首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Diving beetles such as Dytiscus and Cybister species (Coleoptera: Dytiscidae) usually oviposit inside an aquatic plant stem beneath the surface of the water. The hatched larvae need to escape from the stem to intake oxygen from the air. To determine where larvae of these diving beetles hatch in the plant stem, the hatchability and escape rates in larvae of Dytiscus sharpi Wehncke, Cybister chinensis Motshulsky, Cybister lewisianus Sharp, and Cybister brevis Aubé were investigated under laboratory conditions. Hatchability of D. sharpi in the stem of Sagittaria trifolia L. (Alismataceae) was extremely low (8.2%). However, it was high (>90%) when late‐stage eggs (2–3 days before hatching) were isolated from the stem and kept in water. On the other hand, the hatchability of Cybister spp. was high (88–95%) in S. trifolia. Usually, Cybister spp. females bite a hole in the plant stem on oviposition. When the oviposition pore in the stem was plugged with glass wool, no larvae could escape from the stem, indicating that the oviposition pore was the only exit for hatched larvae of Cybister spp. In contrast, females of D. sharpi oviposited directly by making a crack in the stem of Oenanthe javanica (Blume) DC. (Apiaceae) without biting. Eggs grew to a length and diameter equal to the stem crack size 2–3 days before hatching. Dytiscus sharpi eggs isolated from O. javanica were artificially inserted into plant stems of O. javanica or S. trifolia (so‐called inserted egg model), and the hatchability and larval escape rates were determined. Larval escape strongly depended on the stem crack width of both O. javanica and S. trifolia, suggesting that the stem crack was an exit for hatched larvae of D. sharpi.  相似文献   

2.
H. G. Robertson 《Oecologia》1987,73(4):601-608
Summary Oviposition by Cactoblastis cactorum on Opuntia ficus-indica and O. aurantiaca was assessed from the positioning of egg sticks on plants in the field. The number of egg sticks laid on O. ficus-indica plants was affected by: (1) plant size; (2) moth emergence near the plant; (3) cladode condition; and (4) plant conspicuousness. These factors contributed towards the clumping of egg sticks on plants. There was no apparent oviposition preference for one of the two host plant species despite the fact that egg predation was higher and fecundity lower on O. aurantiaca. The selection of a site for oviposition on the host plants was influenced by: (1) cladode condition; (2) height above ground; and (3) shelter from wind during oviposition. Succulent cladodes were the favoured sites for oviposition. The evidence suggests that in C. cactorum, oviposition site selection is largely the net result of a compromise between oviposition behaviour selected for increasing the probability of juvenile survival and oviposition behaviour selected for increasing the probability of laying the full complement of eggs. In addition, environmental and physiological factors such as wind and wing-loading, are thought to place constraints on the range of sites available for oviposition.  相似文献   

3.
1. Predictions from the Phylogenetic Constraints Hypothesis were tested for the first time in a tropical system using the pasture pest Deois flavopicta Stal, which oviposits into the ground and not into plant tissues. The prediction that there is no oviposition preference–larval performance linkage was supported. The absence of such a link provides an evolutionary basis for eruptive population dynamics. 2. The effects of host species and host plant quality on the preference of ovipositing females of D. flavopicta and performance of their offspring on the selected host plants were tested at the population level. 3. Female oviposition behaviour was affected by the presence of the host plant. Females of D. flavopicta showed a strong preference to oviposit close to host plants. The number of eggs was higher in pots containing Brachiaria ruziziensis (121.88 ± 13.70) than in pots containing only the wet oviposition substrate (5.2 ± 1.98) or dry oviposition substrate (0.067 ± 0.067). Ovipositing females did not, however, discriminate between plants of Brachiaria decumbens and Axonopus marginatus and did not show a strong oviposition preference in relation to differences in plant quality (protein and fibre content). They did show oviposition preference for plants under the high watering regime. The mean number of eggs collected from pots with non water‐stressed plants was 60% higher than the mean number of eggs collected on pots with water‐stressed plants. 4. Although females did not show ovipositional preference, spittlebug larval performance, measured as percentage survival and duration of nymphal period, was better on plants of high protein and low fibre content. These results indicate that there is not a linkage between female oviposition preference and subsequent nymphal performance in relation to differences in protein and fibre content in the host plants. There was, however, a limited linkage between oviposition preference and nymphal performance in relation to plant water content. Females showed preference for moist sites that have high survival of newly hatched nymphs. 5. Evidence indicates that for D. flavopicta, the influences of natality and female oviposition behaviour in response to plant quality are not the major factors driving population outbreaks, which is in accordance with the Phylogenetic Constraints Hypothesis.  相似文献   

