首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Detailed field observations across and along the Cretaceous-Palaeogene (K-Pg) boundary interval in the Caravaca section, SE Spain, together with laboratory analyses reveal a well-developed lowermost Danian dark-colored trace fossil assemblage. The trace fossils range continuously from the bioturbated horizons in the dark boundary layer (lowermost Danian), to the uppermost Maastrichtian sediments. The rusty boundary layer at the base of the dark boundary layer, usually related to the K-Pg boundary impact, is traditionally considered as undisturbed. However, ichnological analysis at the Caravaca section shows that this rusty boundary layer is cross-cut vertically by Zoophycos and Chondrites, but also penetrated laterally by Chondrites, revealing an important colonization of the substrate. Stereomicroscope analysis shows sharp burrow margins of dark-colored Chondrites directly against the surrounding red sediment of the rusty layer. Colonization of unfavorable substrates by Zoophycos and Chondrites tracemakers, as that represented by the rusty boundary layer, was possible because of constructing of open, probably of actively ventilated burrows that facilitate colonization of sediments poor in oxygen and food. Significant bioturbational disturbance of the rusty layer can cause vertical and horizontal redistribution of the components related to the K-Pg boundary impact and, in consequence, to induce erroneous interpretations. A detailed ichnological analysis of the K-Pg boundary interval, with special attention to the rusty layer, reveals an essential tool to avoid misinterpretations.  相似文献   

2.
Upper Maastrichtian to lower Paleocene, coarse‐grained deposits of the Lefipán Formation in Chubut Province, (Patagonia, Argentina) provide an opportunity to study environmental changes across the Cretaceous–Palaeogene (K–Pg) boundary in a shallow marine depositional environment. Marine palynological and organic geochemical analyses were performed on the K–Pg boundary interval of the Lefipán Formation at the San Ramón section. The palynological and organic geochemical records from the San Ramón K–Pg boundary section are characteristic of a highly dynamic, nearshore setting. High abundances of terrestrial palynomorphs, high BIT‐index values and the occasional presence of plant fossils are indicative of a large input of terrestrial organic material. The organic‐walled dinoflagellate cyst (dinocyst) assemblage is generally dominated by Senegalinium and other peridinioid dinocyst taxa, indicative of high‐nutrient conditions and decreased salinities, probably associated with a large fluvial input. The reconstructed sea surface temperatures range from 25°C to 27°C, in accordance with the tropical climate inferred by palynological and megafloral studies. As in the Bajada del Jagüel section, ~500 km north‐north‐east of San Ramón, peaks of Senegalinium spp. were recorded below and above the K–Pg boundary, possibly related to enhanced runoff resulting from more humid climatic conditions. The lithological, palynological and organic geochemical records suggest the occurrence of a sea‐level regression across the K–Pg boundary, resulting in a hiatus directly at the boundary in both sections, followed by a transgression in the Danian.  相似文献   

3.
The study of the global mass extinction event at the Cretaceous–Palaeogene (K/Pg) boundary can aid in understanding patterns of selective extinction, and survival and dynamics of ecosystem recovery. Outcrops in the Maastrichtian type area (south-east Netherlands, north-east Belgium) comprise a stratigraphically expanded K/Pg boundary succession that offers a unique opportunity to study marine ecosystem recovery within the first few thousand years following the mass extinction event. A quantitative analysis was performed on systematically sampled macrofossils of the topmost Maastrichtian and lowermost Danian strata at the former Ankerpoort-Curfs quarry (Geulhem), which represent ‘snapshots’ of the latest Cretaceous and earliest Palaeogene marine ecosystems, respectively. Molluscs in particular are diverse and abundant in the studied succession. Regional ecosystem changes across the K/Pg boundary are relatively minor, showing a decline in suspension feeders, accompanied by an ecological shift to endobenthic molluscs. The earliest Paleocene gastropod assemblage retains many ‘Maastrichtian’ features and documents a fauna that temporarily survived into the Danian. The shallow, oligotrophic carbonate platform in this area was inhabited by taxa that were adapted to low nutrient levels and resistant to starvation. As a result, the local taxa were less affected by the short-lived detrimental conditions related to K/Pg boundary perturbations, such as darkness, cooling, starvation and ocean acidification. This resulted in relatively high survival rates, which enabled rapid recolonization and recovery of marine faunas in the Maastrichtian type area.  相似文献   

