首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Rates of mucus and DOC-lipid release were determined for colonies of Acropora variabilis and Stylophora pistillata at 5 m depth and for a colony of A. variabilis at 23 m depth. In addition, colonies at 5 m were shaded to simulate ambient irradiance at 6 m, 10 m and 16 m depth to evaluate the effect of light on the rates of release. A. variabilis released more mucus and DOC-lipid at 5 m than at 23 m depth. For both corals, the night rates were about 30% those of the day. A reduction in total integrated irradiance decreased mucus output from the corals. Similarly, DOC-lipid release showed a diurnal pattern and diminished with reduction in daily irradiance. For both coral species, DOC-lipid release rates were greater in the afternoon than in the morning. The night rates were less than 55% those of the day. The DOC-lipid comprised wax esters and a phospholipid fraction. The diurnal variation was due to changes in yield of wax esters which contributed >90% of the carbon released as DOC-lipid. In situ release of mucus and DOC-lipid was infuenced by light effects on phototrophic carbon metabolism. A daily budget for carbon released as mucus and DOC-lipid was estimated for each coral species at 5 m depth.  相似文献   

2.
A new high‐resolution imaging fluorometer (Imaging‐PAM) was used to identify heterogeneity of photosynthetic activity across the surface of corals. Three species were examined: Acropora nobilis Dana (branching), Goniastrea australiensis Edwards & Haime (massive), and Pavona decussata Dana (plate). Images of fluorescence parameters (F, Fm′, effective quantum yield, optimal quantum yield, electron transport rate, relative photosynthetic rate, and non‐photochemical quenching) allowed heterogeneity to be detected in terms of position on colony and indicated that the photosynthetic activity of polyp and coenosarc tissues responded differently to changing light for all three species. The Imaging‐PAM offers a special routine, with which images of PAR absorption (absorptivity) are obtained. In this way, for the first time it has become possible to derive images of the relative photosynthesis rate. Polyps had a lower PAR absorptivity than coenosarc tissue for A. nobilis and P. decussata, whereas G. australiensis showed the opposite pattern. Acropora nobilis showed heterogeneity along the longitudinal axis of the branch, which could be differentiated from the effect of variations in illumination across the rugose and curved surface. Diel changes were apparent and influenced the longitudinal heterogeneity along the A. nobilis branch. Images were also obtained showing the degree of photoinhibition caused by high‐light stress across a coral surface at a hitherto unobtainable level of resolution.  相似文献   

3.
Deciduous and evergreen species are segregated on northeast and southwest slopes of the southern Appalachian Mountains. The segregated distributions of three ericaceous shrubs (Rhododendron maximum valley positions; Rhododendron periclymenoides on northeast slopes; Kalmia latifolia on southwest slopes) were compared to the respective irradiance environments. Growth patterns of field plants, and photosynthetic acclimation of each species to three irradiance treatments in a phytotron were studied. Rhododendron maximum, an evergreen species, was found to be most sensitive to high radiation. In phytotron experiments, quantum yield, light saturated photosynthetic capacity, photosynthesis per chlorophyll, and water use efficiency decreased at high ambient irradiance for R. maximum. These characteristics limit the growth of R. maximum on high irradiance southwestern slopes. Both K. latifolia and R. periclymenoides were able to improve their photosynthetic performance at high ambient irradiance. Rhododendron periclymenoides, a deciduous species, was found to continue increasing leaf conductance at high irradiance without an increase in photosynthesis indicating a possible limitation by water in high light environments such as southwest slopes. Kalmia latifolia, an evergreen species, had reduced photosynthetic capacity and reduced water use efficiency when grown in low irradiance conditions which coincides with the higher K. latifolia abundance on high light, southwestern slopes.  相似文献   