4.
Plant species affect the oviposition behavior of the zoophytophagous predator Orius insidiosus. This study was conducted to determine whether manipulating plant quality, via stress, within a single plant species (Phaseolus vulgaris L.) would affect the oviposition behavior of O. insidiosus and the subsequent performance of its offspring. Plants that had water withheld (water-stressed treatment) had about 20% less total dry weight than plants that were watered to alleviate the drought stress (unstressed treatment). In comparison to unstressed plants, unifoliolate leaves and petioles of water-stressed plants had about 20 and 12% less relative water content, 54 and 29% greater sap osmotic potential, and 19 and 70% greater concentrations of amino-nitrogen, respectively. Reproductive O. insidiosus were then presented stressed and unstressed plants in a two choice test to determine oviposition preference. First instar survival on the two treatments was evaluated in no-choice tests. Orius insidiosus laid 70% more eggs per cm2 on the stressed plants. The lifespan of newly-hatched nymphs was the same in both treatments. Eggs were more frequently laid on the leaf vein than the petiole of unstressed plants, whereas in stressed plants oviposition on these parts occurred at equal frequency. These findings suggest that physiological changes in water-stressed bean plants created conditions more favorable for O. insidiosus oviposition. As there was no increase in offspring performance, it is hypothesized that females chose oviposition sites near preferred feeding sites or plant tissues that were less prone to desiccation.  相似文献   

5.
1. Maternal preference is a dynamic process and interactions between preference and performance are fundamental for understanding evolutionary ecology and host association in insect–plant interactions. In the present study, the hypothesis of preference–performance was tested by offering solanaceous specialist Leptinotarsa decemlineata (Say) (Coleoptera: Chrysomelidae) larvae and adult females four plant congeners that ranged in suitability. 2. Larval feeding, development, oviposition, plant glycoalkaloids, and headspace volatiles in the four plant species were analysed to examine the extent of variation, which might explain performance–preference differences. 3. It was found that larval performance was mismatched with adult oviposition preferences. Adults laid more eggs on Solanum immite Dunal plants, which were poor hosts for larval development, feeding, and survival, compared to the other three Solanum species. 4. Chemical plant defenses, in general, did not correlate with performance or preference, but some plant volatiles may have played a role in resolving female choice. Glycoalkaloids such as solanine and chaconine were detected in similar amounts in preferred and non‐preferred hosts, but there was significantly more limonene in the headspace of S. immite than in S. tuberosum L. 5. The present findings suggest that we must consider the risk‐spreading hypothesis in cases where preference and performance are not positively correlated, particularly in specialist herbivores that can feed on a diversity of congener plants and may attempt to expand their exploits to other solanaceae species.  相似文献   

6.
Moshe Coll 《Oecologia》1996,105(2):214-220
Omnivory (i.e., feeding at more than one trophic level) is common in many ecological communities. To date, most studies of omnivory have focused on systems that include omnivores that feed on several prey items, primarily in aquatic systems. Yet, many terrestrial insect predators feed not only on prey but also on plants. The difference between systems with plant-feeding omnivores and those with exclusively prey-feeding omnivores calls for special attention. The first step towards understanding the interactions between plant-feeding omnivores and their prey is to determine how omnivores respond to variations in plant properties. In this study, I investigated two major aspects of the interactions between the plant-feeding predatory bug Orius insidiosus and four host plants of its prey; the behavioral aspect, in which plants are selected for oviposition and the physiological aspect, in which plants differ in their suitability for the insect's growth, survival, and reproduction. No prey was offered to the omnivore during any of the experiments, but older nymphs and adults were fed prey eggs prior to their use in the experiments. Data show that O. insidiosus females almost completely rejected corn leaves for oviposition; nymph and adult survival was highest on bean; and female fecundity was higher on bean than tomato, pepper or corn foliage. the significance of the apparent ability of O. insidiosus to discriminate among plants and the observed correlation between oviposition preference and offspring performance in bean and in corn is discussed.  相似文献   

