首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 922 毫秒
1.
The role of commercial harbours as sink and source habitats for non-indigenous species (NIS) and the role of recreational boating for their secondary spread were investigated by analysing the fouling community of five Italian harbours and five marinas in the western Mediterranean Sea. It was first hypothesised that NIS assemblages in the recreational marinas were subsets of those occurring in commercial harbours. However, the data did not consistently support this hypothesis: the NIS pools of some marinas significantly diverged from harbours even belonging to the same coastal stretches, including NIS occurring only in marinas. This study confirms harbours as hotspots for marine NIS, but also reveals that numbers of NIS in some marinas is higher than expected, suggesting that recreational vessels effectively facilitate NIS spread. It is recommended that this vector of NIS introduction is taken into account in the future planning of sustainable development of maritime tourism in Europe.  相似文献   

2.
Recreational boats in tow between lakes are a known vector of the spread of aquatic invading species (AIS), but we have no test of the hypothesis that recreational boats are also a vector of secondary spread of AIS among freshwater ecosystems via in-water transport i.e., while boating between interconnected waterways. In this study, we surveyed recreational boaters travelling into Lake Simcoe (44°25′N, 79°20′W), Ontario, Canada, on their recreational activities, boat maintenance, and travel destinations, measured the degree of vessel fouling, and sampled all standing water and attached macrophytes associated with their vessels. A total of 321 zooplankton individuals comprising 15 different species were collected from the standing water in vessels, including veligers of the invasive zebra mussel Dreissena. The volume of water collected within the vessels significantly increased the number of zooplankton transported. Zooplankton species from pelagic habitats or with planktonic life stages were collected more frequently than species that occupy littoral or benthic habitats, likely reflecting the recreational activities of boaters. Patterns of boater activities, movements and hygiene habits, suggest recreational boating in the Lake Simcoe region is contributing to the spread of native and invasive species into nearby waterways. Our study validates the widespread assumption that recreational boats are an important in-water vector for the secondary spread of both native and invasive zooplankton species. Future management strategies to reduce the spread of AIS should be aimed at increasing awareness of boater hygiene practices, particularly the frequent draining of standing water.  相似文献   

3.
Human transport hubs, such as shipping ports, airports and mail centers are important foci for the spread of non-indigenous species. High relative abundance in a transport hub has been proposed as a correlate of invasion success, since abundant species are thought more likely to colonize vectors and to be transported more frequently. We here evaluate the relative importance of vector characteristics and local source assemblages in determining the pool of species that is transported by hull fouling on recreational boats. We compared the resident fouling communities of three recreational boat harbors in Australia with the assemblages on the hulls of boats that travel between them. We used data on the recent travel and maintenance history of the boats to evaluate correlates of transport probability and the potential for intra-coastal spread of fouling organisms. Invertebrate assemblages on heavily fouled vessels reflected the composition of biotic assemblages within the marina in which they were moored, but by itself, relative abundance in the source port was not a reliable predictor of transport probability. More important was the age of the antifouling paint on the vessels’ hulls, which acted selectively on some groups of organisms. Movements of vessels were characterized by “fidelity” (vessels remaining close to homeport) interspersed with “promiscuity” (vessels traveling to a diverse pool of destinations). In an infested harbor, measures taken to increase the resistance of vectors to colonization by the invader should be effective in slowing the rate of spread to other locations, by decreasing the overall frequency of transport.  相似文献   

4.
Non-indigenous species (NIS) can have adverse environmental, economic and social impacts. Their management is now incorporated into key legislation, including the European Union (EU) Marine Strategy Framework Directive and the EU Regulation on the prevention and management of the introduction and spread of invasive alien species. Prevention of NIS introductions and the early detection of NIS following their introduction are recognised as the most effective approaches for reducing the potential impacts of NIS. This is true for most aquatic environments but especially so for the marine environment, where control and/or eradication are often not achievable. By assessing introduction vector activity, it is possible to identify coastal areas and specific locations where marine NIS may be more likely to be introduced. This study uses data relating to the activity of key introduction vectors; shipping, recreational boating and live animal aquaculture import, to estimate the relative risk of introduction of NIS around coastal regions of Great Britain and Ireland. Spatial analysis was used to create “heat” maps indicating coastal areas of increased relative risk of introduction of NIS by these vectors. The results of the present study will be crucial for the implementation of targeted vector management plans, supporting preventive strategies, and will facilitate a risk analyses of NIS threats to inform monitoring and surveillance programmes.  相似文献   