4.
Exposure to elevated temperature is known to cause photosynthetic inhibition in the coral symbiont Symbiodinium sp. Through the use of the artificial electron acceptor, methyl viologen, this study identified how reduced photosynthetic capacity occurs as a result of inhibition up‐ and/or downstream of ferredoxin in Symbiodinium sp. in hospite and in culture. Heterogeneity between coral species and symbiont clades was identified in the thermal sensitivity of photosynthesis in the symbionts of the scleractinian corals Stylophora pistillata and Pocillopora damicornis, as well as among Symbiodinium cultures of clades A, B, and C. The in hospite symbionts of S. pistillata and the cultured clade C Symbiodinium both exhibited similar patterns in that their primary site of thermal inhibition occurred downstream of ferredoxin at 32°C. In contrast, the primary site of thermal inhibition occurred upstream of ferredoxin in clades A and B at 32°C, while at 34°C, all samples showed combined up‐ and downstream inhibition. Although clade C is common to both P. damicornis and S. pistillata, the manner of thermal inhibition was not consistent when observed in hospite. Results showed that there is heterogeneity in the primal site of thermal damage in Symbiodinium among coral species and symbiont clades.  相似文献   

5.
The spectral light field of Symbiodinium within the tissue of the coral animal host can deviate strongly from the ambient light field on a coral reef and that of artificial light sources used in lab studies on coral photobiology. Here, we used a novel approach involving light microsensor measurements and a programmable light engine to reconstruct the spectral light field that Symbiodinium is exposed to inside the coral host and the light field of a conventional halogen lamp in a comparative study of Symbiodinium photobiology. We found that extracellular gross photosynthetic O2 evolution was unchanged under different spectral illumination, while the more red-weighted halogen lamp spectrum decreased PSII electron transport rates and there was a trend towards increased light-enhanced dark respiration rates under excess irradiance. The approach provided here allows for reconstructing and comparing intra-tissue coral light fields and other complex spectral compositions of incident irradiance. This novel combination of sensor technologies provides a framework to studying the influence of macro- and microscale optics on Symbiodinium photobiology with unprecedented spectral resolution.  相似文献   

6.
7.
This study examined the importance of mycosporine-glycine (Myc-Gly) as a functional antioxidant in the thermal-stress susceptibility of two scleractinian corals, Platygyra ryukyuensis and Stylophora pistillata. Photochemical efficiency of PSII (Fv/Fm), activity of antioxidant enzymes, superoxide dismutase (SOD) and catalase (CAT), and composition and abundance of mycosporine-like amino acids (MAAs) in the coral tissue and in symbiotic zooxanthellae were analyzed during 12-h exposure to high temperature (33 °C). After 6- and 12-h exposures at 33 °C, S. pistillata showed a significantly more pronounced decline in Fv/Fm compared to P. ryukyuensis. A 6-h exposure at 33 °C induced a significant increase in the activities of SOD and CAT in both host and zooxanthellae components of S. pistillata while in P. ryukyuensis a significant increase was observed only in the CAT activity of zooxanthellae. After 12-h exposure, the SOD activity of P. ryukyuensis was unaffected in the coral tissue but slightly increased in zooxanthellae, whereas the CAT activity in the coral tissue showed a 2.5-fold increase. The total activity of antioxidant enzymes was significantly higher in S. pistillata than in P. ryukyuensis, suggesting that P. ryukyuensis is less sensitive to oxidative stress than S. pistillata. This differential susceptibility of the corals is consistent with a 20-fold higher initial concentration of Myc-Gly in P. ryukyuensis compared to S. pistillata. In the coral tissue and zooxanthellae of both species investigated, the first 6 h of exposure to thermal stress induced a pronounced reduction in the abundance of Myc-Gly but not in other MAAs. When exposure was prolonged to 12 h, the Myc-Gly pool continued to decrease in P. ryukyuensis and was completely depleted in S. pistillata. The delay in the onset of oxidative stress in P. ryukyuensis and the dramatic increase in the activities of the antioxidant enzymes in S. pistillata, which contains low concentrations of Myc-Gly suggest that Myc-Gly provides rapid protection against oxidative stress before the antioxidant enzymes are induced. These findings strongly suggest that Myc-Gly is functioning as a biological antioxidant in the coral tissue and zooxanthellae and demonstrate its importance in the survival of reef-building corals under thermal stress.  相似文献   