7.
The preference–performance hypothesis predicts that female insects maximize their fitness by utilizing host plants which are associated with high larval performance. Still, studies with several insect species have failed to find a positive correlation between oviposition preference and larval performance. In the present study, we experimentally investigated the relationship between oviposition preferences and larval performance in the butterfly Anthocharis cardamines. Preferences were assessed using both cage experiments and field data on the proportion of host plant individuals utilized in natural populations. Larval performance was experimentally investigated using larvae descending from 419 oviposition events by 21 females on plants from 51 populations of two ploidy types of the perennial herb Cardamine pratensis. Neither ploidy type nor population identity influenced egg survival or larval development, but increased plant inflorescence size resulted in a larger final larval size. There was no correlation between female oviposition preference and egg survival or larval development under controlled conditions. Moreover, variation in larval performance among populations under controlled conditions was not correlated with the proportion of host plants utilized in the field. Lastly, first instar larvae added to plants rejected for oviposition by butterfly females during the preference experiment performed equally well as larvae growing on plants chosen for oviposition. The lack of a correlation between larval performance and oviposition preference for A. cardamines under both experimental and natural settings suggests that female host choice does not maximize the fitness of the individual offspring.  相似文献   

8.
In laboratory dual-choice assays females of the cabbage root fly, Delia radicum, prefer for oviposition plants with roots damaged by conspecific larvae to undamaged controls. Cauliflower and kale plants were inoculated with root fly eggs (25 per plant) and the hatching larvae were allowed to feed on the roots for various periods of time (1–17 days). After 4 (cauliflower) or 5 (kale) days of larval feeding the oviposition preference was most pronounced and flies laid between 64% and 68% of their eggs near plants with damaged roots. Later, with increasing damage but fewer surviving, and thus actively feeding, larvae, the magnitude of the preference declined. The preference for plants already damaged by conspecific larvae may contribute to the previously observed aggregated distribution of D. radicum eggs in Brassica crop fields.Further experiments revealed that the sensory cues inducing this oviposition preference originate from the complex consisting of the damaged roots, the surrounding substrate (soil) and associated microbes, rather than from the aerial plant parts. In choice assays using the root-substrate complex of damaged and control plants (aerial parts removed), the observed preference for damaged roots was similar to that found for the entire plant but was more pronounced. The damaged roots alone, compared to control roots, received up to 72% (cauliflower) and 75% (kale) of the eggs. By contrast, surrogate leaves sprayed with methanolic leaf surface extracts from the most preferred plants which had been damaged were not discriminated from surrogate leaved sprayed with extracts of the respective control plants. Analysis of glucosinolate levels in methanolic leaf surface extracts revealed that root damage resulted in enhanced concentrations of indole-glucosinolates on the leaf surface in kale but not in cauliflower. Although indole-glucosinolates are oviposition stimulants for the cabbage root fly, the induced changes were apparently too small to influence oviposition behaviour.  相似文献   

9.
We determined the effectiveness of Ni as an elemental defence of Streptanthus polygaloides (Brassicaceae) against a crucifer specialist folivore, diamondback moth (DBM), Plutella xylostella. An oviposition experiment used arrays of S. polygaloides grown on Ni-amended (high-Ni) soil interspersed with plants grown on unamended (low-Ni) soil and eggs were allowed to hatch and larvae fed freely among plants in the arrays. We also explored oviposition preference by allowing moths to oviposit on foil sheets coated with high- or low-Ni plant extract. This was followed by an experiment using low-Ni plant extract to which varying amounts of Ni had been added and an experiment using sheets coated with sinigrin (allyl glucosinolate) as an oviposition stimulant. Diamondback moths laid 2.5-fold more eggs on low-Ni plants than on high-Ni plants and larval feeding was greater on low-Ni plants. High-Ni plants grew twice as tall, produced more leaves, and produced almost 3.5-fold more flowers. Low-Ni plants contained more allyl glucosinolate than high-Ni plants and moths preferred to oviposit on foil sheets dipped in low-Ni plant extract. Moths showed no preference when Ni concentration of low-Ni extract was varied and overwhelmingly preferred sinigrin coated sheets. We conclude that Ni hyperaccumulation is an effective elemental defence against this herbivore, increasing plant fitness through a combination of toxicity to DBM larvae and decreased oviposition by adults.  相似文献   