5.
The relative importance of multiple vectors to the initial establishment, spread and population dynamics of invasive species remains poorly understood. This study used molecular methods to clarify the roles of commercial shipping and recreational boating in the invasion by the cosmopolitan tunicate, Botryllus schlosseri. We evaluated (i) single vs. multiple introduction scenarios, (ii) the relative importance of shipping and boating to primary introductions, (iii) the interaction between these vectors for spread (i.e. the presence of a shipping-boating network) and (iv) the role of boating in determining population similarity. Tunicates were sampled from 26 populations along the Nova Scotia, Canada, coast that were exposed to either shipping (i.e. ports) or boating (i.e. marinas) activities. A total of 874 individuals (c. 30 per population) from five ports and 21 marinas was collected and analysed using both mitochondrial cytochrome c oxidase subunit I gene (COI) and 10 nuclear microsatellite markers. The geographical location of multiple hotspot populations indicates that multiple invasions have occurred in Nova Scotia. A loss of genetic diversity from port to marina populations suggests a stronger influence of ships than recreational boats on primary coastal introductions. Population genetic similarity analysis reveals a dependence of marina populations on those that had been previously established in ports. Empirical data on marina connectivity because of boating better explains patterns in population similarities than does natural spread. We conclude that frequent primary introductions arise by ships and that secondary spread occurs gradually thereafter around individual ports, facilitated by recreational boating.  相似文献   

6.
The dramatic increase in marine bio‐invasions, particularly of non‐indigenous ascidians, has highlighted the vulnerability of marine ecosystems and the productive sectors that rely on them. A critical issue in managing invasive species is determining the relative roles of ongoing introductions, versus the local movement of propagules from established source populations. Styela clava (Herdman, 1882), the Asian clubbed tunicate, once restricted to the Pacific shores of Asia and Russia, is now abundant throughout the northern and southern hemispheres and has had significant economic impact in at least one site of incursion. In 2005 S. clava was identified in New Zealand. The recent introduction of this species, coupled with its restricted distribution, provided an ideal model to compare and contrast the introduction and expansion process. In this study, the mitochondrial DNA cytochrome oxidase subunit I gene (COI) gene and 11 microsatellite markers were used to test the regional genetic structure and diversity of 318 S. clava individuals from 10 populations within New Zealand. Both markers showed significant differentiation between the northern and southern populations, indicative of minimal pre‐ or post‐border connectivity. Additional statistics further support pre‐ and post‐border differentiation among Port and Harbour populations (i.e. marinas and aquaculture farms). We conclude that New Zealand receives multiple introductions, and that the primary vector for pre‐border incursions and post‐border spread is most likely the extensive influx of recreational vessels that enter northern marinas independent of the Port. This is a timely reminder of the potential for hull‐fouling organisms to expand their range as climates change and open new pathways.  相似文献   

7.
In aquatic ecosystems invasive species are among the most important threats to biodiversity worldwide. Understanding the dispersal mechanisms of aquatic invaders is very important for protection and management of vulnerable water bodies. Here we ask how recreational boats that are transported overland could contribute to the dispersal of invasive zebra mussels among lakes in Switzerland. Using a questionnaire sent to registered boat owners, we surveyed properties of transported boats and collected information on self-reported mussel fouling and transport activities of boat owners. We also sampled boat hulls at launching ramps and harbors for biofouling invertebrates. Boats that were kept seasonally or year-round in water were found to have high vector potential with mussel fouling rates of more than 40 %. However, only about 6 % of boats belonging to these groups were transported overland to other water bodies. Considering that approximately 100,000 recreational boats are registered in Switzerland, we estimated that every year around 1400 boats fouled with mussels are transported overland. Such boats pose a high risk of distributing zebra mussels between water bodies. Our results suggest that there is a considerable risk that recreational boats may spread new fouling species to all navigable water bodies within the study area. We speculate that one such species could be the quagga mussel, which has not yet invaded lakes in Switzerland. On a more positive note, our study has identified the group of high-risk boats so that possible control measures would only affect a relatively small number of boat owners.  相似文献   

