, and therefore may promote speciation, even in the absence of other barriers.  相似文献   

5.
The evolutionary divergence of mating signals provides a powerful basis for animal speciation. Divergence in sympatry strengthens reproductive isolation, and divergence in allopatry can reduce or eliminate gene flow between populations on secondary contact. In birds, the first of these processes has empirical support, but the second remains largely hypothetical. This is perhaps because most studies have focused on oscine passerines, whose song learning ability may reduce the influence of vocalizations in reproductive isolation. In suboscine passerines, the role of learning in song development is thought to be minimal, and the resultant signals are relatively fixed. To investigate the role of song in the early stages of peripatric speciation, we therefore studied a suboscine, the chestnut‐tailed antbird Myrmeciza hemimelaena. We recorded male songs in a natural forest island (isolated for < 3000 years) at the southern fringe of Amazonia, and at two nearby sites in continuous forest. A previous study found the isolated population to be weakly differentiated genetically from the ancestral population suggesting that peripatric speciation was underway. In support of this, although we detected minor but significant differences in song structure between each site, the most divergent songs were those of island birds. On simulating secondary contact using playback, we found that pairs from the forest island responded more strongly to island (i.e. local) songs than to those from both non‐island sites, and vice versa. This pattern was not observed in pairs from one non‐island site, which responded with equal strength to local songs and songs from the other non‐island site. Island females were more likely to approach and sing after hearing local male songs, rather than songs from the non‐island populations, and vice versa; non‐island females did not appear to discriminate between local songs and those from the other non‐island site. These findings are consistent with the idea that vocal divergence arising in small populations at the edge of Amazonia may result in partial reproductive isolation when contact is resumed. They also suggest the possibility that song divergence in peripatry may, after much longer time‐frames, act as a barrier to gene flow in suboscines, perhaps because of an inability to learn or recognize divergent songs on secondary contact. © 2007 The Linnean Society of London, Biological Journal of the Linnean Society, 2007, 90 , 173–188.  相似文献   

6.
Ecologists and evolutionary biologists have a long‐standing interest in the patterns and causes of geographical variation in animals’ acoustic signals. Nonetheless, the processes driving acoustic divergence are still poorly understood. Here, we studied the geographical variation in echolocation vocalizations (commonly referred to as echolocation ‘pulses’ given their short duration and relatively stereotypic nature, and to contrast them from the communicative vocalizations or ‘calls’) of a widespread bat species Hipposideros armiger in south China, and assessed whether the acoustic divergence was driven by either ecological selection, or cultural or genetic drift. Our results revealed that the peak frequency of echolocation pulses varied significantly across populations sampled, with the maximum variation of about 6 kHz. The peak frequency clustered into three groups: eastern and western China, Hainan and southern Yunnan. The population differences in echolocation pulses were not significantly related to the variation in climatic (mean annual temperature, mean annual relative humidity, and mean annual precipitable water) or genetic (genetic distance) factors, but significantly related to morphological (forearm length) variation which was correlated with mean annual temperature. Moreover, the acoustic differences were significantly correlated with geographical and latitudinal distance after controlling for ‘morphological distance’. Thus, neither direct ecological selection nor genetic drift contributed to the acoustic divergence observed in H. armiger. Instead, we propose that the action of both indirect ecological selection (i.e. selection on body size) as well as cultural drift promote, in part, divergence in echolocation vocalizations of individuals within geographically distributed populations.  相似文献   

7.
Capsule Differences in vocalizations among populations are mostly explained on morphological bases, but historical factors may have played a significant role in differentiation processes.

Aims To investigate the relationships among vocal and morphological variation in two corvids: Chough and Alpine Chough.

Methods We used data from 11 populations of Chough and seven populations of Alpine Chough spanning the Palearctic distribution of the two species. Three data sets (morphometry, spectrotemporal parameters of trill calls and acoustic repertoire) were analysed and their variation compared with uni- and multivariate techniques.

Results In both species, morphological differences among populations were correlated to spectro-temporal variation of trills; in particular, frequencies of calls were negatively correlated to wing length (an indicator of body size). By considering only co-existing populations of the two species, the magnitude of morphological and spectrotemporal divergence was similar.