4.
In this paper we present the effects of different tracemakers on the redistribution of calcareous nannofossils throughout the K-Pg boundary at the Bidart section (SW France), along with their consequences for our knowledge of the K-Pg boundary event. Danian calcareous nannofossil assemblages are present in Maastrichtian samples due to infiltration into dark trace fossil infillings proceeding from the earliest Paleogene. This is evidenced by the appearance of abundant paleogene calcareous nannofossils just below the K-Pg boundary, showing the relevance of the trace fossil infillings in the context of the K-Pg boundary event.  相似文献   

5.
Late Mesozoic–Cenozoic non-marine deposits are well developed in the Jiaolai Basin, eastern Shandong Province, China, yielding abundant fossils including ostracods. In order to further understand the geological settings of the basin during the Late Cretaceous–Paleogene, three boreholes (JK-1, JZK-01 and JZK-02) were drilled in the city of Jiaozhou. Nine genera and sixteen species (including six indeterminate species) of ostracods are described from the Jiaozhou Formation in the three boreholes, including Cypridea, Mongolocypris, Talicypridea, Candona, Eucypris, Cyprois, Porpocypris, Sinocypris and Timiriasevia. Of these, Porpocypris sphaeroidalis Guan, 1978 is reported from northern China for the first time, indicating that this species has great potential to be an indicator of the K/Pg boundary. Correlation of these species with the known Cretaceous–Paleogene ostracod assemblages suggests that the age of the Jiaozhou Formation could be latest Cretaceous–Paleocene in borehole JK-1, Campanian–Maastrichtian in borehole JZK-01, and Maastrichtian–Danian in borehole JZK-02. The exact position of K/Pg boundary, however, is unavailable for the present in the Jiaozhou Formation from boreholes JK-1 and JZK-01.  相似文献   

6.
《Comptes Rendus Palevol》2014,13(4):235-258
The present work is based on semi-quantitative study carried on detailed sampling (samples are spaced by 5, 10 and 15 cm close to the boundary) of an essentially continuous and expanded section crossing the Cretaceous–Paleogene (K/Pg) boundary in Iran. By this work, we attempt to detail biostratigraphy based on planktonic foraminifera biozones and correlate biozones and subzones with dinocyst events. The entire Cretaceous–Paleogene interval contains rich, diversified and well-preserved planktonic foraminifera and dinoflagellate cyst assemblages. Four planktonic foraminiferal biozones have been recognized across the Cretaceous–Paleogene transition (K/Pg): Abathomphalus mayaroensis Biozone including Plummerita hantkeninoides Subzone from the Late Maastrichtian and Guembelitria cretacea (including Hedbergella holmdelensis and Parvularugoglobigerina longiapertura subzones), Parvularugoglobigerina eugubina Biozone and Parasubbotina pseudobulloides Biozone belonging to the Early Danian. These biozones have been correlated with four dinocyst biozones: the Manumiella seelandica Biozone belonging to the Late Maastrichtian and the Alisocysta reticulata, Senoniasphaera inornata and Damassadinium californicum biozones from the Early Danian. At this section, like at the El Kef section (GSSP for the K/Pg) and the auxiliary sections, an Ir anomaly is detected indicating the K/Pg boundary. This geochemical anomaly coincides also with mass extinctions of planktonic foraminifera species. The extinct species are in particular the large, complex tropical and subtropical taxa dwelling in subsurface and lower photic water. The mass extinctions at the Izeh section occurred over a succinct period of time similar to the K/Pg type section at El Kef (Tunisia). These sudden mass extinctions indicate a catastrophic pattern event occurring at the Maastrichtian/Danian boundary. In contrast the organic-walled dinocysts were less affected by the mass extinction and most species crossed the K/Pg boundary without showing mass and sudden extinctions. Nevertheless, they showed changes in their assemblages’ structure beyond the K/Pg boundary. Especially, Manumiella seelandica and M. druggii, typical species of Antarctic Maastrichtian dinocysts assemblages, occur in coeval deposits at the Izeh section; they persist through the Lower Danian and, like in Tunisia (e.g., El Kef section, Ellès section) show an obvious increase in relative abundance.  相似文献   