8.
Abstract Hull fouling is a major cost for owners of small vessels and an important pathway for the spread of non‐indigenous aquatic species. The extent of fouling depends on a hull's susceptibility to recruitment by aquatic organisms and the local availability of competent planktonic propagules (‘propagule pressure’). Management strategies have typically been concerned with increasing resistance of the hull to recruitment through the use of toxic paints. Here we tested the hypothesis that fouling is influenced by the design of the harbour in which the boat is moored. We compared recruitment of sessile invertebrates to available surfaces in two types of recreational boat harbours: marinas that were partially enclosed by a permanent breakwall, and marinas that lacked breakwalls. Recruitment in the marinas was compared to coastal reference sites that were not used for mooring. At each location, recruitment tiles were deployed for 4 weeks on four separate occasions over a period of 2 years. Measurements of current velocities and spatial patterns of water flow at each location showed that permanent breakwalls created complex patterns of circulation that retained water within the marina basin for up to 12 h d?1. Despite large regional and temporal variability in fouling over time, most organisms recruited in greatest numbers to surfaces in partially enclosed marinas, and were often several orders of magnitude more abundant in the enclosed marinas than in unenclosed marinas or coastal reference locations. Harbour design has an important influence on the rate at which fouling organisms recruit to available surfaces within marinas. Entrainment of water in enclosed marinas may limit the dispersal of planktonic propagules by advective currents but effectively increases propagule pressure to available surfaces, including resident boat hulls. This is likely to accelerate the development of hull‐fouling assemblages and increase the chances of transport of non‐indigenous species that establish populations in the harbour basin.  相似文献   

9.
The presence and impacts of non‐indigenous species (NIS) in marine areas of high conservation or World Heritage significance have rarely been examined. Case studies worldwide suggest that the potential exists for the introduction of NIS to significantly impact conservation values in regions conserved for the uniqueness and diversity of native assemblages. In this study, a preliminary investigation was conducted to provide information essential for managing marine introductions in the Shark Bay World Heritage Property. A focused fouling plate survey sampled a total of 112 encrusting taxa, of which 10 (11.2%) were classified as introduced and 10 others as cryptogenic. Eight introduced bryozoans: Aetea anguina (Linnaeus, 1758), Bugula neritina (Linnaeus, 1758), Bugula stolonifera Ryland, 1960, Conopeum seurati (Canu, 1928), Savignyella lafontii (Audouin, 1826), Schizoporella errata (Waters, 1878), Watersipora subtorquata (d’Orbigny, 1842) and Zoobotryon verticellatum della Chiaje, 1828; one tunicate, Styela plicata Lesueur, 1823; and an introduced hydroid, Obelia dichotoma (Linnaeus, 1758) were frequent, and in some cases dominant, components of encrusting communities. Of the 20 most frequently occurring species detected in the Bay, four were introduced and of the 20 species with highest average percent cover per plate, six were introduced. At one site, space occupation by NIS averaged 71.6% ± 7.4 of plate live cover. Space occupation by an individual NIS was as high as 62.4% of plate area (mean 7.82% ± 1.8). NIS were detected at sites lacking commercial traffic and ballast water discharge and isolated by distance and physical environment, suggesting that hull fouling of recreational craft may be the most important vector in the region. Seventy‐five percent of NIS detected in Shark Bay are established in Australian ports to the south of Shark Bay, while 33% are established to the north, tentatively implicating temperate affinity NIS and the movement of vessels from Australian ports south of Shark Bay as a greater risk to the region.  相似文献   

10.
Constructed reefs can contribute to non-indigenous species (NIS) introductions or range expansions in several ways. Reef materials that retain developed fouling communities or ballast, such as decommissioned petroleum platforms, inactive or derelict ships, and bridge rubble are potential NIS vectors. Habitat provided by reefs placed in areas devoid of natural hard bottom or structure may be colonized by NIS propagules dispersed from natural or anthropogenic sources. A network of reef structures may also create NIS corridors for linking previously unconnected areas. Due to its level of offshore habitat alteration, changing environmental conditions, volume of shipping and boating traffic, and subtropical location, the Gulf of Mexico may be particularly vulnerable to NIS introductions and has a number of documented NIS. Non-indigenous or invasive species concerns have delayed and increased costs for some recent reef construction projects. The linkages between NIS and constructed reefs are reviewed, and approaches for anticipating, assessing, and controlling introductions are recommended. Using basic information about NIS risks, reef planners can begin to evaluate unintended consequences and incorporate risk management measures to reduce future introductions. Prevention is the most effective risk reduction approach because controlling marine NIS after introduction is expensive and offers limited probability for success.  相似文献   

