首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
Many recent studies have explored the effects of present and past landscape structure on species distribution and diversity. However, we know little about the effects of past landscape structure on distribution of genetic diversity within and between populations of a single species. Here we describe the relationship between present and past landscape structure (landscape connectivity and habitat size estimated from historical maps) and current genetic structure in a perennial herb, Succisa pratensis. We used allozymes as co‐dominant markers to estimate genetic diversity and deviation from Hardy–Weinberg equilibrium in 31 populations distributed within a 5 km2 agricultural landscape. The results showed that current genetic diversity of populations was related to habitat suitability, habitat age, habitat size and habitat connectivity in the past. The effects of habitat age and past connectivity on genetic diversity were in most cases also significant after taking the current landscape structure into account. Moreover, current genetic similarity between populations was affected by past connectivity after accounting for current landscape structure. In both cases, the oldest time layer (1850) was the most informative. Most populations showed heterozygote excess, indicating disequilibrium due to recent gene flow or selection against homozygotes. These results suggest that habitat age and past connectivity are important determinants of distribution of genetic diversity between populations at a scale of a few kilometres. Landscape history may significantly contribute to our understanding of distribution of current genetic structure within species and the genetic structure may be used to better understand landscape history, even at a small scale.  相似文献   

2.
Species distributions are influenced by both climate conditions and landscape structure. Here we propose an integrated analysis of climatic and landscape niche-based models for a forest-dependent primate, the endangered black lion tamarin (Leontopithecus chrysopygus). We applied both climate and landscape variables to predict the distribution of this tamarin and used this information to prioritize strategic areas more accurately. We anticipated that this approach would be beneficial for the selection of pertinent conservation strategies for this flagship species. First, we built climate and landscape niche-based models separately, combining seven algorithms, to infer processes acting on the species distribution at different scales. Subsequently, we combined climate and landscape models using the EcoLand Analysis. Our results suggest that historic and current landscape fragmentation and modification had profoundly adverse effects on the distribution of the black lion tamarins. The models indicated just 2096 km2 (out of an original distribution of 92,239 km2) of suitable areas for both climate and landscape. Of this suitable area, the species is currently present in less than 40%, which represents less than 1% of its original distribution. Based on the combined map, we determined the western and southeast regions of the species range to be priority areas for its conservation. We identified areas with high climatic and high landscape suitability, which overlap with the remaining forest fragments in both regions, for habitat conservation and population management. We suggest that areas with high climatic but low landscape suitability should be prioritized for habitat management and restoration. Areas with high landscape suitability and low climatic suitability, such as the Paranapiacaba mountain range should be considered in light of projected climate change scenarios. Our case study illustrates that a combined approach of climatic and landscape niche-based modeling can be useful for establishing focused conservation measures that may increase the likelihood of success.  相似文献   

3.
Habitat fragmentation is an increasing threat to wildlife species across the globe and it has been predicted that future biodiversity will decrease rapidly without the intervention of scientifically-based management. In this study we have applied a landscape genetics approach to suggest a network design that will maintain connectivity among populations of the endangered mountain Nyala (Tragelaphus buxtoni) in the fragmented highlands of Ethiopia. DNA was obtained non-invasively from 328 individuals and genetic population structure and gene flow were estimated using 12 microsatellite markers. In addition, a 475-bp segment of the mitochondrial control region was sequenced for 132 individuals. Potential dispersal corridors were determined from least-cost path analysis based on a habitat suitability map. The genetic data indicated limited gene flow between the sampled mountain Nyala populations of the Bale Massif and the Arsi Massif. The genetic differentiation observed among five sampling areas of the Bale Massif followed a pattern of isolation by distance. We detected no impact of habitat resistance on the gene flow. In the future, however, the current expanding human population in the highlands of Ethiopia may reduce the current mountain Nyala habitat and further limit migration. Hence, maintaining habitat connectivity and facilitating survival of stepping-stone populations will be important for the future conservation of the species. The approach used here may also be useful for the study and conservation of other wildlife species inhabiting areas of increasing human encroachment.  相似文献   