7.
Biotic recovery after the Cretaceous – Palaeogene (K–Pg) impact is one unsolved question concerning this mass extinction event. To evaluate the incidence of the K–Pg event on biota, and the subsequent recovery, a recent environmental disaster has been analysed. Areas affected by the contamination disaster of Aználcollar (province of Sevilla, southern Spain) in April 1998 were studied and compared with the K–Pg event. Several similarities (the sudden impact, the high levels of toxic components, especially in the upper thin lamina and the incidence on biota) and differences (the time of recovery and the geographical extension) are recognized. An in‐depth geochemical analysis of the soils reveals their acidity (between 1.83 and 2.11) and the high concentration of pollutant elements, locally higher than in the K–Pg boundary layer: values up to 7.0 mg kg?1 for Hg, 2030.7 mg kg?1 for As, 8629.0 mg kg?1 for Pb, 86.8 mg kg?1 for Tl, 1040.7 mg kg?1 for Sb and 93.3–492.7 p.p.b. for Ir. However, less than 10 years after the phenomenon, a rapid initial recovery in biota colonizing the contaminated, ‘unfavourable’, substrate is registered. Nesting of the ant Tapinoma nigerrima (Nylander) has taken place through the tailing layer, with arranged particles from inside the soils showing similar values in pollutant elements as the deep soils. This agrees with recent ichnological evidence of a rapid colonization of the K–Pg boundary layer, classically interpreted as an inhabitable substrate, by organisms with a high independence with respect to substrate features (i.e. Chondrites trace makers). The dramatic consequences of the K – Pg boundary impact and the generalized long ‐ time recovery interpreted after the event (in the order of 104–105 years) could have been overestimated due to the absence of a high ‐ temporal resolution in the range of 102–103 years.  相似文献   

8.
A high-resolution biostratigraphic analysis of planktic foraminifers confirms that the Bidart section at the eastern margin of the Atlantic Ocean exhibits a continuous and complete Cretaceous/Paleogene (K/Pg) transition interval. The biozones and subzones recorded in this section are less expanded than their equivalent in Tunisian sections: El Kef (Global Stratotype Section and Point: GSSP for the K/Pg boundary) and Ellès (auxiliary section), but they are sufficiently thick to allow a detailed analysis of the evolution of the planktic foraminiferal assemblages across the K/Pg transition.Throughout the uppermost 4 m Maastrichtian, the planktic foraminiferal assemblages are highly diversified, containing up to 72 species. These Maastrichtian assemblages are rich in cosmopolitan taxa (70%), dominated by small biserial morphotypes which belong mainly to the genus Heterohelix which coexist with less abundant but highly diverse tropical and subtropical species.The extinction pattern at the Bidart section suggests a sudden catastrophic mass extinction at the K/Pg boundary which affected at least 53 out of 72 species. The species becoming extinct include globotruncanids (e.g. Contusotruncana spp., Globotruncana spp., Globotruncanita spp.) and complex heterohelicids (e.g. Racemiguembelina spp., Pseudotextularia spp., Gublerina spp.). At the Bidart section, only Archaeoglobigerina cretacea disappears 2 m below the K/Pg boundary event. Specimens of 18 small and even tiny Maastrichtian species, are found at the lowermost Danian. Only a few of these species belonging to the genera of Guembelitria, Hedbergella and Heterohelix are considered to be real “Cretaceous survivor species”, whereas the specimens belonging to the rest, are most probably reworked, because they differ in their preservation.Throughout lowermost Danian, the planktic foraminiferal assemblages are dominated by “opportunistic” species of the genus Guembelitria. These opportunists are associated to small and poorly diversified pioneer globigerinids (Palaeoglobigerina spp. and Parvularugoglobigerina spp.). These assemblages became progressively more diversified across the early Danian containing species with cancellate walls (Eoglobigerina spp., Parasubbotina spp., Subbotina triloculinoides and Praemurica spp.) and new taxa of biserial heterohelicids (Woodringina spp. and Chiloguembelina spp.) suggesting a paleoenvironmental recovery.  相似文献   