11.
Once non-indigenous species are introduced to a new area, secondary spread is important in determining their ecological and economic impacts. Recreational activities may facilitate the secondary spread of invasive species by creating and transporting viable propagules, however to date there are few manipulative experiments that demonstrate the mechanistic basis of their impact. We examined the effect of two of the main aquatic recreational activities, boating and swimming, on the abundance of propagules (fragments) of the invasive green alga, Caulerpataxifolia in southeastern Australia. Surveys of two infested estuaries each with locations of different levels of recreational activity demonstrated that locations with high recreational activity had a significantly greater abundance and biomass of fragments than locations with low recreational activity. Manipulative experiments using beyond BACI type designs showed that both boating and swimming created fragments. A single pass of a motor-boat over C.taxifolia beds significantly increased the biomass of fragments, but only in shallow water. Similarly, swimming in C.taxifolia beds for 5 min significantly increased the biomass of fragments, but only when background levels of fragments were low. This study has provided the first manipulative experiments confirming that recreational activities such as boating and swimming can create propagules of aquatic invasive species. These findings provide scientific justification for targeting management efforts to minimize secondary spread of aquatic invasive species by restricting recreational activities in invaded areas.  相似文献   

12.
Vessel hull fouling is a major vector for the translocation of nonindigenous species (NIS). Antifouling (AF) paints are the primary method for preventing the establishment and translocation of fouling species. However, factors such as paint age, condition and method of application can all reduce the effectiveness of these coatings. Areas of hull that escape AF treatment (through limited application or damage) constitute key areas that may be expected to receive high levels of fouling. The investigation focused on whether small-scale (mm2 to cm2) areas of unprotected surface or experimental ‘scrapes’ provided sufficient area for the formation of fouling assemblages within otherwise undamaged AF surfaces. Recruitment of fouling taxa such as algae, spirorbids and hydroids was recorded on scrapes as narrow as 0.5 cm wide. The abundance and species richness of fouling assemblages developing on scrapes ≥1 cm often equalled or surpassed levels observed in reference assemblages totally unprotected by AF coatings. Experiments were conducted at three sites within the highly protected and isolated marine park surrounding Lady Elliott Island at the southernmost tip of the Great Barrier Reef, Australia. Several NIS were recorded on scrapes of AF coated surfaces at this location, with 1-cm scrapes showing the greatest species richness and abundance of NIS relative to all other treatments (including controls) at two of the three sites investigated. Slight disruptions to newly antifouled surfaces may be all that is necessary for the establishment of fouling organisms and the translocation of a wide range of invasive taxa to otherwise highly protected marine areas.  相似文献   

13.
Piola RF  Johnston EL 《Biofouling》2008,24(3):145-155
Vessel hull fouling is a major vector for the translocation of nonindigenous species (NIS). Antifouling (AF) paints are the primary method for preventing the establishment and translocation of fouling species. However, factors such as paint age, condition and method of application can all reduce the effectiveness of these coatings. Areas of hull that escape AF treatment (through limited application or damage) constitute key areas that may be expected to receive high levels of fouling. The investigation focused on whether small-scale (mm(2) to cm(2)) areas of unprotected surface or experimental 'scrapes' provided sufficient area for the formation of fouling assemblages within otherwise undamaged AF surfaces. Recruitment of fouling taxa such as algae, spirorbids and hydroids was recorded on scrapes as narrow as 0.5 cm wide. The abundance and species richness of fouling assemblages developing on scrapes > or =1 cm often equalled or surpassed levels observed in reference assemblages totally unprotected by AF coatings. Experiments were conducted at three sites within the highly protected and isolated marine park surrounding Lady Elliott Island at the southernmost tip of the Great Barrier Reef, Australia. Several NIS were recorded on scrapes of AF coated surfaces at this location, with 1-cm scrapes showing the greatest species richness and abundance of NIS relative to all other treatments (including controls) at two of the three sites investigated. Slight disruptions to newly antifouled surfaces may be all that is necessary for the establishment of fouling organisms and the translocation of a wide range of invasive taxa to otherwise highly protected marine areas.  相似文献   