10.
  1. Drought has become more common and severe in many parts of the world due to climate change. The effect of water stress on insect oviposition preference that is key determinant for their fitness has received less attention.
  2. Here, we examined how water stress may affect oviposition selection of Ostrinia furnacalis for maize plants in the greenhouse, and tested difference in volatile compounds emitted from treated maize, and electronantennogram and bioassay responses of O. furnacalis to the volatile profiles in maize plants.
  3. Ostrinia furnacalis were more prone to lay eggs on the well-watered maize. Most plant volatile compounds differed significantly among the three water treatments, including increased emissions of β-caryophyllene, (E)-2-hexenal, and linalool, and decreased emission of (Z)-3-hexen-1-ol when subjected to increasing intensity of drought.
  4. Varied volatile profiles of maize may drive oviposition decision of O. furnacalis, because O. furnacalis showed a clear oviposition preference for (Z)-3-hexen-1-ol, while not for β-caryophyllene, (E)-2-hexenal, and linalool, at the concentration of 1000 ppm.
  5. This study advances understanding of drought effects on plant–insect interactions through volatile profiles. Our finding calls for attention to oviposition selection for insect pest management in agricultural settings, especially in regions under changing precipitation patterns.
  相似文献   

11.
The relationship between oviposition preference and larval performance is a central topic in insect–plant biology. In this study, we investigate whether the oligophagous flea beetle, Altica fragariae Nakane (Coleoptera: Chrysomelidae), exhibits a positive preference–performance relationship, and whether oviposition preference develops over time. We tested the beetles using four sympatric plant species: Duchesnea indica (Andrews) Focke (the normal host plant), Agrimonia pilosa Ledeb. (a secondary host plant), and Potentilla chinensis Ser. and Sanguisorba officinalis L. (host plants of two related Altica species) (all Rosaceae). In no‐choice experiments, both oviposition rate and offspring fitness parameters (eclosion rate, development time, and body mass) were highest on D. indica. Oviposition rate was much lower on P. chinensis than on A. pilosa, whereas offspring fitness parameters did not differ significantly between these two host plants. Offspring fitness were lowest for S. officinalis, and adult females refused to oviposit on this acceptable non‐host in a no‐choice situation. Repeated two‐choice experiments showed that the proportion of oviposition on one of the novel host plants decreased significantly over time when the alternative host plant was D. indica. In repeated two‐choice experiments using A. pilosa and P. chinensis, females mainly fed on A. pilosa but distributed their eggs equally over the two host plants, in accordance with the lack of difference in offspring fitness on those hosts. Together, these results showed that A. fragariae females develop a positive preference–performance relationship over time. We suggest that A. fragariae achieves this through adaptive learning of oviposition preference: not only does the female learn to discriminate among the host plants when there is a fitness difference for her offspring, but the female also fails to discriminate when there is no fitness difference.  相似文献   