8.
This paper aims to validate reference genes for gene expression studies between light and dark conditions in the scleractinian coral Stylophora pistillata for future gene expression studies of the “light-enhanced calcification” phenomenon. For this purpose, we cloned, sequenced, and characterized a candidate reference gene, the 36B4 gene from the coral S. pistillata, and validated 36B4 and β-actin as reference genes. To illustrate the future applications of these reference genes, we tested the dark and light expression of two photosynthetic genes (Rubisco and D1 protein of the photosystem II) and two genes encoding proteins involved in calcium transport for coral calcification (a calcium ATPase and a calcium channel). Results show that both photosynthetic genes are enhanced during the light when standardized against 36B4 and β-actin, whereas the two genes encoding proteins involved in calcium transport are not differentially expressed between light and dark conditions. The characterization of a coral 36B4 and the establishment of such valid reference genes will be useful for future gene expression studies between diverse conditions (aposymbiotic/symbiotic, stress/control, light/dark conditions) in scleractinian corals. Nucleotide sequence of the coral 36B4 gene cloned in this study is available in the Genbank database under the accession number EU069460.  相似文献   

9.
Coral-crab association: a compact domain of a multilevel trophic system   总被引:1,自引:1,他引:0  
Rinkevich  B.  Wolodarsky  Z.  Loya  Y. 《Hydrobiologia》1991,216(1):279-284
Colonies of the Red Sea branching coral Stylophora pistillata were incubated in situ with radioactive carbon and Trapezia cymodoce crabs were introduced to the colonies, for one month each, up to 7 months after coral labelling. Zooxanthellar photosynthetic products were translocated to the crabs via host coral tissue. Based upon crab/coral tissue conversion from 53 crab samples, crabs possessed radioactive material equal to that recorded in 320–770 mm2 of coral tissue (up to 2257 mm2). This material was translocated mainly by direct grazing on coral tissue rather than mucus collection. Ovigerous female crabs (39 specimens) accumulated significantly more labelled carbon than males, and up to 53 % of their radioactivity was concentrated in their reproductive organs. A pair of crabs dwelling in a coral colony consumed ca 130 cm2 of host tissue per month (40–45 cm length of coral branches). This system represents a compact, obligatory multilevel trophic domain which also radiates horizontally by allocation of energy derived from algal photosynthesis into planula and zooea larva production, permitting the development of long trophic chains and a complex food web.  相似文献   

10.
While light limitation can inhibit bloom formation in dinoflagellates, the potential for high‐intensity photosynthetically active radiation (PAR) to inhibit blooms by causing stress or damage has not been well‐studied. We measured the effects of high‐intensity PAR on the bloom‐forming dinoflagellates Alexandrium fundyense and Heterocapsa rotundata. Various physiological parameters (photosynthetic efficiency Fv/Fm, cell permeability, dimethylsulfoniopropionate [DMSP], cell volume, and chlorophyll‐a content) were measured before and after exposure to high‐intensity natural sunlight in short‐term light stress experiments. In addition, photosynthesis‐irradiance (P‐E) responses were compared for cells grown at different light levels to assess the capacity for photophysiological acclimation in each species. Experiments revealed distinct species‐specific responses to high PAR. While high light decreased Fv/Fm in both species, A. fundyense showed little additional evidence of light stress in short‐term experiments, although increased membrane permeability and intracellular DMSP indicated a response to handling. P‐E responses further indicated a high light‐adapted species with Chl‐a inversely proportional to growth irradiance and no evidence of photoinhibition; reduced maximum per‐cell photosynthesis rates suggest a trade‐off between photoprotection and C fixation in high light‐acclimated cells. Heterocapsa rotundata cells, in contrast, swelled in response to high light and sometimes lysed in short‐term experiments, releasing DMSP. P‐E responses confirmed a low light‐adapted species with high photosynthetic efficiencies associated with trade‐offs in the form of substantial photoinhibition and a lack of plasticity in Chl‐a content. These contrasting responses illustrate that high light constrains dinoflagellate community composition through species‐specific stress effects, with consequences for bloom formation and ecological interactions within the plankton.  相似文献   

