首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Until now, analytical studies on European urban floras have mostly concentrated on the central and north‐western parts of the continent. In this paper, factors determining species richness of urban flora were studied for the city of Rome, Italy, based on a comprehensive floristic survey carried out between 1985 and 1994, and updated in 2005. All species were recorded in grid cells of 1.6 km2 and classified into native and alien (the latter divided into archaeophytes and neophytes). The grids were classified with respect to the prevailing habitat type, area available to vegetation, level of disturbance and geographical position within the city. Data were analysed using minimal adequate models. Total species number was determined by habitat and its interaction with position on the north‐west gradient; other variables explained much less variance. Holding other variables constant, the average species number per grid cell was highest in archaeological sites and parks, followed by woodlands and rivers, and grasslands and recent developments. Residential areas and the historical centre were poorest in species number. Towards the north of the city, species richness in corresponding habitats increases because of higher landscape heterogeneity and closer association with diaspore pools in the surroundings. Native species make up on average 84% of the total species numbers, and trends opposite to those for the total number of species were found for the proportional representation of aliens. The occurrence of alien and native species in the flora of Rome is driven by similar factors, but factors that increase representation of aliens decrease that of natives and vice versa. The representation of neophytes and native species in grid cells was easier to explain (74% of variation accounted for) than that of archaeophytes (27%); this result reflects that in terms of ecology and response to factors, archaeophytes take an intermediate position between native plants and neophytes. Proportional representation of neophytes decreased with increasing area available to vegetation, reflecting that semi‐natural vegetation is better developed where less fragmented.  相似文献   

3.
Abstract.  In western North America, the alien Elaeagnus angustifolia L. invades riparian habitats usually dominated by pioneer woody species such as Populus deltoides Marshall ssp. monilifera (Aiton) Eckenwalder . We conducted manipulative field experiments to compare the importance of physical disturbance and granivory for seedling establishment of these two species. We planted seeds of both species in disturbed and undisturbed study plots, and used exclosures, seed dish trials and live-trapping to assess the role of granivory. Seedling establishment of both species was increased by physical disturbance and seeds of both species were subject to granivory. However, the relative importance of these two factors differed between species. For P. deltoides , lack of physical disturbance prevented seedling establishment in uncleared subplots, but granivory did not prevent seedling establishment outside of exclosures. For E. angustifolia , granivory prevented seedling establishment outside of exclosures, but lack of physical disturbance did not prevent establishment in uncleared subplots. The lesser dependence on disturbance may enable E. angustifolia to invade areas characterized by low levels of fluvial disturbance, such as floodplains along regulated rivers, where P. deltoides recruitment does not occur. Populations of granivorous rodents may affect the susceptibility of riparian ecosystems to invasion by E. angustifolia .  相似文献   

4.
5.
ABSTRACT

Background: Highly modified landscapes offer the opportunity to assess how environmental factors influence the integration of alien plant species into native vegetation communities and determine the vulnerability of different communities to invasion.

Aims: To examine the importance of biotic and abiotic drivers in determining whether alien plant species segregate spatially from native plant communities or become integrated and lead to biotic homogenisation.

Methods: Ordination and classification of a floristic survey of over 1200 systematically located 6 m × 6 m plots were used to examine how plant community segregation, nestedness and homogenisation varied in relation to climate, environmental and human-related factors across Banks Peninsula, New Zealand.

Results: The analyses of community structure indicated that native and alien plant communities were spatially and ecologically segregated due to different responses primarily to an anthropogenic impact gradient and secondly to environmental factors along an elevation gradient. Human-land use appeared most strongly linked to the distribution of alien species and was associated with increased vegetation homogenisation. However, despite spatial segregation of alien and native plant communities, biotic homogenisation not only occurred in highly managed grasslands but also in relatively less managed shrublands and forest.

Conclusions: The role played by anthropogenic factors in shaping alien and native plant species community structure should not be ignored and, even along a marked environmental gradient, if the recipient sites have a long history of human-related disturbance, biotic homogenisation is often strong.  相似文献   