12.
Eurasian watermilfoil (Myriophyllum spicatum L.) is a nuisance aquatic weed, exotic to North America. The freshwater weevil Euhrychiopsis lecontei (Dietz) is a potential control agent of Eurasian watermilfoil and is a fully submersed aquatic specialist herbivore. Its presumed original host is the native northern watermilfoil (Myriophyllum sibiricum Komarov). We conducted a set of oviposition experiments to reveal first and second oviposition preference of Euhrychiopsis lecontei when presented with seven macrophytes. We tested differences between source (lake) populations of weevils, differences in behavior between weevils reared on the exotic Eurasian watermilfoil and the native northern watermilfoil and between weevils in the presence and absence of their preferred hostplant. Oviposition assays confirmed that E. lecontei is a watermilfoil specialist. Out of the 207 females that laid eggs, only three oviposited on a non-watermilfoil plant, Megalodonta beckii. The weevils' degree of specificity was influenced by the watermilfoil species on which they were reared. Weevils reared on Eurasian watermilfoil tended to oviposit on Eurasian watermilfoil, spent more time on Eurasian watermilfoil than on other plants, and spent more time off plants and took longer to oviposit when Eurasian watermilfoil was removed. Weevils reared on northern watermilfoil did not exhibit a preference for either watermilfoil species in oviposition or in time allocation, although they oviposited on and spent significantly more time on watermilfoils than on other species. Rearing of the two populations on their complementary watermilfoil hostplant resulted in responses typical of the rearing plant, not the original host. These results show that although both weevil populations are watermilfoil specialists, Eurasian-reared weevils prefer Eurasian watermilfoil in general host attraction and oviposition, whereas northern-reared weevils do not. The results support the contention that E. lecontei may be a good biocontrol agent for Eurasian watermilfoil because of its high specificity. The results also suggest that the current host range expansion of the weevil to Eurasian watermilfoil has the potential to become a host shift due to the increased specificity. Herbivory in freshwater systems is not well studied, and the E. lecontei-M. spicatum relationship is a rare example of submersed freshwater specialist herbivore-host-plant interactions.  相似文献   

13.
14.
1. A series of experiments was conducted to measure the impact of plant genotype, plant growth rate, and intraspecific competition on the oviposition preference and offspring performance of the host races of Eurosta solidaginis (Diptera: Tephritidae), a fly that forms galls on Solidago altissima and Solidago gigantea (Asteraceae). Previous research has shown that both host races prefer to oviposit on their own host plant where survival is much higher than on the alternate host plant. In this study, neither host race showed any relationship between oviposition preference and offspring performance in choosing among plants of their natal host species. 2. The larval survival of both host races differed among plant genotypes when each host race oviposited on its natal host species. In one experiment, altissima host race females showed a preference among plant genotypes that was not correlated with offspring performance on those genotypes. In all other experiments, neither the altissima nor gigantea host race demonstrated a preference for specific host plant genotypes. 3. Eurosta solidaginis had a preference for ovipositing on rapidly growing ramets in all experiments, however larval survival was not correlated with ramet growth rate at the time of oviposition. 4. Eurosta solidaginis suffered high mortality from intraspecific competition in the early larval stage. There was little evidence, however, that females avoided ovipositing on ramets that had been attacked previously. This led to an aggregated distribution of eggs among ramets and strong intraspecific competition. 5. There was no interaction among plant genotype, plant growth rate, or intraspecific competition in determining oviposition preference or offspring performance.  相似文献   

15.
Herbivorous insects and phytopathogenic fungi often share their host plants. This creates a network of direct and indirect interactions, with far‐reaching consequences for the ecology and evolution of all three parties. In the Alps, the leaf beetles Oreina elongata and Oreina cacaliae (Coleoptera: Chrysomelidae), and the rust fungus Uromyces cacaliae (Uredinales: Pucciniaceae) are found on the same host plant, Adenostyles alliariae (Asterales: Asteraceae). We compare the impact of rust infection on these two closely‐related beetle species, one of which, O. cacaliae, is a specialist on A. alliariae, while the other, O. elongata, moves repeatedly between Adenostyles and an alternative host, Cirsium spinosissimum. Larval performance, feeding preference, oviposition choice and dispersal behaviour were studied in field and laboratory experiments. When reared on rust‐infected leaves, larvae of both beetle species had lower growth rates, lower maximum weights and longer development times. Larvae and adults discriminated among diets in feeding trials, showing a preference for discs cut from healthy leaves over those bearing a patch of sporulating rust, those from elsewhere on an infected leaf, and those from an upper leaf on an infected plant. Females of the two species differed in behaviour: in O. cacaliae they favoured healthy leaves for larviposition, while in O. elongata they showed no significant preference during oviposition. In the field, larvae and adults of both species dispersed more rapidly when placed on infected host plants. The results demonstrate that rust infection reduces the quality of the plant as a host for both Oreina species, and they combine the ability to detect systemic infection with the evolution of evasive behaviours. For these beetles, competition with a rust clearly increases the difficulty of survival in the harsh conditions of alpine environments, and may have a profound impact on the evolution of their life history traits and host plant use.  相似文献   