11.
Recreational and other human activities degrade coral reefs worldwide to a point where efficient restoration techniques are needed. Here we tested several strategies for gardening denuded reefs. The gardening concept consists of in situ or ex situ mariculture of coral recruits, followed by their transplantation into degraded reef sites. In situ nurseries were established in Eilat's (Northern Red Sea) shallow waters, sheltering three types of coral materials taken from the branching species Stylophora pistillata (small colonies, branch fragments, and spat) that were monitored for up to two years. Pruning more than 10% of donor colonies' branches increased mortality, and surviving colonies displayed reduced reproductive activity. Maricultured isolated branches, however, exceeded donor colony life span and reproductive activity and added 0.5–45% skeletal mass per year. Forty‐four percent of the small colonies survived after 1.5‐year mariculture, revealing average yearly growth of 75 ± 32%. Three months ex situ maintenance of coral spat (sexual recruits) prior to the in situ nursery phase increased survivorship. Within the next 1.5 years, they developed into colonies of 3–4 cm diameter. Nursery periods of 2 years, 4–5 years, and more than> 5 years have been estimated for small colonies, spat, and isolated branches, respectively. These and other results, including the possible use of nubbins (minute fragments the size of a single or few polyps), are discussed, revealing benefits and drawbacks for each material. In situ coral mariculture is an improved practice to the common but potentially harmful protocol of direct coral transplantation. It is suggested that reef gardening may be used as a key management tool in conservation and restoration of denuded reef areas. The gardening concept may be applicable for coral reefs worldwide through site‐specific considerations and the use of different local coral species.  相似文献   

12.
The photosynthesis‐irradiance response (PE) curve, in which mass‐specific photosynthetic rates are plotted versus irradiance, is commonly used to characterize photoacclimation. The interpretation of PE curves depends critically on the currency in which mass is expressed. Normalizing the light‐limited rate to chl a yields the chl a‐specific initial slope (αchl). This is proportional to the light absorption coefficient (achl), the proportionality factor being the photon efficiency of photosynthesis (φm). Thus, αchl is the product of achl and φm. In microalgae αchl typically shows little (<20%) phenotypic variability because declines of φm under conditions of high‐light stress are accompanied by increases of achl. The variation of αchl among species is dominated by changes in achl due to differences in pigment complement and pigment packaging. In contrast to the microalgae, αchl declines as irradiance increases in the cyanobacteria where phycobiliproteins dominate light absorption because of plasticity in the phycobiliprotein:chl a ratio. By definition, light‐saturated photosynthesis (Pm) is limited by a factor other than the rate of light absorption. Normalizing Pm to organic carbon concentration to obtain PmC allows a direct comparison with growth rates. Within species, PmC is independent of growth irradiance. Among species, PmC covaries with the resource‐saturated growth rate. The chl a:C ratio is a key physiological variable because the appropriate currencies for normalizing light‐limited and light‐saturated photosynthetic rates are, respectively, chl a and carbon. Typically, chl a:C is reduced to about 40% of its maximum value at an irradiance that supports 50% of the species‐specific maximum growth rate and light‐harvesting accessory pigments show similar or greater declines. In the steady state, this down‐regulation of pigment content prevents microalgae and cyanobacteria from maximizing photosynthetic rates throughout the light‐limited region for growth. The reason for down‐regulation of light harvesting, and therefore loss of potential photosynthetic gain at moderately limiting irradiances, is unknown. However, it is clear that maximizing the rate of photosynthetic carbon assimilation is not the only criterion governing photoacclimation.  相似文献   

13.
During the past several decades, corals worldwide have been affected by severe bleaching events leading to wide‐spread coral mortality triggered by global warming. The symbiotic Red Sea coral Stylophora pistillata from the Gulf of Eilat is considered an opportunistic ‘r’ strategist. It can thrive in relatively unstable environments and is considered a stress‐tolerant species. Here, we used a S. pistillata custom microarray to examine gene expression patterns and cellular pathways during short‐term (13‐day) heat stress. The results allowed us to identify a two‐step reaction to heat stress, which intensified significantly as the temperature was raised to a 32 °C threshold, beyond which, coping strategies failed at 34 °C. We identified potential ‘early warning genes’ and ‘severe heat‐related genes’. Our findings suggest that during short‐term heat stress, S. pistillata may divert cellular energy into mechanisms such as the ER‐unfolded protein response (UPR) and ER‐associated degradation (ERAD) at the expense of growth and biomineralization processes in an effort to survive and subsequently recover from the stress. We suggest a mechanistic theory for the heat stress responses that may explain the success of some species which can thrive under a wider range of temperatures relative to others.  相似文献   