6.
Aim We tested whether the species–energy and species–human relationships vary between native and both naturalized and casual alien species richness when other environmental variables had been taken into account. Location Trento Province, a region (c. 6200 km2) on the southern border of the European Alps (Italy), subdivided into 156 contiguous (c. 37.5 km2) cells and ranging in elevation from 66 to 3769 m. Methods Data were separated into three subsets, representing richness of natives, naturalized aliens and casual aliens and separately related to temperature, human population and various environmental correlates of plant species diversity. We applied ordinary least squares and simultaneous autoregressive regressions to identify potential contrasting responses of the three plant status subsets and hierarchical partitioning to evaluate the relative importance of the predictor variables. Results Variation in alien plant species richness along the region was almost entirely explained by temperature and human population density. The relationships were positive but strongly curvilinear. Native species richness was less strongly related to either factor but was positively related to the presence of calcareous bedrock. Native species richness had a decelerating positive relationship with temperature (R2= 55%), whereas naturalized and casual aliens had a positive accelerating relationship explaining 86% and 62% of the variation in richness, respectively. Native species richness had a positive decelerating relationship with population density (R2= 42%), whilst both alien subsets had a positive accelerating relationship. Main conclusions Alien species richness was higher in areas with the most rich and diverse assemblages of native species. Areas at high altitudes are not especially prone to alien invasion due to energy constraints, low propagule pressure and disturbance, even considering a potential increased in temperature. Thus, if we consider future environmental change, we should expect a stronger response of aliens than natives in the currently warm, urbanized, low‐altitude areas than in cold, high‐altitude areas where human population density is low.  相似文献   

7.
8.

Aim

To assess how environmental, biotic and anthropogenic factors shape native–alien plant species richness relationships across a heterogeneous landscape.

Location

Banks Peninsula, New Zealand.

Methods

We integrated a comprehensive floristic survey of over 1200 systematically located 6 × 6 m plots, with corresponding climate, environmental and anthropogenic data. General linear models examined variation in native and alien plant species richness across the entire landscape, between native‐ and alien‐dominated plots, and within separate elevational bands.

Results

Across all plots, there was a significant negative correlation between native and alien species richness, but this relationship differed within subsets of the data: the correlation was positive in alien‐dominated plots but negative in native‐dominated plots. Within separate elevational bands, native and alien species richness were positively correlated at lower elevations, but negatively correlated at higher elevations. Alien species richness tended to be high across the elevation gradient but peaked in warmer, mid‐ to low‐elevation sites, while native species richness increased linearly with elevation. The negative relationship between native and alien species richness in native‐dominated communities reflected a land‐use gradient with low native and high alien richness in more heavily modified native‐dominated vegetation. In contrast, native and alien richness were positively correlated in very heavily modified alien‐dominated plots, most likely due to covariation along a gradient of management intensity.

Main conclusions

Both positive and negative native–alien richness relationships can occur across the same landscape, depending on the plant community and the underlying human and environmental gradients examined. Human habitat modification, which is often confounded with environmental variation, can result in high alien and low native species richness in areas still dominated by native species. In the most heavily human modified areas, dominated by alien species, both native and alien species may be responding to similar underlying gradients.
  相似文献   

9.
Aim  In this study, a dataset on world-wide squirrel introductions has been used to locate the relative pathways and to determine the factors correlated with species establishment.
Location  The world.
Methods  The analysis includes a chronological table of introductions, a biogeographical analysis and an assessment of the likelihood of establishment according to species, propagule pressure, area of origin and characteristics of the recipient area.
Results  The main vector of such introductions was the intentional importation of live animals. Introductions increased in developed countries and proportionately to the volume of imported mammals. Moreover, areas characterized by higher numbers of native squirrels were more invaded. Squirrels were often introduced deliberately and only to a smaller extent escaped from captivity. The likelihood of their establishment increased proportionately to the number of animals released and decreased proportionately to the increase of the latitudinal distance between the recipient area and the native range of the species. The likelihood that the release of one pair of either Sciurus or Callosciurus species would establish a new population was higher than 50%.
Main conclusion  Squirrels proved to be successful invaders and their importation should be restricted so as to prevent further introductions.  相似文献   