9.
《Palaeoworld》2022,31(2):334-357
This paper presents a quantitative study of dinoflagellate cysts (dinocysts) and palynofacies of the Campanian–Danian marly succession at the village of Tattofte (western External Rif, northwestern Morocco). The paleoenvironmental and paleoclimatic interpretations, inferred from this palynologic analysis, are compared to coeval sequences of other areas in the Northern Hemisphere. Changes in the relative abundances of dinocyst taxa, which are paleoenvironmental indicators, throughout the section suggest a deposition in a marine inner to outer neritic setting. The upper Campanian dinocyst assemblage is characterized by the presence of outer neritic-oceanic and low productivity indicator taxa (e.g., Spiniferites spp., Odontochitina spp.) and cold-water taxa (e.g., Manumiella spp., Chantangiella spp., Laciniadinium spp.), whereas, the lower Maastrichtian assemblage is characterized by inner neritic, high productivity and warm-water indicator taxa (e.g., Palaeocystodinium spp., Andalusiella spp.). The upper Maastrichtian dinocyst assemblage displays a return to an outer neritic environment under a transgressive regime, but with a cooling pulse and a moderate productivity. However, the Cretaceous–Paleogene (K/Pg) boundary interval records remarkable changes in the relative abundances of dinocyst taxa, indicating an inner neritic (coastal) setting, which is the most proximal in the study section; such changes reflect instable paleoenvironmental conditions which may be related to global cooling periods, likely caused by the Deccan volcanism in India and/or the Chicxulub asteroid impact in Mexico at the K/Pg boundary. In the Danian, the dinocyst relative abundances indicate a gradual return to stable environmental conditions.A quantitative analysis of the kerogen plots (palynomorphs, phytoclasts and amorphous organic matter (AOM)) reveals five types of palynofacies, generally indicating oxic to suboxic marine environments. The upper Campanian and upper Maastrichtian (lowermost part) strata are characterized by a playnofacies (V), indicating a distal shelf, while the lower Maastrichtian and lower Danian (uppermost part) strata record a playnofacies (III), reflecting an intermediate inner-outer neritic environment. However, the K/Pg boundary transition is characterized by playnofacies types (I) and (II), indicating a proximal (coastal) environment.  相似文献   

10.
The Gebel Qreiya and nearby Wadi Hamama sections of the central Eastern Desert are among the most complete K/T boundary sequences known from Egypt. The two sections were analyzed spanning an interval from l.83 Myr below to about 3 Myr above the K/T boundary. A 1-cm-thick red clay layer at the K/T boundary at Gebel Qreiya contains an Ir anomaly of 5.4 ppb. The high-resolution study and well-preserved nannoflora provide good age control and the first quantitative records of calcareous nannofossil assemblages for paleoecological interpretations across the K/T transition in Egypt. Four zones (Micula murus, Micula prinsii, NP1, and NP2) were distinguished and correlated with other nannofossil and planktonic foraminiferal zonations that are broadly applicable for the eastern Tethys region. Latest Maastrichtian assemblages are abundant and diverse, though Cretaceous species richness progressively decreased across the K/T boundary. Dominant species include Arkhangelskiella cymbiformis, Micula decussata and Watznaueria barnesae, with high abundance of dissolution-resistant M. decussata reflecting periods of high environmental stress. Thoracosphaera blooms mark the K/T boundary and are followed by an acme of the opportunistic survivor Braarudosphaera bigelowii, the first appearance of the new Tertiary species Cruciplacolithus primus, and an acme of Coccolithus cavus/pelagicus. These successive abundance peaks provide the basis for subdivision of the Early Danian Zones NP1 and NP2 into five subzones. Correlation of selected nannofossil taxa from the Egyptian sections with those from various onshore marine and deep-sea sections provides insights into their paleoenvironmental and paleoecological affinities.  相似文献   

11.
There are several hypotheses on the origin and evolution of the earliest Danian planktonic foraminifera. Most experts suggest that they descended from a few opportunist planktonic foraminifera species, mainly of the genera Guembelitria and Hedbergella, which are usually considered to be survivors of the Cretaceous/Paleogene (K/Pg) boundary mass extinction. Nevertheless, early Danian specimens of Guembelitria and Hedbergella remained morphologically well separated from the associated parvularugoglobigerinids (i.e. Parvularugoglobigerina and Palaeoglobigerina), the first trochospiral planktonic foraminifera appearing after the K/Pg boundary event. The most likely alternative is a benthic origin for the parvularugoglobigerinids, which would be consistent with molecular phylogenetic studies that have suggested several episodes of benthic-planktonic transitions in the evolutionary history of planktonic foraminifera. A review of material from the El Kef section and other Tunisian sections supports the previous hypothesis that the buliminid genus Caucasina is the ancestor of the first parvularugoglobigerinids (i.e. Parvularugoglobigerina longiapertura and Palaeoglobigerina alticonusa), on the basis of similarities in test and apertural morphologies and wall texture. The intermediate morphotypes between caucasinids and parvularugoglobigerinids, which appeared approximately 3–5 kyr after the K/Pg boundary, are assigned to Pseudocaucasina antecessor gen. nov. sp. nov.  相似文献   