16.
The occurrence of herbivores in nature is limited by biotic and abiotic factors which affect their development and survival. Udranomia spitzi is an endemic butterfly in the Brazilian savanna (cerrado) that feeds on young leaves of two sympatric plants, Ouratea hexasperma and O. spectabilis. It is not known which factors affect the occurrence of larvae on their hosts. Therefore, in this study we: (i) evaluated the oviposition preference of U. spitzi; (ii) evaluated the larval performance in both Ouratea species; (iii) investigated plant phenology; (iv) investigated climate (temperature and rainfall); and (v) investigated plant architecture (measured as plant height) on the abundance of skippers. Results showed that U. spitzi immatures (eggs and larvae) were far more abundant (n = 41, 96.7%) on O. spectabilis, whereas on O. hexasperma, the number of larvae was negligible (n = 1). In the laboratory, U. spitzi performed better on O. spectabilis than on O. hexasperma. The occurrence of larvae was not related to host phenology or environmental variations, but rather to plant height, since 92.7% (n = 38) of larvae were found on small O. spectabilis trees. A previous study showed that U. spitzi was not influenced by biotic factors (aggressive ants) and this study showed that plant structure plays a major role in skipper choice. The preference of U. spitzi for O. spectabilis is discussed.  相似文献   

17.
Summary Plant resistance to insect herbivores may derive from traits influencing herbivore preference, traits influencing the suitability of the plant as a host, or both. However, the plant traits influencing host-plant selection by ovipositing insect herbivores may not completely overlap those traits that affect larval survival, and distinct traits may exhibit different levels of genetic vs. environmental control. Therefore, resource supply to the host plant could affect oviposition preference and larval performance differently in different plant genotypes. To test this hypothesis, the effects of resistance level, plant genotype, and resource supply to the host plant on oviposition preference and larval performance of a gallmaking herbivore, and on various plant traits that could influence these, were examined. Replicates of four genotypes of Solidago altissima, grown under low, medium, or high levels of nutrient supply in full sun or with medium levels of nutrients in shade, were exposed to mass-released Eurosta solidaginis. The number of plants ovipunctured was significantly affected by plant genotype and the interaction between genotype and nutrient supply to the host plant: one susceptible and one resistant genotype were more preferred, and preference tended to increase with nutrient supply in the more-preferred genotypes. The growth rate of ovipunctured plants during the oviposition period was significantly greater than that of unpunctured plants. Bud diameter (which was strongly correlated with plant growth rate), leaf area, and leaf water content were significant determinants of the percentage of plants ovipunctured, explaining 74% of the variance. The number of surviving larvae was significantly affected by plant genotype, but no effect of nutrient or light supply to the host plant was detected. The ratio of bud diameter to bud length was positively related to the percentage of ovipunctured plants that formed galls, suggesting that the accurate placement of eggs near the apical meristem by ovipositing females may be easier in short, thick buds. No significant correlation was observed between oviposition preference and larval survival at the population level. These results suggest that the plant traits affecting oviposition preference may exhibit different magnitudes of phenotypic plasticity than those affecting larval survival, and that the degree of phenotypic plasticity in plant traits affecting oviposition preference may differ among genotypes within a species.  相似文献   