4.
Baird’s tapir (Tapirus bairdii) is the largest native mammal that inhabits the Neotropics, and it is enlisted as Endangered by the IUCN Red List. The historic distribution of this species included the area from southern Mexico to northern Colombia. However, its distribution and populations have been reduced drastically during the past 30 years. The main threats for Baird’s tapir are the direct persecution for subsistence hunting, habitat destruction, and habitat fragmentation. In this study, we used camera traps and occupancy models to identify the landscape characteristics that were associated with the occurrence of tapirs in the Sierra Madre de Chiapas, which is one of the most important populations of the species in Mexico, with the aim to identify areas with habitat suitability for the species. We used our best occupancy model to generate a resistance matrix to develop a model of habitat connectivity using Circuit Theory. According to the best occupancy model, the most suitable areas for this species were the forested areas located at the highest elevations of the mountain ranges that provided rugged terrain. We identified three critical corridors to allow for the connectivity of tapir populations in the Sierra Madre de Chiapas, and one of these corridors provides connectivity between this population and the population in the Ocote Biosphere Reserve. With this approach, we propose a conservation strategy for the species that incorporates a more realistic and detailed scheme of Baird’s tapir occurrence in the Sierra Madre de Chiapas region. Priority actions to conserve tapirs in the Sierra Madre de Chiapas over the long term include ensuring the complete protection of prime habitat for the species, improved connectivity by protecting forest cover, implementation mitigation measures in areas where paved roads interrupt connectivity of populations, and eradicating poaching of the species in the region completely.  相似文献   

5.
Lake Cuitzeo basin is an important ecological area subjected to strong human pressure on forest covers that are key elements for the long-term support of biodiversity. We studied landscape connectivity changes for the years 1975, 1996, 2000, 2003 and 2008 to identify potential conservation areas in the basin. We modeled potential distributions of the Mexican bobcat (Lynx rufus escuinapae) and the ringtail (Bassariscus astutus) – two terrestrial mammal focal species with contrasting dispersal capacities – and we determined their habitat availability and suitability in the basin. We then identified their optimal habitat patches and produced landscape cumulative resistance maps, estimated least-cost paths (graph theory approach), and elaborated current flow maps (circuit theory approach). For evaluation of landscape connectivity, we applied an integral index of connectivity (IIC) to each study period, and determined individual habitat patch contribution to the overall landscape connectivity. The IIC index had very low values associated with reduced availability of focal species habitat. However, our study showed the conservation importance of the surface of optimal habitat patch areas. The combined application of a graph-based approach and current flow mapping were useful, and complementary both in terms of estimating potential dispersal corridors and identifying high probability dispersal areas. This indicated that landscape connectivity analysis is a useful tool for identification of potential conservation areas and for local landscape planning.  相似文献   

6.
《Global Change Biology》2018,24(7):3236-3253
Alpine and Arctic species are considered to be particularly vulnerable to climate change, which is expected to cause habitat loss, fragmentation and—ultimately—extinction of cold‐adapted species. However, the impact of climate change on glacial relict populations is not well understood, and specific recommendations for adaptive conservation management are lacking. We focused on the mountain hare (Lepus timidus) as a model species and modelled species distribution in combination with patch and landscape‐based connectivity metrics. They were derived from graph‐theory models to quantify changes in species distribution and to estimate the current and future importance of habitat patches for overall population connectivity. Models were calibrated based on 1,046 locations of species presence distributed across three biogeographic regions in the Swiss Alps and extrapolated according to two IPCC scenarios of climate change (RCP 4.5 & 8.5), each represented by three downscaled global climate models. The models predicted an average habitat loss of 35% (22%–55%) by 2100, mainly due to an increase in temperature during the reproductive season. An increase in habitat fragmentation was reflected in a 43% decrease in patch size, a 17% increase in the number of habitat patches and a 34% increase in inter‐patch distance. However, the predicted changes in habitat availability and connectivity varied considerably between biogeographic regions: Whereas the greatest habitat losses with an increase in inter‐patch distance were predicted at the southern and northern edges of the species’ Alpine distribution, the greatest increase in patch number and decrease in patch size is expected in the central Swiss Alps. Finally, both the number of isolated habitat patches and the number of patches crucial for maintaining the habitat network increased under the different variants of climate change. Focusing conservation action on the central Swiss Alps may help mitigate the predicted effects of climate change on population connectivity.  相似文献   