Conclusions In both species, birds from populations with similar morphology uttered similar call types and trills with close spectrotemporal features. In particular, larger-sized populations, as expressed by wing length, emitted lower pitched calls. However, the fact that dissimilarities in repertoire and morphology were correlated cannot be explained only by appealing to functional explanations, as the observed intraspecific morphological variability does not seem to be high enough to promote consistent changes in the pool of calls. In this case, historical factors might have contributed to the present pattern of differentiation.  相似文献   

8.
Learned vocal signals could be important in the formation of prezygotic isolation between two hybridising taxa. This study examined whether vocal variation in the parrot Platycercus elegans facilitates the separation of individuals from two subspecies, P. e. elegans (CR) and P. e. flaveolus (YR). CR and YR have very different plumage coloration, respectively deep crimson and pale yellow, but hybridise where they meet creating an intermediate population (WS). In a factorial design playback experiment, we conducted 108 playback trials on three focal populations (YR, WS, CR), in and around this area of hybridisation, to test if they respond differently to contact calls from their own or another population. We also analysed whether differences in acoustic variables of the stimulus calls predicted the response to the call. We did not find any indication that individuals from the three focal populations responded differently to calls sampled from their own or another subspecies. We did find an effect of two of the five acoustic variables that we used to describe and classify contact calls from the three source populations. Specifically, duration of the stimulus call positively affected the response from individuals from WS and negatively the response from CR, and CR responded more to stimulus calls with a lower peak frequency. Overall, we found no indication that acoustic variation in contact calls on a subspecies level is involved in maintaining plumage colour differences between P. e. elegans and P. e. flaveolus subspecies.  相似文献   

9.
Acoustic communication is critical for reproductive success in the oyster toadfish Opsanus tau. While previous studies have examined the acoustic characteristics, behavioral context, geographical variation, and seasonality of advertisement boatwhistle sound production, there is limited information on the grunt or other non-advertisement vocalizations in this species. This study continuously monitored sound production in toadfish maintained in an outdoor habitat for four months to identify and characterize grunt vocalizations, compare them with boatwhistles, and test for relationships between the incidence of grunt vocalizations, sound characteristics and environmental parameters. Oyster toadfish produced grunts in response to handling, and spontaneous single (70% of all grunts), doublet (10%), and trains of grunts (20%) throughout the May to September study period. Grunt types varied in pulse structure, duration, and frequency components, and were shorter and of lower fundamental frequency than the pulse repetition rate of boatwhistles. Higher water temperatures were correlated with a greater number of grunt emissions, higher fundamental frequencies, and shorter sound durations. The number of grunts per day was also positively correlated with daylength and maximum tidal amplitude differences (previously entrained) associated with full and new moons, thus providing the first demonstration of semilunar vocalization rhythms in the oyster toadfish. These data provide new information on the acoustic repertoire and the environmental factors correlated with sound production in the toadfish, and have important implications for seasonal acoustic communication in this model vocal fish.  相似文献   

10.
Population variation in primate vocal structure has been rarely observed. Here, we report significant population differences in the structure of two vocalizations in wild pygmy marmosets (Trills and J calls). We studied 14 groups of pygmy marmosets Callithrix (Cebuella) pygmaea pygmaea from five populations in northeastern Ecuador. We analyzed the acoustic structure of Trills and J calls recorded from two adult animals in each group through focal samples. Although individuals and groups within a population differed in call structure, we found consistent structural differences at a population level for Trills and J calls. Pair‐wise comparisons for the two call types point to San Pablo and Amazoonico as the populations that differed the most, whereas Hormiga and Zancudococha showed the least differences. Discriminant function analysis indicates that calls from each population could be classified accurately at rates significantly above chance. Habitat acoustics, social factors and genetic drift may explain interpopulation vocal differences. This is the first evidence of within‐subspecies vocal differences, or dialects, in wild populations of a neotropical primate species. Am. J. Primatol. 71:333–342, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

11.
The vocal repertoires of nonhuman primates have long been thought to be invariable across populations and not to result from vocal learning. However, increasing evidence suggests that learning does influence vocal production in nonhuman primates, and that several species modify the structure of their calls in response to social or environmental influences. Vocal usage learning refers to the process whereby an individual learns in which circumstances to produce a certain call type, whereas vocal production learning refers to the process in which signals get modified as the result of individual experiences. Common marmosets (Callithrix jacchus) show socially mediated vocal plasticity as adults and during vocal development. This propensity to engage in simple forms of vocal production learning (accommodation) should produce population-level differences in call structure. To test this prediction, we compared the vocalizations of three captive populations of common marmosets. We analyzed the acoustic structure of 1337 phee calls, 461 trills, and 3611 food calls and compared them with a permutated discriminant function analysis. We found that all call types differed significantly between the three populations, and 76–98% of the calls were correctly classified. As physical differences in body mass and environmental differences between colonies could not explain the call differences, we conclude that vocal accommodation is the most likely explanation for the differences in call structure. This will allow us to further investigate the role and importance of vocal learning in a species increasingly used to study vocal learning and language evolution.  相似文献   