18.
Parasitoids use odor cues from infested plants and herbivore hosts to locate their hosts. Specialist parasitoids of generalist herbivores are predicted to rely more on herbivorederived cues than plant-derived cues. Microplitis croceipes (Cresson)(Hymenoptera: Braconidae) is a relatively specialized larval endoparasitoid of Heliothis virescens (F.)(Lepidoptera: Noctuidae), which is a generalist herbivore on several crops including cotton and soybean. Using M. croceipes/H. virescens as a model system, we tested the following predictions about specialist parasitoids of generalist herbivores:(i) naive parasitoids will show innate responses to herbivore-emitted kairomones, regardless of host plant identity and (ii) herbivore-related experience will have a greater influence on intraspecific oviposition preference than plant-related experience. Inexperienced (naive) female M. croceipes did not discriminate between cotton-fed and soybean-fed H. virescens in oviposition choice tests, supporting our first prediction. Oviposition experience alone with either host group influenced subsequent oviposition preference while experience with infested plants alone did not elicit preference in M. croceipes, supporting our second prediction. Furthermore, associative learning of oviposition with host-damaged plants facilitated host location. I terestingly, naive parasitoids attacked more soybeathan cotton-fed host larvae in two-choice tests when a background of host-infested cotton odor was supplied, and vice versa. This suggests that plant volatiles may have created an olfactory contrast effect. We discussed ecological significance of the results and concluded that both plant- and herbivore-related experiences play important role in parasitoid host foraging.  相似文献   

19.
Variation in plant communities is likely to modulate the feeding and oviposition behavior of herbivorous insects, and plant‐associated microbes are largely ignored in this context. Here, we take into account that insects feeding on grasses commonly encounter systemic and vertically transmitted (via seeds) fungal Epichloë endophytes, which are regarded as defensive grass mutualists. Defensive mutualism is primarily attributable to alkaloids of fungal origin. To study the effects of Epichloë on insect behavior and performance, we selected wild tall fescue (Festuca arundinacea) and red fescue (Festuca rubra) as grass–endophyte models. The plants used either harbored the systemic endophyte (E+) or were endophyte‐free (E?). As a model herbivore, we selected the Coenonympha hero butterfly feeding on grasses as larvae. We examined both oviposition and feeding preferences of the herbivore as well as larval performance in relation to the presence of Epichloë endophytes in the plants. Our findings did not clearly support the female's oviposition preference to reflect the performance of her offspring. First, the preference responses depended greatly on the grass–endophyte symbiotum. In F. arundinacea, C. hero females preferred E+ individuals in oviposition‐choice tests, whereas in F. rubra, the endophytes may decrease exploitation, as both C. hero adults and larvae preferred E? grasses. Second, the endophytes had no effect on larval performance. Overall, F. arundinacea was an inferior host for C. hero larvae. However, the attraction of C. hero females to E+ may not be maladaptive if these plants constitute a favorable oviposition substrate for reasons other than the plants' nutritional quality. For example, rougher surface of E+ plant may physically facilitate the attachment of eggs, or the plants offer greater protection from natural enemies. Our results highlight the importance of considering the preference of herbivorous insects in studies involving the endophyte‐symbiotic grasses as host plants.  相似文献   

20.
Summary In a study on intraspecific host plant acceptability, Liriomyza trifolii females that had previously been exposed to plants of high nitrogen content, showed a feeding and oviposition preference for plants of high nitrogen (Minkenberg and Fredrix 1989). Females showed a preference to feed and oviposit on the high middle leaves within plants. It was hypothesized that the preference between plants was related to a better performance of females and offspring on high nitrogen plants compared to low nitrogen plants. Different nitrogen dosages were applied to tomato plants, resulting in plants containing 3.4, 3.9, 4.6 or 4.9% leaf nitrogen. L. trifolii females responded to increased leaf nitrogen with significantly increased feeding and fecundity, longer oviposition periods, and higher feeding and oviposition rates. Their offspring on the same plants showed reduced developmental time, lower mortality and increased pupal size. Consequently, intrinsic rate of increase was positively linearly related to leaf nitrogen. Size of L. trifolii females appeared to be independent of fecundity, longevity and developmental time. Pupal length of males increased with increasing developmental time. These results indicate that L. trifolii is well adapted in its intraspecific host plant selection, because the ability to distinguish between plants with differences in leaf nitrogen content will directly lead to an increase in their fecundity, longevity and overall fitness. The implications of leaf nitrogen as a significant factor in the behavior and population dynamics of L. trifolii are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号