7.
Landscape genetics increasingly focuses on the way in which landscape features cause the fragmentation of lineages of terrestrial organisms. However, landscape features can also provide functional connectivity or corridors, enhancing the dispersal of plant populations, particularly the case in riparian habitat. Unfortunately, recent research in tree genetics has paid little attention to this role. To examine the possible effects of landscape connectivity on the current population genetic distribution of Fraxinus mandshurica and to provide insights into conserving the local genetic diversity for this endangered tree species, we used nine nuclear microsatellite loci to examine the spatial genetic structure of F. mandshurica at multiple-scales over a riparian–mountain landscape in Northeast China. F-statistics indicated that the magnitude of among-population genetic differentiation was significantly higher between the riparian and mountain habitats than within the riparian habitat. Spatial analysis of molecular variance and principal coordinate analysis consistently revealed that this species exhibited a clear landscape genetic structure between the riparian and mountain habitats, despite no significant isolation by distance pattern being identified by the Mantel test. Spatial autocorrelation analysis further demonstrated significant, positive fine-scale spatial genetic structure among individuals over short distances (<80 m) in each mountain population. Conversely, no spatial genetic structures were identified within and among the riparian populations. Overall, the results suggest that seed dispersal is very low among mountain populations; however seed transport is probably enhanced by a secondary phase of hydrochory (water-dispersal) among riparian populations during flooding. Despite this, there was no significant accumulation of genetic diversity in downstream populations along the main channel. This result suggests that hydrochory is not sufficient to produce a clear unidirectional gene flow along the water course, although it may impede the development of spatial genetic structuring within and among riparian populations.  相似文献   

8.
Climate change can affect the habitat resources available to species by changing habitat quantity, suitability and spatial configuration, which largely determine population persistence in the landscape. In this context, dispersal is a central process for species to track their niche. Assessments of the amount of reachable habitat (ARH) using static snap-shots do not account, however, for the temporal overlap of habitat patches that may enhance stepping-stone effects. Here, we quantified the impacts of climate change on the ARH using a spatio–temporal connectivity model. We first explored the importance of spatio–temporal connectivity relative to purely spatial connectivity in a changing climate by generating virtual species distributions and analyzed the relative effects of changes in habitat quantity, suitability and configuration. Then, we studied the importance of spatio–temporal connectivity in three vertebrate species with divergent responses to climate change in North America (grey wolf, Canadian lynx and white-tailed deer). We found that the spatio–temporal connectivity could enhance the stepping-stone effect for species predicted to experience range contractions, and the relative importance of the spatio–temporal connectivity increased with the reduction in habitat quantity and suitability. Conversely, for species that are likely to expand their ranges, spatio–temporal connectivity had no additional contribution to improve the ARH. We also found that changes in habitat amount (quantity and suitability) were more influential than changes in habitat configuration in determining the relative importance of spatio–temporal connectivity. We conclude that spatio–temporal connectivity may provide less biased and more realistic estimates of habitat connectivity than purely spatial connectivity.  相似文献   

9.
The Grey Partridge Perdix perdix is a sedentary species with a surplus of males in spring populations. It experienced a dramatic decline in Europe primarily due to habitat loss that may have forced the species to modify its dispersal behaviour, a less transparent source of populations threats. We analysed the dispersal patterns of Grey Partridges during pre- and post-breeding periods in two landscapes with different habitat quality in the Czech Republic. Grey Partridges tended to pair off quickly, with most pre-breeding movements executed in pairs. The birds usually dispersed over a few hundred metres indicating that the habitat conditions in a landscape with a carrying capacity of 2–5 pairs/1 km2 was not below the threshold initiating strong dispersal, as observed in extreme habitats and at the northern limits of the species′ distribution range. A few single males that had remained unpaired until April also finally bred. However, the high level of sedentariness of males in a good landscape suggested that males prefer to stay near wintering sites unless habitat sources become limited. Unlike the males, the females dispersed in a wide range of distances with an extensive overlap in both landscapes. Autumn movements did not differ between the sexes, but were longer than the pre-breeding movements and increased in a poor landscape. We conclude that both reduced habitat availability and reduced mating opportunities initialise primarily male-biased breeding dispersal in Grey Partridge populations.  相似文献   