12.
The study of intraspecific variation of acoustic signals and its relationship with genetic divergence is important for understanding the origin of divergence in communication systems. We studied geographical variation in the acoustic structure of advertisement calls from five populations of the four‐eyed frog, Pleurodema thaul, and its relationship with the genetic divergence among these populations. By analyzing temporal and spectral parameters of the advertisement calls, we report that the signals of northern, central, and southern populations have remarkable differences between them. A phylogeographical analysis from a mitochondrial DNA fragment demonstrated three phylogenetic groups coincident with those found with the bioacoustics analysis. Furthermore, bioacoustic and genetic distances show significant correlations after controlling for geographical distance. These results suggest that behavioural divergence among populations of P. thaul has a phylogenetic basis, supporting three evolutionary units within this species, as well as prompting the exploration of divergence processes in the sound communication system of this species. © 2013 The Linnean Society of London, Biological Journal of the Linnean Society, 2013, 110 , 142–155.  相似文献   

13.
Vocal learning is thought to have evolved in three clades of birds (parrots, hummingbirds, and oscine passerines), and three clades of mammals (whales, bats, and primates). Behavioural data indicate that, unlike other suboscine passerines, the three-wattled bellbird Procnias tricarunculata (Cotingidae) is capable of vocal learning. Procnias tricarunculata shows conspicuous vocal ontogeny, striking geographical variation in song, and rapid temporal change in song within a population. Deprivation studies of vocal development in P. tricarunculata are impractical. Here, we report evidence from mitochondrial DNA sequences and nuclear microsatellite loci that genetic variation within and among the four allopatric breeding populations of P. tricarunculata is not congruent with variation in vocal behaviour. Sequences of the mitochondrial DNA control region document extensive haplotype sharing among localities and song types, and no phylogenetic resolution of geographical populations or behavioural groups. The vocally differentiated, allopatric breeding populations of P. tricarunculata are only weakly genetically differentiated populations, and are not distinct taxa. Mitochondrial DNA and microsatellite variation show small (2.9% and 13.5%, respectively) but significant correlation with geographical distance, but no significant residual variation by song type. Estimates of the strength of selection that would be needed to maintain the observed geographical pattern in vocal differentiation if songs were genetically based are unreasonably high, further discrediting the hypothesis of a genetic origin of vocal variation. These data support a fourth, phylogenetically independent origin of avian vocal learning in Procnias. Geographical variations in P. tricarunculata vocal behaviour are likely culturally evolved dialects.  相似文献   

14.
Phenotypic traits such as songs are important in species recognition. Variation in acoustic traits can form barriers to gene flow and promote speciation. Therefore, understanding song divergence is crucial in groups with controversial taxonomy such as Olive Sparrows (Arremonops rufivirgatus), a widespread Neotropical species of songbird with multiple allopatric populations. Taxonomic authorities disagree on the number of Olive Sparrow subspecies, placing them into either two or three main groups. These groups may represent separate species based on morphological traits, but trait divergence within the complex has not been examined. We studied geographic variation in the characteristics of the songs of Olive Sparrows at two geographical levels: among three proposed groups and among five allopatric populations. In a second analysis, we evaluated the strength of acoustic divergence within the complex by comparing acoustic distances among groups and allopatric populations of Olive Sparrows with the acoustic distance among three recognized species in the genus Arremonops. We analyzed 802 songs from 174 individuals across 81 locations and measured 12 variables to describe the fine structural characteristics of the songs of Olive Sparrows, Green-backed Sparrows (A. chloronotus), Black-striped Sparrows (A. conirostris), and Tocuyo Sparrows (A. tocuyensis). We found significant acoustic variation in the Olive Sparrow complex at both geographical levels. Our divergence analysis also revealed that vocal divergence within the complex is similar to or greater than that found between recognized species in the genus. Together, these results suggest that acoustic diversity within the Olive Sparrow complex probably originated by isolation in tandem with selective and/or non-selective factors.  相似文献   