10.
Climate warming is supposed to enlarge the area climatically suitable to the naturalization of alien garden plants in temperate regions. However, the effects of a changing climate on the spread of naturalized ornamentals have not been evaluated by spatially and temporarily explicit range modelling at larger scales so far. Here, we assess how climate change and the frequency of cultivation interactively determine the spread of 15 ornamental plants over the 21st century in Europe. We coupled species distribution modelling with simulations of demography and dispersal to predict range dynamics of these species in annual steps across a 250 × 250 m raster of the study area. Models were run under four scenarios of climate warming and six levels of cultivation intensity. Cultivation frequency was implemented as size of the area used for planting a species. Although the area climatically suitable to the 15 species increases, on average, the area predicted to be occupied by them in 2090 shrinks under two of the three climate change scenarios. This contradiction obviously arises from dispersal limitations that were pronounced although we assumed that cultivation is spatially adapting to the changing climate. Cultivation frequency had a much stronger effect on species spread than climate change, and this effect was non‐linear. The area occupied increased sharply from low to moderate levels of cultivation intensity, but levelled off afterwards. Our simulations suggest that climate warming will not necessarily foster the spread of alien garden plants in Europe over the next decades. However, climatically suitable areas do increase and hence an invasion debt is likely accumulating. Restricting cultivation of species can be effective in preventing species spread, irrespective of how the climate develops. However, for being successful, they depend on high levels of compliance to keep propagule pressure at a low level.  相似文献   

11.
Aim  We argue that 'propagule pressure', a key term in invasion biology, has been attributed at least three distinct definitions (with usage of a related term causing additional confusion). All of the definitions refer to fundamental concepts within the invasion process, with the result that the distinct importance of these different concepts has been at best diluted, and at worst lost.
Location  Global.
Methods  We reviewed pertinent literature on propagule pressure to resolve confusion about different uses of the term 'propagule pressure' and we introduced a new term for one variant, colonization pressure. We conducted a computer simulation whereby the introduction of species is represented as a simple sampling process to elucidate the relationship between propagule and colonization pressure.
Results  We defined colonization pressure as the number of species introduced or released to a single location, some of which will go on to establish a self-sustaining population and some of which will not. We subsequently argued that colonization pressure should serve as a null hypothesis for understanding temporal or spatial differences in exotic species richness, as the more species that are introduced, the more we should expect to establish. Finally, using a simple simulation, we showed that propagule pressure is related to colonization pressure, but in a non-linear manner.
Main conclusion  We suggest that the nature of the relationship between propagule pressure and colonization pressure, as well as the efficacy of various proxy measures of each, require more detailed exploration if invasion ecology is to continue to develop into a more predictive science.  相似文献   

12.
13.
Abstract. The flora of 96 rubbish dumps consisting of organic, inorganic and industrial wastes was studied in the Czech Republic. Some dumps contained toxic substances (heavy metals, chlorethylenes, phenols, polychlorinated biphenyls, oil hydrocarbons and biogas). Statistically significant factors explaining the number and proportional representation of native plant species, archaeophytes (introduced before 1500) and neophytes (introduced later) were determined. In total, 588 species of vascular plants were recorded, with archaeophytes (133 species) over‐represented and native species (322 species) and neophytes (133 species) under‐represented compared to their proportions in the national flora. Minimum adequate models were used to determine the effects of several factors on species numbers and proportions, independent of other factors. Dump area, human density in the region and altitude (non‐significant only in archaeophytes) were correlated positively with species numbers. Dump age, expressed as time since dump establishment, interacted with the dump toxicity; species numbers increased with dump age on non‐toxic dumps, whereas on toxic dumps no increase in numbers was noted. For neophytes, dump toxicity also interacted with human density; the increase in numbers of neophytes with human density is more pronounced on toxic than on non‐toxic dumps. The variables measured failed to explain observed differences in proportional representation of native species, archaeophytes and neophytes. This suggests that the occurrence of species growing in such extreme habitats is driven overwhelmingly by factors such as anthropogenic disturbance. A possible explanation for the positive effect of altitude on species numbers on dumps is that the effect of heating of the deposited substrate by microbiological processes, documented by previous studies, overrides the effect of altitude which was shown repeatedly to have a negative effect on species richness. Neophyte distribution is driven by an interplay of factors distinct from those influencing the distribution of native species, namely toxicity and human density (the latter we interpret as a surrogate for propagule pressure). Their distribution on studied dumps is more restricted than that of native taxa and archaeophytes, and they are more limited by toxic substrata; more intensive propagule pressure is required for their establishment at dumps with higher toxicity levels.  相似文献   