14.
Fouling communities on artificial marine structures are generally different from benthic communities in natural rocky habitats. However, they may also differ among different types of artificial structures. Two artificial structures in direct contact with arriving vessels were compared: floating pontoons within recreational marinas, and sea-walls within commercial harbours. Natural rocky habitats were used as a reference, and the genus Eudendrium (Cnidaria, Hydrozoa) was chosen as a bioindicator. The assemblages were different among the three types of habitat studied, with different species characterising each habitat. The probability of finding an invasive Eudendrium species was significantly higher on pontoons. Diversity was the lowest on pontoons, but it was not significantly different between sea-walls and natural rocks. In general, a barrier to the spread of exotic species exists between harbours and natural rocky habitats. Floating pontoons seem to be a less suitable habitat for native fauna and a key element in marine biological invasions.  相似文献   

15.
Aim  Hull fouling is a leading vector for the introduction of marine, non‐indigenous species (NIS) worldwide, yet its importance to freshwater habitats is poorly understood. We aimed to establish the complement of NIS transported via this vector to the Great Lakes and to determine if they pose an invasion risk. Location  Laurentian Great Lakes. Methods  During 2007 and 2008, we collected scrapings from exterior surfaces as well as underwater video‐transects from 20 vessels shortly after their arrival in Great Lakes’ ports. Invertebrates present were sorted and identified in the laboratory. Results  Total estimated abundance averaged > 170,000 invertebrates per ship belonging to 109 taxa. Most (72%) of these taxa were freshwater species already present in the Great Lakes, whereas 11 and 31% were native to estuarine and marine habitats respectively, and would not be expected to survive in this habitat. Abundance was dominated by barnacles (51%), cladocerans (19%), bivalves (12%) and amphipods (11%). Sea‐chest grating and the rudder were hot‐spots for biofouling. Invertebrate diversity and total abundance were positively associated with total time spent in port during the last year and time in Pacific South American ports and negatively related to time in high latitudes and sailing speed. Although we found some live, established invaders such as Gammarus tigrinus and Dreissena rostriformis bugensis, only one individual of a freshwater NIS (Alexandrovia onegensis, Oligochaeta) not yet reported in the Great Lakes was detected. The animal’s poor condition and seemingly low population abundance indicated the risk of live introduction by this vector was likely quite low. Main conclusion  Our results indicate that hull fouling appears to pose a low risk of introductions of new species capable of surviving in the Great Lakes, unlike foreign‐sourced freshwater ballast water that historically was discharged by these transoceanic vessels.  相似文献   

16.
Abstract

Invasive non-indigenous species (NIS) are a threat to marine biodiversity and marine reliant industries. Recreational vessels are recognised as an important vector of NIS translocation, particularly domestically. This paper reports on a novel application of multilevel modelling and multiple imputation in order to quantify the relationship between biofouling biomass (wet weight) and the vessel-level characteristics of recreational and fishing vessels. It was found that the number of days since the vessel was last cleaned strongly related to the biofouling biomass, yet differed dependent on vessel type. Similarly, the median number of trips undertaken was related to the biofouling biomass, and varied according to the type of antifouling paint (AF) used. No relationship was found between vessel size and biofouling biomass per sample unit. To reduce the spread of NIS, vessel owners should use an AF paint suitable to their vessel’s operational profile, and follow a maintenance schedule according to the paint manufacturer’s specifications.  相似文献   

17.
Non‐native invasive species are a major threat to biodiversity, especially in freshwater ecosystems. Freshwater ecosystems are naturally rather isolated from one another. Nonetheless, invasive species often spread rapidly across water sheds. This spread is to a large extent realized by human activities that provide vectors. For example, recreational boats can carry invasive species propagules as “aquatic hitch‐hikers” within and across water sheds. We used invasive gobies in Switzerland as a case study to test the plausibility that recreational boats can serve as vectors for invasive fish and that fish eggs can serve as propagules. We found that the peak season of boat movements across Switzerland and the goby spawning season overlap temporally. It is thus plausible that goby eggs attached to boats, anchors, or gear may be transported across watersheds. In experimental trials, we found that goby eggs show resistance to physical removal (90 mN attachment strength of individual eggs) and stay attached if exposed to rapid water flow (2.8 m·s−1for 1 h). When exposing the eggs to air, we found that hatching success remained high (>95%) even after eggs had been out of water for up to 24 h. It is thus plausible that eggs survive pick up, within‐water and overland transport by boats. We complemented the experimental plausibility tests with a survey on how decision makers from inside and outside academia rate the feasibility of managing recreational boats as vectors. We found consensus that an installation of a preventive boat vector management is considered an effective and urgent measure. This study advances our understanding of the potential of recreational boats to serve as vectors for invasive vertebrate species and demonstrates that preventive management of recreational boats is considered feasible by relevant decision makers inside and outside academia.  相似文献   