10.
基于生境斑块的滇金丝猴景观连接度分析   总被引:2,自引:0,他引:2  
基于生境斑块,结合最小费用距离并运用图论法对滇金丝猴分布区进行栖息地连接度分析,研究利用猴群的现实分布结合Logistic回归模型确定了景观功能连接的最佳距离阈值,对于功能畅通的组分,以景观指数BC定量识别出作为"踏脚石"的优先保护区域;对于功能不连接的组分,绘制出最小费用路径,确定了该路径中优先恢复区域。结果表明:最佳的最小费用距离阈值为1400,该阈值下猴群主要存在于5个组分中,所有组分中猴群间的连接度优劣排序为组分3组分1组分5组分4,龙马山猴群(G15)没有"踏脚石"斑块使其与同一组分内的其他猴群相连接,应考虑优先恢复该区域的植被,研究成果对于该物种的保护和其他濒危物种的类似研究具有较强的参考价值和借鉴意义。  相似文献   

11.
Fragmentation represents a serious threat to biodiversity worldwide, however its effects on epiphytic organisms is still poorly understood. We study the effect of habitat fragmentation on the genetic population structure and diversity of the red-listed epiphytic lichen, Lobaria pulmonaria, in a Mediterranean forest landscape. We tested the relative importance of forest patch quality, matrix surrounding fragments and connectivity on the genetic variation within populations and the differentiation among them. A total of 855 thalli were sampled in 44 plots (400 m2) of 31 suitable forest fragments (beeches and oaks), in the Sierra de Ayllón in central Spain. Variables related to landscape attributes of the remnant forest patches such as size and connectivity and also the nature of the matrix or tree species had no significant effects on the genetic diversity of L. pulmonaria. Values of genetic diversity (Nei’s) were only affected by habitat quality estimated as the age patches. Most of the variation (76%) in all populations was observed at the smallest sampled unit (plots). Using multiple regression analysis, we found that habitat quality is more important in explaining the genetic structure of the L. pulmonaria populations than spatial distance. The relatively high level of genetic diversity of the species in old forest patches regardless of patch size indicates that habitat quality in a highly structured forest stand determines the population size and distribution pattern of this species and its associated lichen community. Thus, conservation programmes of Mediterranean mountain forests have to prioritize area and habitat quality of old forest patches.  相似文献   

12.
Species adapted to cold-climatic mountain environments are expected to face a high risk of range contractions, if not local extinctions under climate change. Yet, the populations of many endothermic species may not be primarily affected by physiological constraints, but indirectly by climate-induced changes of habitat characteristics. In mountain forests, where vertebrate species largely depend on vegetation composition and structure, deteriorating habitat suitability may thus be mitigated or even compensated by habitat management aiming at compositional and structural enhancement. We tested this possibility using four cold-adapted bird species with complementary habitat requirements as model organisms. Based on species data and environmental information collected in 300 1-km2 grid cells distributed across four mountain ranges in central Europe, we investigated (1) how species’ occurrence is explained by climate, landscape, and vegetation, (2) to what extent climate change and climate-induced vegetation changes will affect habitat suitability, and (3) whether these changes could be compensated by adaptive habitat management. Species presence was modelled as a function of climate, landscape and vegetation variables under current climate; moreover, vegetation-climate relationships were assessed. The models were extrapolated to the climatic conditions of 2050, assuming the moderate IPCC-scenario A1B, and changes in species’ occurrence probability were quantified. Finally, we assessed the maximum increase in occurrence probability that could be achieved by modifying one or multiple vegetation variables under altered climate conditions. Climate variables contributed significantly to explaining species occurrence, and expected climatic changes, as well as climate-induced vegetation trends, decreased the occurrence probability of all four species, particularly at the low-altitudinal margins of their distribution. These effects could be partly compensated by modifying single vegetation factors, but full compensation would only be achieved if several factors were changed in concert. The results illustrate the possibilities and limitations of adaptive species conservation management under climate change.  相似文献   