14.
Aim Invasive alien species usually exhibit very high adaptation and rapid evolution in a new environment, but they often have low levels of genetic diversity (invasive species paradox). Genetic variation and population genetic structure of feral American mink, Neovison vison, in Poland was investigated to explain the invasion paradox and to assess current gene flow. Furthermore, the influence of mink farming on adaptation of the feral population was evaluated by comparing the genetic structure of feral and ranch mink. Location Samples from feral mink were collected in 11 study areas in northern and central Poland and from ranch mink at 10 farms distributed throughout the country. Methods A 373‐bp‐long mtDNA control region fragment was amplified from 276 feral and 166 ranch mink. Results Overall, 31 haplotypes, belonging to two groups from genetically diverse sources, were detected: 11 only in feral mink, 12 only in ranch mink and eight in both. The genetic differentiation of feral mink from the trapping sites was high, while that among ranch mink from various farms was moderate. There was no significant relationship between genetic and geographic distance. The number of trapping sites where given haplotypes occurred correlated with the number of farms with these haplotypes. The mink from two sites were the most divergent, both from all other feral mink and from ranch mink. Comparison of mtDNA and microsatellite differentiation suggests male‐biased dispersal in this species. Main conclusions American mink in Poland exhibit high genetic diversity and originate from different source populations of their native range. The process of colonization was triggered by numerous escapees from various farms and by immigrants from Belarus. The genetic structure of local feral mink populations was shaped by the founder effect and multiple introductions. The genomic admixture that occurred during mixing of different populations might have increased the fitness of individuals and accelerated the invasiveness of this species.  相似文献   

15.
Aim Mediterranean coastal sand dunes are characterized by both very stressful environmental conditions and intense human pressure. This work aims to separate the relative contributions of environmental and human factors in determining the presence/abundance of native and alien plant species in such an extreme environment at a regional scale. Location 250 km of the Italian Tyrrhenian coast (Region Lazio). Methods We analysed alien and native plant richness and fitted generalized additive models in a multimodel‐inference framework with comprehensive randomizations to evaluate the relative contribution of environmental and human correlates in explaining the observed patterns. Results Native and alien richness are positively correlated, but different variables influence their spatial patterns. For natives, human population density is the most important factor and is negatively related to richness. Numbers of natives are unexpectedly lower in areas with a high proportion of natural land cover (probably attributable to local farming practices) and, to a lesser degree, affected by the movement of the coastline. On the other hand, alien species richness is strongly related to climatic factors, and more aliens are found in sectors with high rainfall. Secondarily, alien introductions appear to be related to recent urban sprawl and associated gardening. Main conclusions Well‐adapted native species in a fragile equilibrium with their natural environment are extremely sensitive to human‐driven modifications. On the contrary, for more generalist alien species, the availability of limited resources plays a predominant role.  相似文献   

16.
17.
18.
Most introduced species apparently have little impact on native biodiversity, but the proliferation of human vectors that transport species worldwide increases the probability of a region being affected by high-impact invaders – i.e. those that cause severe declines in native species populations. Our study determined whether the number of high-impact invaders can be predicted from the total number of invaders in an area, after controlling for species–area effects. These two variables are positively correlated in a set of 16 invaded freshwater and marine systems from around the world. The relationship is a simple linear function; there is no evidence of synergistic or antagonistic effects of invaders across systems. A similar relationship is found for introduced freshwater fishes across 149 regions. In both data sets, high-impact invaders comprise approximately 10% of the total number of invaders. Although the mechanism driving this correlation is likely a sampling effect, it is not simply the proportional sampling of a constant number of repeat-offenders; in most cases, an invader is not reported to have strong impacts on native species in the majority of regions it invades. These findings link vector activity and the negative impacts of introduced species on biodiversity, and thus justify management efforts to reduce invasion rates even where numerous invasions have already occurred.  相似文献   

19.
20.
The establishment, reproduction, dispersal, and distribution of alien plants are affected by various factors during the transition from being newly introduced in a habitat to being invasive. In the agro-pastoral ecotone of northern China, comprising farmlands and natural grasslands, the biological characteristics of alien plant species were the key intrinsic factors (propagation characteristics and competitive ability), followed by such extrinsic factors as human interference and environmental heterogeneity. Among biological characteristics, the life form may be an important and useful indicator of the invasive ability of a species, and the risk of invasion is greater from alien species that are poisonous, inedible, and have traits that facilitate wide dispersal. Farmlands may serve as initial shelters for alien species, from which they spread into neighbouring habitats, whereas natural grassland may act as a barrier to plant invasions. Management practices detrimental to grasslands, including overgrazing, reclamation, and road construction, often facilitate the invasions; therefore, counter measures such as reseeding and a ban on grazing need special attention. Environmental factors including precipitation, nutrients, prevailing winds, fires, and topography may be other factors that promote or block the process of invasion. In studying ways of preventing or controlling such invasions, alien plants with short life cycle, prolific seed production, and strong competitiveness, deserve particular attention and so do human activities that may damage the environment and fragile habitats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号