15.
Relatively few data exist on population differences in the vocal behavior of mammals. Geographic variation in calls is of special interest because of the implications for resolving evolutionary and behavioral questions. For example, information on geographic variation in vocalizations complements morphological and molecular data used to infer phylogenetic relationships and provides evidence for the mechanisms underlying call development. A quantitative acoustic analysis of orangutan long calls was undertaken, comparing flanged adult males from four geographically distinct sites across Borneo and Sumatra, revealing consistent differences among the calls of individuals. Long calls produced by orangutans from the four sites in Borneo and Sumatra differ in quantitative acoustic measures. Discriminant function analysis reveals that acoustic variables can be used in combination to assign calls to the correct individual, site and island at rates higher than that expected by chance. Specifically, four acoustic parameters proved reliable for distinguishing among the individuals, between sites, and across the two islands that arguably represent populations from separate species or subspecies. Although Bornean and Sumatran long calls share a repetitive structure and show similar call rates (0.100–0.500 LCs/h) and maximum frequency bands (0.400–1.500 kHz), they differ significantly in the number of pulses per call, call speed, call duration, bandwidth, pulse duration, and dominant frequency. Strong consistency in these acoustic parameters is also seen among males within sites and the observed variation may allow for individual recognition. Individual identification by call structure presumably benefits dispersed orangutans, where individuals characteristically forage independently and both encounters and interactions with signaling males are highly variable and largely dependent on context. Acoustic recognition of callers facilitates the choice of which males to join or avoid, thus allowing receivers to manipulate potential costs and benefits of association.  相似文献   

16.
As social animals, many primates use acoustic communication to maintain relationships. Vocal individuality has been documented in a diverse range of primate species and call types, many of which have presumably different functions. Auditory recognition of one's neighbors may confer a selective advantage if identifying conspecifics decreases the need to participate in costly territorial behaviors. Alternatively, vocal individuality may be nonadaptive and the result of a unique combination of genetics and environment. Pair-bonded primates, in particular, often participate in coordinated vocal duets that can be heard over long distances by neighboring conspecifics. In contrast to adult calls, infant vocalizations are short-range and used for intragroup communication. Here, we provide two separate but complementary analyses of vocal individuality in distinct call types of coppery titi monkeys (Plecturocebus cupreus) to test whether individuality occurs in call types from animals of different age classes with presumably different functions. We analyzed 600 trill vocalizations from 30 infants and 169 pulse-chirp duet vocalizations from 30 adult titi monkeys. We predicted that duet contributions would exhibit a higher degree of individuality than infant trills, given their assumed function for long-distance, intergroup communication. We estimated 7 features from infant trills and 16 features from spectrograms of adult pulse-chirps, then used discriminant function analysis with leave-one-out cross-validation to classify individuals. We correctly classified infants with 48% accuracy and adults with 83% accuracy. To further investigate variance in call features, we used a multivariate variance components model to estimate variance partitioning in features across two levels: within- and between-individuals. Between-individual variance was the most important source of variance for all features in adults, and three of four features in infants. We show that pulse-chirps of adult titi monkey duets are individually distinct, and infant trills are less individually distinct, which may be due to the different functions of the vocalizations.  相似文献   

17.
Phylogenetic relationships among New World suboscine birds were studied using nuclear and mitochondrial DNA sequences. New World suboscines were shown to constitute two distinct lineages, one apparently consisting of the single species Sapayoa aenigma, the other made up of the remaining 1000+ species of New World suboscines. With the exception of Sapayoa, monophyly of New World suboscines was strongly corroborated, and monophyly within New World suboscines of a tyrannoid clade and a furnarioid clade was likewise strongly supported. Relationships among families and subfamilies within these clades, however, differed in several respects from current classifications of suboscines. Noteworthy results included: (1) monophyly of the tyrant-flycatchers (traditional family Tyrannidae), but only if the tityrines (see below) are excluded; (2) monophyly of the pipromorphine flycatchers (Pipromorphinae of ) as one of two primary divisions of a monophyletic restricted Tyrannidae; (3) monophyly of the tityrines, consisting of the genus Tityra plus all sampled species of the Schiffornis group (), as sister group to the manakins (traditional family Pipridae); (4) paraphyly of the ovenbirds (traditional family Furnariidae), if woodcreepers (traditional family Dendrocolaptidae) are excluded; and (5) polyphyly of the antbirds (traditional family Formicariidae) and paraphyly of the ground antbirds (Formicariidae sensu stricto). Genus Melanopareia (the crescent-chests), although clearly furnarioid, was found to be distant from other furnarioids and of uncertain affinities within the Furnarii. Likewise, the species Oxyruncus cristatus (the Sharpbill), although clearly tyrannoid, was distantly related to other tyrannoids and of uncertain affinities within the Tyranni. Results of this study provide support for some of the more novel features of the suboscine phylogeny of, but also reveal key differences, especially regarding relationships among suboscine families and subfamilies. The results of this study have potentially important implications for the reconstruction of character evolution in the suboscines, especially because the behavioral evolution of many suboscine groups (e.g., Furnariidae) is of great interest.  相似文献   