13.
14.
This paper incorporates the indigenous ecological knowledge (IEK) of the Maasai pastoralists and ecological methods to assess effects of grazing and cropping on rangeland biodiversity at macro‐ and micro‐landscape scales in northern Tanzania. The joint surveys with pastoralists identified indicator plant species and their associations with micro‐landscapes and livestock grazing suitability (i.e. for cattle and small ruminant grazing), while traditional calf‐pasture reserves (alalili pl. alalilia) were evaluated for preservation of rangeland biodiversity. The macro‐landscapes comprising the cool high plateau (osupuko pl. isipuki) and montane forest highland (endim) were included in the survey. At micro‐landscape scales, the osupuko was classified into uplands (orkung'u), slopes (andamata) and dry valley bottomlands (ayarata). The micro‐landscapes were assessed in terms of herbaceous plant species and woody species richness and risks of soil erosion. Biodiversity varied at both the macro‐ and micro‐landscape scales and in accordance with the land‐use types. Greater plant species diversity and less erosion risks were found in the pastoral landscapes than in the agro‐pastoral landscapes. The calf‐grazing pastures had greater herbaceous species richness than the non‐calf pastures, which in turn had more woody species. The study concludes that the indigenous systems of landscape classification provides a valuable basis for assessing rangeland biodiversity, which ecologists should incorporate into ecological surveys of the rangelands in East Africa in the future.  相似文献   

15.
Understanding habitat quality and landscape connectivity and exploring corridors connecting habitat patches are crucial for conservation, particularly for species distributed among isolated populations. The Sichuan golden snub-nosed monkey, Rhinopithecus roxellana, is an Endangered primate species endemic to mountainous forests in China. Its easternmost distribution lies in the Shennongjia area, which harbors an isolated subspecies, R. roxellana hubeiensis. Unfortunately, it has experienced significant habitat loss, fragmentation, and dramatic population decline in recent decades, primarily due to increased human disturbance. To quantify habitat quality, identify suitable habitat patches, and detect possible linkages among these patches for R. roxellana hubeiensis, we conducted habitat suitability assessments and landscape connectivity analyses in the Shennongjia area based on a set of environmental factors. We created a habitat quality model and a movement cost surface for the Shennongjia area based on a habitat suitability index, graph theory, expert knowledge, field experience, and information from the literature. Our results show that suitable habitat for R. roxellana hubeiensis in Shennongjia is fragmented and limited, and that this is particularly true for highly suitable habitats. We detected six core habitat patches and six least-cost paths and corridors. Our study does not provide accurate distributions of the monkeys and their habitat use. However, it identifies the most feasible and traversable habitats and corridors, which should be conservation priorities for this subspecies, and provides valuable guidance for reevaluating habitat conservation plans.  相似文献   

16.
Roe deer is a protected species in Iran as its population and distribution in the country have considerably declined. Roe deer are threatened by several factors such as habitat fragmentation and road mortality, so studying their distribution and movement through the increasing habitat destruction and fragmentation is necessary. This will become increasingly important because climate change will transform the species’ future habitat and connectivity patterns. We evaluated the roe deer’s potential distribution range in northern Iran and, for the first time, developed connectivity models and designed corridors for the present and future to make better conservation plans. We collected 91 points indicating the presence of roe deer in the study region. After developing ensemble models using six species distribution algorithms, we defined high-ranked habitat cores using the concept of landscape suitability prioritization. From these, we designed connectivity and corridors in two time-frames with the help of least-cost paths and circuit theories to predict the potential movement throughout the study area. We estimated that the overall core habitats for roe deer in the present and future periods are, respectively, around 1200 km2 and 2600 km2, corresponding to 2 and 4 percent of the whole area. This suggests that the habitat core will expand in the future as a result of climate change. Similarly, the connectivity among the cores will strengthen. We also conclude that the temperature-driven and anthropogenic variables significantly affect the distribution of roe deer in northern Iran. It is necessary that conservationists and managers consider the designed corridors in the present study while planning conservation strategies.  相似文献   

17.
Question: Spatial prediction of plant populations is essential for conservation management. This is especially true for rare and/or threatened endemic species, for which knowledge of determinants of distribution is necessary to mitigate threats and counteract decline. We therefore ask if the distribution of an endemic species can be accurately predicted by georeferenced environmental variables or, if anthropogenic variables also need to be taken into account. Location: Alps, Hautes‐Alpes, France. Methods: Potential distribution area and abundance of Eryngium spinalba were predicted with logistic regression and ordinal logistic regression, respectively, in a 57‐km2 watershed. Results: Aspect, global solar radiation in March, elevation and grazing pressure were the main predictors of the probability of occurrence of Eryngium spinalba. Taking into account the persistence of agro‐pastoral activities by diachronic analysis (Napoleonic cadastral map and orthorectified photographs) improved predictions from the model and the level of spatial concordance with independent surveys. Conclusions: Niche modelling improved our understanding of the distribution of this threatened species which, in the context of land abandonment, is diminishing as a result of the decline of its favoured habitats. The key role of pastoral activities and historic continuity for its distribution and persistence was clearly demonstrated.  相似文献   