18.
Measures taken to control the spread of non-indigenous species by human vectors may act selectively by providing effective protection against some (but not all) species. Toxic antifouling paints are used by boat owners to prevent the development of fouling assemblages on the hulls of their boats, which reduce vessel speed and maneuverability. By reducing fouling, these paints also prevent transport of non-indigenous species. Using experimental surfaces mimicking boat hulls, we evaluated the effectiveness and selectivity of (1) antifouling paints, and (2) manual, in-water hull cleaning for preventing the transport of marine sessile invertebrates by recreational vessels. Different types of antifouling paints provided effective protection only against barnacles and bivalves. Other fouling taxa occurred on experimental surfaces after a period of only 2 months. Manual hull cleaning did not remove fouling completely, and even enhanced the risk of subsequent recruitment by some fouling organisms. Up to six times more individuals and colonies recruited to boat surfaces from which the existing fouling organisms had been removed manually than to surfaces that had been sterilized or contained intact fouling assemblages. Bivalves, colonial and solitary ascidians, encrusting bryozoans, hydroids, tubiculous polychaetes, and sponges consistently recruited in greatest abundance to manually cleaned surfaces. Individual taxa responded in complex, but predictable ways to the biogenic cues left by manual cleaning, so that different suites of organisms colonized surfaces that had originally contained fouling assemblages of local or non-local origin. Our study shows that widely adopted measures to control the spread of non-indigenous species by human vectors are often highly selective and, while effective for some taxa, do not prevent the transport of others.  相似文献   

19.
Global homogenization of biota is underway through worldwide introduction and establishment of non-indigenous (exotic) species. Organisms fouling ship hulls are continually in transit and can affect communities through biodiversity loss and serious damage to economy and public health. In the Azores, for the first time, underwater alien species prospection was conducted in marinas and recreational harbours, at S?o Miguel Island. Populations of three locally previously unknown barnacle species were found: Amphibalanus amphitrite, Amphibalanus eburneus and Perforatus perforatus. These species account for the more than 50% of alien barnacles worldwide that belong to Balanidae family. Hence, some considerations about morphology and life cycle of this family are advanced, discussed and related to their invasive potential.  相似文献   

20.
Abstract

Ports are important locations for the introduction of marine species, while marinas and pontoons often serve as secondary habitats for these species. In a marina near Paranaguá Port, a major international port in southern Brazil, the encrusting community was studied to (i) identify possibly introduced species, and (ii) examine the use of artificial substrata by these species. Samples (20 × 20 cm) were taken from fibreglass floats (boardwalks and boat hulls) and concrete columns. A total of 85 species were found of which 50 were classified into three categories: four introduced, 33 cryptogenic and 13 native. The introduced species were the hydrozoan Garveia franciscana (on floats, boats and submerged concrete), the polychaete Polydora cornuta (more abundant on floats and submerged concrete) and the barnacles Amphibalanus reticulatus (equally abundant on the three substrata) and Striatobalanus amaryllis (only on floats and submerged concrete). Organisms were most abundant on floating boardwalks, while species richness and composition were similar to that on boat hulls (32 and 37, respectively), which are an important vector for intraregional transport. All substrata supported at least three of the four introduced, and many of the cryptogenic species. The proportion of introduced to the total number of species was greater than observed in other ports. This demonstrates that the introduction potential is great in Paranaguá Bay, especially considering that this study was restricted to one site and sampled only hard substrata. None of the introduced species has yet been identified as invasive, but all are generalists with respect to substratum, indicating their invasive potential. The ability to colonise stable concrete walls shows that they could also colonise the natural granite rocky substrata in the bay, and the ability to colonise floating surfaces indicate their capability of spreading in the region on the hulls of recreational boats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号