12.
A prominent hypothesis in the diversification of placental mammals after the Cretaceous–Palaeogene (K/Pg) boundary suggests that the extinction of non-avian dinosaurs resulted in the ecological release of mammals, which were previously constrained to small body sizes and limited species richness. This ‘dinosaur incumbency hypothesis’ may therefore explain increases in mammalian diversity via expansion into larger body size niches, that were previously occupied by dinosaurs, but does not directly predict increases in other body size classes. To evaluate this, we estimate sampling-standardized diversity patterns of terrestrial North American fossil mammals within body size classes, during the Cretaceous and Palaeogene. We find strong evidence for post-extinction diversity increases in all size classes. Increases in the diversity of small-bodied species (less than 100 g, the common body size class of Cretaceous mammals, and much smaller than the smallest non-avialan dinosaurs (c. 400 g)) were similar to those of larger species. We propose that small-bodied mammals had access to greater energetic resources or were able to partition resources more finely after the K/Pg mass extinction. This is likely to be the result of a combination of widespread niche clearing due to the K/Pg mass extinctions, alongside a suite of biotic and abiotic changes that occurred during the Late Cretaceous and across the K/Pg boundary, such as shifting floral composition, and novel key innovations among eutherian mammals.  相似文献   

13.
The lithostratigraphy, calcareous nannofossil biostratigraphy, carbon‐ and oxygen‐isotope stratigraphy and gamma‐ray profile are presented for the Skælskør‐1 core, eastern Denmark. The correlation of carbon isotopes to Gubbio (Italy) and ODP Site 762C (Indian Ocean) provides the chronostratigrahical framework of the core through a tie to magnetostratigraphy. Two new carbon‐isotope excursions are defined for the uppermost Maastrichtian of the core and prove useful for long‐distance correlation. Twenty stratigraphic tie‐points are used for correlation of the upper Campanian–Maastrichtian interval by combining carbon‐isotope and gamma‐ray variations. Significant dissimilarities in the gamma‐ray profiles of the Danish Basin cores preclude the sole use of this tool for basin‐scale correlations. Bulk oxygen‐isotopes and semi‐quantitative abundance changes in the warm‐water calcareous nannofossil Watznaueria barnesiae and the cool‐water Kamptnerius magnificus highlight the following past changes in sea‐surface temperatures (SSTs): relatively warm late Campanian SSTs, cooling across the Campanian–Maastrichtian boundary and through the early Maastrichtian, warming across the early–late Maastrichtian transition, cooling in the late Maastrichtian, intense warming in the latest Maastrichtian chron C29r, followed by a very short episode of cooling immediately before the Cretaceous–Palaeogene boundary. The late Campanian–Maastrichtian evolution in sea water temperatures inferred from the Danish Basin is similar to that delineated at tropical latitude oceanic sites.  相似文献   

14.
Due to an impact of a bolide at the K/Pg boundary, the planktonic foraminifera have suffered sever mass extinction. However, no small Benthic Foraminifera species have documented mass extinction at the K/Pg boundary. Nevertheless, many species showed disturbance. The Maastrichtian assemblages may be different from those of the lower Paleogene by their species content, diversity and frequencies. At Oued Es Smara and Oued Abiod sections, the small benthic foraminifera indicate lower bathyal environment, and manifest significant faunal turnover. Until the uppermost Maastrichtian, their assemblages are highly diversified, with 77 species and 76 species respectively at Oued Es Smara and Oued Abiod sections. These are dominated by endobenthic morphotypes. At the K/Pg boundary, although 33 species (42,85%) (Oued Es Smara section) and 27 species (35,52%) (Oued Abiod section) of them seem to disappear, but only few species have really extinct such as Arenobulimina obesa. Nevertheless, the majority of species persist elsewhere at the Danian (e.g., Pseudoglandulina manifesta, Cibicioides proprius, Clavulinoides amorpha, Coryphostoma plaitum, Pullenia coryelli). At the lower Danian, the survivor Maastrichtian species are of 58% (Oued Es Smara) and 65% (Oued Abiod). Throughout the Parasubbotina pseudobulloides subzone, 4 others species were progressively disappeared. They are oligotrophic and low oxygen tolerant. About the Masstrichtian species, at the two studied sections (e.g. Gaudryina inflata and Tritaxia midwayensis) they seem to be more trophic exigent. Consequently, the benthic Foraminifera did not suffer massive extinction at the K/Pg boundary, but their assemblages underwent a significant faunal turnover which reflects important environmental changes. These changes are compatible with the catastrophic scenario induced by the large asteroid impact.  相似文献   