14.
This study is a biochemical and molecular analysis of the soluble organic matrix (SOM) of two Scleractinian corals differing in their morphological characteristics: Stylophora pistillata, a branched robust coral and Pavona cactus, a leafy complex coral. Soluble organic matrix of both coral species were shown to contain high amounts of potentially acidic amino acids and glycine. However, proportions of glycosaminoglycans and SDS-PAGE analyses of soluble organic matrix proteins were very different. Three proteins of S. pistillata and at least five proteins of P. cactus were detected by silver staining, some of them being able to bind calcium. Internal peptide sequences of two matrix proteins (one from each species) were obtained. One sequence of S. pistillata is unusual because it contains a long poly-aspartate domain, as described in proteins belonging to the calsequestrin family and in proteins from molluscan species. This domain suggests an essential role for this protein in the control of mineralization.  相似文献   

15.

Chl, chlorophyll
Chl a/b, ratio of chlorophyll a to chlorophyll b
Cyt f, cytochrome f
FR, far-red light
LFR, low irradiance, far-red enriched growth light
LHCII, light harvesting complex associated with PSII
LW, low irradiance, white growth light
MW, moderate irradiance, white growth light
PAR, photosynthetically active radiation
Pmax, light and CO2 saturated photosynthetic rate
PSI, photosystem I
PSII, photosystem II

Four plant species (Chamerion angustifolium, Digitalis purpurea, Brachypodium sylvaticum and Plantago lanceolata) which have previously been shown to demonstrate contrasting photosynthetic acclimatory responses to the light environment ( 33 , Plant, Cell and Environment 20, pp. 438–448) were analysed at a biochemical level. Plants were grown under low irradiance with a shade-type spectrum (LFR: 50μmol quanta m–2 s–1), moderately high white light (MW: 300μmol quanta m–2 s–1) and low irradiance white light (LW: 50μmol quanta m–2 s–1). The effects of light quality upon chlorophyll content and photosynthetic capacity were found to be species-dependent. A far-red dependent reduction in chlorophyll was found in three species, and an irradiance-dependent reduction was found in B. sylvaticum, which showed the greatest alteration in the xanthophyll cycle pool size of all species tested under these conditions. Chlorophyll a/b ratios were sensitive to both light quality and quantity in C. angustifolium and D. purpurea, being highest in MW, lowest in LFR, and intermediate in LW, whilst the other species showed no response. Ratios of photosystem II to photosystem I (PSII and PSI) demonstrated a strong irradiance-associated increase in all species except B. sylvaticum, whereas an increase in PSII/PSI in LFR compared to LW conditions was present in all species. A change in chlorophyll a/b was not always associated with a change in PSII/PSI, suggesting that the level of LHCII associated with each PSII varied in some species. Cytochrome f content showed an irradiance-dependent effect only, indicating a relationship with the capacity of electron transport. It is concluded that differing strategies of acclimation to the light environment demonstrated by these species results from differing strengths of expression of a series of independently regulated changes in the levels of photosynthetic components.  相似文献   