18.
Hummingbirds have developed a remarkable diversity of learned vocalizations, from single-note songs to phonologically and syntactically complex songs. In this study we evaluated if geographic song variation of wedge-tailed sabrewings (Campylopterus curvipennis) is correlated with genetic divergence, and examined processes that explain best the origin of intraspecific song variation. We contrasted estimates of genetic differentiation, genetic structure, and gene flow across leks from microsatellite loci of wedge-tailed sabrewings with measures for acoustic signals involved in mating derived from recordings of males singing at leks throughout eastern Mexico. We found a strong acoustic structure across leks and geography, where lek members had an exclusive assemblage of syllable types, differed in spectral and temporal measurements of song, and song sharing decreased with geographic distance. However, neutral genetic and song divergence were not correlated, and measures of genetic differentiation and migration estimates indicated gene flow across leks. The persistence of acoustic structuring in wedge-tailed sabrewings may thus best be explained by stochastic processes across leks, in which intraspecific vocal variation is maintained in the absence of genetic differentiation by postdispersal learning and social conditions, and by geographical isolation due to the accumulation of small differences, producing most dramatic changes between populations further apart.  相似文献   

19.
All species in the genus Macaca produce a set of harmonically rich vocalizations known as “coos”. Extensive acoustic variation occurs within this call type, a large proportion of which is thought to be associated with different social contexts such as mother-infant separation and the discovery of food. Prior studies of these calls have not taken into account the potential contributions of individual differences and changes in emotional or motivational state. To understand the function of a call and the perceptual salience of different acoustic features, however, it is important to determine the different sources of acoustic variation. I present data on the rhesus macaques' (M. mulatta) coo vocalization and attempt to establish some of the causes of acoustic variation. A large proportion of the variation observed was due to differences between individuals and to putative changes in arousal, not to differences in social context. Specifically, results from a discriminant-function analysis indicated that coo exemplars were accurately assigned to the appropriate individual, but vocal “signatures” were more variable in some contexts than in others. Moreover, vocal signatures may not always be reliable cues to caller identity because closely related individuals sound alike. Rhesus macaque coos evidently provide sufficient acoustic information for individual recognition and possibly kin recognition, but are unlikely to provide sufficient information about an external referent.  相似文献   

20.
冯莹莹  梁丹  李兴权  罗旭 《生态学报》2021,41(21):8673-8684
鸟类鸣唱存在广泛的地理变异,研究鸟类鸣唱变异的模式及其影响因素可帮助解释自然界中广泛而复杂的鸣声变异现象。灰腹地莺(Tesia cyaniventer)是在高黎贡山海拔2000-2800 m分布的小型地栖性森林鸟类。高黎贡山南北走向的山脊海拔通常在3000m以上,这导致灰腹地莺东、西坡种群被山脊所隔离。该种小鸟鸣声洪亮易于鉴别,其鸣声地理变异可揭示山地对鸟类种群产生的隔离效应。在高黎贡山片马垭口和独龙江垭口的东西坡4个地点录制了灰腹地莺的鸣声(n=58),基于声谱分析比较了种群间鸣唱的质量特征,发现种群间鸣唱型的共享程度极低,而音节型在4个种群间均有共享。进一步测量了11个鸣唱的数量特征参数,有6个参数在不同种群间有显著差异:最低频率、中心频率、频率宽度、起始音节频率、首二音节的时间间隔、句子平均音节数。种群间的两两比较表明,鸣声特征差异呈现"隔离-距离"共同作用的格局,但隔离的影响更大。研究表明山地系统中影响鸟类鸣声地理变异的因素较为复杂,山地隔离和空间距离均对灰腹地莺的鸣唱特征产生了影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号