15.
Rhynchocephalian lepidosaurs, though once widespread worldwide, are represented today only by the tuatara (Sphenodon) of New Zealand. After their apparent early Cretaceous extinction in Laurasia, they survived in southern continents. In South America, they are represented by different lineages of Late Cretaceous eupropalinal forms until their disappearance by the Cretaceous/Palaeogene (K/Pg) boundary. We describe here the only unambiguous Palaeogene rhynchocephalian from South America; this new taxon is a younger species of the otherwise Late Cretaceous genus Kawasphenodon. Phylogenetic analysis confirms the allocation of the genus to the clade Opisthodontia. The new form from the Palaeogene of Central Patagonia is much smaller than Kawasphenodon expectatus from the Late Cretaceous of Northern Patagonia. The new species shows that at least one group of rhynchocephalians not related to the extant Sphenodon survived in South America beyond the K/Pg extinction event. Furthermore, it adds to other trans-K/Pg ectotherm tetrapod taxa, suggesting that the end-Cretaceous extinction affected Patagonia more benignly than the Laurasian landmasses.  相似文献   

16.
Turtles are key components of modern vertebrate faunas and their diversity and distributions are likely to be affected by anthropogenic climate change. However, there is limited baseline data on turtle taxonomic richness through time or assessment of their past responses to global environmental change. We used the extensive Triassic–Palaeogene (252–223 Ma) fossil record of terrestrial and freshwater turtles to investigate diversity patterns, finding substantial variation in richness through time and between continents. Globally, turtle richness was low from their Triassic origin until the Late Jurassic. There is strong evidence for high richness in the earliest Cretaceous of Europe, becoming especially high following the Cretaceous Thermal Maximum and declining in all continents by the end-Cretaceous. At the K–Pg boundary, South American richness levels changed little while North American richness increased, becoming very high during the earliest Palaeogene (Danian). Informative data are lacking elsewhere for this time period. However, the Selandian–Thanetian interval, approximately 5 myr after the K–Pg mass extinction, shows low turtle richness in Asia, Europe and South America, suggesting that the occurrence of exceptional turtle richness in the post-extinction Paleocene fauna of North America is not globally representative. Richness decreased over the Eocene–Oligocene boundary in North America but increased to its greatest known level for Europe, implying very different responses to dramatic climatic shifts. Time series regressions suggest number of formations sampled and palaeotemperature are the primary influencers of face-value richness counts, but additional factors not tested here may also be involved.  相似文献   

17.
Deep-sea benthic foraminifera show important but transient assemblage changes at the Cretaceous/Paleogene (K/Pg) boundary, when many biota suffered severe extinction. We quantitatively analyzed benthic foraminiferal assemblages from lower bathyal–upper abyssal (1500–2000 m) northwest Pacific ODP Site 1210 (Shatsky Rise) and compared the results with published data on assemblages at lower bathyal (~ 1500 m) Pacific DSDP Site 465 (Hess Rise) to gain insight in paleoecological and paleoenvironmental changes at that time.At both sites, diversity and heterogeneity rapidly decreased across the K/Pg boundary, then recovered. Species assemblages at both sites show a similar pattern of turnover from the uppermost Maastrichtian into the lowermost Danian: 1) The relative abundance of buliminids (indicative of a generally high food supply) increases towards the uppermost Cretaceous, and peaks rapidly just above the K/Pg boundary, coeval with a peak in benthic foraminiferal accumulation rate (BFAR), a proxy for food supply. 2) A peak in relative abundance of Stensioeina beccariiformis, a cosmopolitan form generally more common at the middle than at the lower bathyal sites, occurs just above the buliminid peak. 3) The relative abundance of Nuttallides truempyi, a more oligotrophic form, decreases at the boundary, then increases above the peak in Stensioeina beccariiformis. The food supply to the deep sea in the Pacific Ocean thus apparently increased rather than decreased in the earliest Danian. The low benthic diversity during a time of high food supply indicates a stressed environment. This stress might have been caused by reorganization of the planktic ecosystem: primary producer niches vacated by the mass extinction of calcifying nannoplankton may have been rapidly (<10 kyr) filled by other, possibly opportunistic, primary producers, leading to delivery of another type of food, and/or irregular food delivery through a succession of opportunistic blooms.The deep-sea benthic foraminiferal data thus are in strong disagreement with the widely accepted hypothesis that the global deep-sea floor became severely food-depleted following the K/Pg extinction due to the mass extinction of primary producers (“Strangelove Ocean Model”) or to the collapse of the biotic pump (“Living Ocean Model”).  相似文献   