16.
A combined morphological and genetic study of the coral genus Stylophora investigated species boundaries in the Gulf of Aden, Yemen. Two mitochondrial regions, including the hypervariable IGS9 spacer and the control region, and a fragment of rDNA were used for phylogenetic analysis. Results were compared by multivariate analysis on the basis of branch morphology and corallite morphometry. Two species were clearly discriminated by both approaches. The first species was characterised by small corallites and a low morphological variability and was ascribed to a new geographical record of Stylophora madagascarensis on the basis of its phylogenetic distinction and its morphological similarity to the type material. The second species was characterised by larger corallite size and greater morphological variability and was ascribed to Stylophora pistillata. The analysis was extended to the intrageneric level for other S. pistillata populations from the Red Sea and the Pacific Ocean. Strong internal divergence was evident in the genus Stylophora. S. pistillata populations were split into two highly divergent Red Sea/Gulf of Aden and western Pacific lineages with significant morphological overlap, which suggests they represent two distinct cryptic species. The combined use of morphological and molecular approaches, so far proved to be a powerful tool for the re-delineation of species boundaries in corals, provided novel evidence of cryptic divergence in this group of marine metazoans.  相似文献   

17.
The chloroplast ATP synthase is known to be regulated by redox modulation of a disulfide bridge on the γ‐subunit through the ferredoxin–thioredoxin regulatory system. We show that a second enzyme, the recently identified chloroplast NADPH thioredoxin reductase C (NTRC), plays a role specifically at low irradiance. Arabidopsis mutants lacking NTRC (ntrc) displayed a striking photosynthetic phenotype in which feedback regulation of the light reactions was strongly activated at low light, but returned to wild‐type levels as irradiance was increased. This effect was caused by an altered redox state of the γ‐subunit under low, but not high, light. The low light‐specific decrease in ATP synthase activity in ntrc resulted in a buildup of the thylakoid proton motive force with subsequent activation of non‐photochemical quenching and downregulation of linear electron flow. We conclude that NTRC provides redox modulation at low light using the relatively oxidizing substrate NADPH, whereas the canonical ferredoxin–thioredoxin system can take over at higher light, when reduced ferredoxin can accumulate. Based on these results, we reassess previous models for ATP synthase regulation and propose that NTRC is most likely regulated by light. We also find that ntrc is highly sensitive to rapidly changing light intensities that probably do not involve the chloroplast ATP synthase, implicating this system in multiple photosynthetic processes, particularly under fluctuating environmental conditions.  相似文献   

18.
Mathematical models of light attenuation and canopy photosynthesis suggest that crop photosynthesis increases by more uniform vertical irradiance within crops. This would result when a larger proportion of total irradiance is applied within canopies (interlighting) instead of from above (top lighting). These irradiance profiles can be generated by Light Emitting Diodes (LEDs). We investigated the effects of interlighting with LEDs on light interception, on vertical gradients of leaf photosynthetic characteristics and on crop production and development of a greenhouse‐grown Cucumis sativus‘Samona’ crop and analysed the interaction between them. Plants were grown in a greenhouse under low natural irradiance (winter) with supplemental irradiance of 221 µmol photosynthetic photon flux m?2 s?1 (20 h per day). In the interlighting treatment, LEDs (80% Red, 20% Blue) supplied 38% of the supplemental irradiance within the canopy with 62% as top lighting by High‐Pressure Sodium (HPS)‐lamps. The control was 100% top lighting (HPS lamps). We measured horizontal and vertical light extinction as well as leaf photosynthetic characteristics at different leaf layers, and determined total plant production. Leaf mass per area and dry mass allocation to leaves were significantly greater but leaf appearance rate and plant length were smaller in the interlighting treatment. Although leaf photosynthetic characteristics were significantly increased in the lower leaf layers, interlighting did not increase total biomass or fruit production, partly because of a significantly reduced vertical and horizontal light interception caused by extreme leaf curling, likely because of the LED‐light spectrum used, and partly because of the relatively low irradiances from above.  相似文献   

19.
20.
Among various potential causes of rarity, one explanation could be that a rare species has more narrow physiological tolerances to important environmental variables than does a widespread species. To test this hypothesis photosynthetic performance as a function of irradiance and temperature was compared for the rare cedar glade endemic Echinacea tennesseensis and its widespread prairie congener E. angustifolia following various light and soil moisture preconditioning regimes. Although the species differed in some morphological characteristics such as specific leaf area, both species demonstrated similar photosynthetic light-response curves on a leaf area basis, with low to moderate photosynthetic capacity. Thus no photosynthetic differences were found that could account for the contrasting geographic distributions of the endemic species and its widespread congener.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号