18.
Yu CX  Yang G  Li D  Zhou F 《动物学研究》2011,32(5):549-555
桂西南喀斯特地区位于中国广西的西南部,属于全球生物多样性热点地区。通过自2003年以来,对该地区雉类进行的调查,共记录到7种雉类,分别是中华鹧鸪(Francolinus pintadeanus)、褐胸山鹧鸪(Arborophila brunneopectus)、棕胸竹鸡(Bambusicola fytchii)、灰胸竹鸡(Bambusicola thoracica)、原鸡(Gallus gallus)、白鹇(Lophura nycthemera)和环颈雉(Phasianus colchicus)。对该地区雉类的生态分布状况及栖息地的植被类型和坡位等空间生态位进行分析和比较的结果表明,原鸡的综合生态位最宽,灰胸竹鸡第二,最窄为中华鹧鸪。综合生态位重叠值最大的是中华鹧鸪--环颈雉和灰胸竹鸡--原鸡。分布范围狭窄、种群数量相对较少及生态适应性较低的褐胸山鹧鸪应该是该地区最易受到威胁的种类。  相似文献   

19.
Aim We investigated how current and historical land use and landscape structure affect species richness and the processes of extinction, immigration and species turnover. Location The northern part of the Stockholm archipelago, Baltic Sea, Sweden. We resurveyed 27 islands ranging from 0.3 to 33 ha in area. Methods We compared current plant survey data, cadastral maps and aerial photographs with records obtained from a survey in 1908, using databases and a digital elevation model to examine changes in plant community dynamics in space and time. We examined the effects of local and landscape structure and land use changes on plant species dynamics by using stepwise regression in relation to eight local and three landscape variables. The eight local variables were area, relative age, shape, soil heterogeneity, bedrock ratio, number of houses, forest cover change, and grazing 100 years ago. The three landscape variables were distance to mainland, distance to closest island with a farm 100 years ago, and structural connectivity. Hanski’s connectivity measure was modified to incorporate both connectivity and fragmentation. Results The investigated islands have undergone drastic changes, with increasing forest cover, habitation, and abandonment of grassland management. Although the total species richness increased by 31% and mean island area by 23%, we found no significant increase in species richness per unit area. Local variables explain past species richness (100 years ago), whereas both local and landscape variables explain current species richness, extinctions, immigrations and species turnover. Grazing that occurred 100 years ago still influences species richness, even though grazing management was abandoned several decades ago. The evidence clearly shows an increase in nitrophilous plant species, particularly among immigrant species. Main conclusions This study highlights the importance of including land use history when interpreting current patterns of species richness. Furthermore, local environment and landscape patterns affect important ecological processes such as immigration, extinction and species turnover, and hence should be included when assessing the impact of habitat fragmentation and land use change. We suggest that our modified structural connectivity measure can be applied to other types of landscapes to investigate the effects of fragmentation and habitat loss.  相似文献   

20.
Land use changes have profound effects on populations of Neotropical primates, and ongoing climate change is expected to aggravate this scenario. The titi monkeys from eastern Brazil (Callicebus personatus group) have been particularly affected by this process, with four of the five species now allocated to threatened conservation status categories. Here, we estimate the changes in the distribution of these titi monkeys caused by changes in both climate and land use. We also use demographic‐based, functional landscape metrics to assess the magnitude of the change in landscape conditions for the distribution predicted for each species. We built species distribution models (SDMs) based on maximum entropy for current and future conditions (2070), allowing for different global circulation models and contrasting scenarios of glasshouse gas concentrations. We refined the SDMs using a high‐resolution map of habitat remnants. We then calculated habitat availability and connectivity based on home‐range size and the dispersal limitations of the individual, in the context of a predicted loss of 10% of forest cover in the future. The landscape configuration is predicted to be degraded for all species, regardless of the climatic settings. This include reductions in the total cover of forest remnants, patch size and functional connectivity. As the landscape configuration should deteriorate severely in the future for all species, the prevention of further loss of populations will only be achieved through habitat restoration and reconnection to counteract the negative effects for these and several other co‐occurring species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号