18.
A new species, Phoenicopsis anadyrensis Nosova, is described based on the leaf morphology and cuticle features from the Maastrichtian–Danian Rarytkin Formation, Chukotka, North-East of Russia. It is characterized by hypostomatic leaves with stomatal bands on the abaxial side, undulate anticlinal epidermal cell walls and papillae on the epidermal cells and on the subsidiary cells of the stomata. The new species is the youngest reliable representative of the genus Phoenicopsis. This record extends the stratigraphic range of Phoenicopsis from its previously known latest records in the early Campanian up to Maastrichtian–Danian. The persistence of the genus Phoenicopsis up to the Cretaceous–Paleogene boundary is most likely related with vicinity to mountain floras associated with Late Cretaceous and Paleogene volcanic uplands.  相似文献   

19.
We analysed field-collected quantitative data of benthic marine molluscs across the Cretaceous–Palaeogene boundary in Patagonia to identify patterns and processes of biodiversity reconstruction after the end-Cretaceous mass extinction. We contrast diversity dynamics from nearshore environments with those from offshore environments. In both settings, Early Palaeogene (Danian) assemblages are strongly dominated by surviving lineages, many of which changed their relative abundance from being rare before the extinction event to becoming the new dominant forms. Only a few of the species in the Danian assemblages were newly evolved. In offshore environments, however, two newly evolved Danian bivalve species attained ecological dominance by replacing two ecologically equivalent species that disappeared at the end of the Cretaceous. In both settings, the total number of Danian genera at a locality remained below the total number of late Cretaceous (Maastrichtian) genera at that locality. We suggest that biotic interactions, in particular incumbency effects, suppressed post-extinction diversity and prevented the compensation of diversity loss by originating and invading taxa. Contrary to the total number of genera at localities, diversity at the level of individual fossiliferous horizons before and after the boundary is indistinguishable in offshore environments. This indicates an evolutionary rapid rebound to pre-extinction values within less than ca 0.5 million years. In nearshore environments, by contrast, diversity of fossiliferous horizons was reduced in the Danian, and this lowered diversity lasted for the entire studied post-extinction interval. In this heterogeneous environment, low connectivity among populations may have retarded the recolonisation of nearshore habitats by survivors.  相似文献   

20.
The biostratigraphy (larger foraminifers, dasycladaleans), microfacies, sedimentology, and geochemistry (δ 13C, strontium-isotope stratigraphy) of a continuous, 148-m-thick section of shallow-water platform carbonates that contain the Cretaceous/Paleogene (K/P) boundary were analyzed. The boundary is constrained within a 7-m-thick interval, between the last occurrence of Maastrichtian larger benthic foraminifers and the first occurrence of Danian benthic foraminifers. Although this interval is intensively dolomitized, there is no sedimentological evidence of a major hiatus at the K/P boundary. The correlation of bulk rock δ 13C values with stable isotope data from DSDP Site 384 (NW Atlantic Ocean) supports this interpretation and indicates a Selandian age for the top of the section. The Qalhat section is a unique example of a carbonate platform that has recorded persisting open marine environmental conditions across the K/P boundary (Maastrichtian–Selandian), as indicated by the abundance of rudists, larger benthic foraminifers (Maastrichtian), calcareous algae and scleractinian corals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号