首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nutrient enrichment of aquatic ecosystems caused dramatic increase in the frequency, magnitude and duration of cyanobacterial blooms. Such blooms may cause fish kills, have adverse health effects on humans and contribute to the loss of biodiversity in aquatic ecosystems. Some 50 eutrophic to hypereutrophic ponds from the Brussels Capital Region (Belgium) were studied between 2003 and 2009. A number of the ponds studied are prone to persistent cyanobacterial blooms. Because of the related health concerns and adverse effects on ecological quality of the affected ponds, a tool for assessment of the risk of cyanobacterial bloom occurrence was needed. The data acquired showed that cyanobacteria have threshold relationships with most of the environmental factors that control them. This is negatively reflected on the predictive capacity of conventional statistical methods based on linear relationships. Therefore, classification trees designed for the treatment of complex data and non-linear relationships were used to assess the risk of cyanobacterial bloom occurrence. The main factors determining cyanobacterial bloom development appeared to be phytoplankton biomass, pH and, to a lesser degree, nitrogen availability. These results suggest that to outcompete eukaryotic phytoplankters cyanobacteria need the presence of environmental constraints: carbon limitation, light limitation and nitrogen limitation, for which they developed a number of adaptations. In the absence of constraints, eukaryotic phytoplankters appear to be more competitive. Therefore, prior build up of phytoplankton biomass seems to be essential for cyanobacterial dominance. Classification trees proved to be an efficient tool for the bloom risk assessment and allowed the main factors controlling bloom development to be identified as well as the risk of bloom occurrence corresponding to the conditions determined by these factors to be quantified. The results produced by the classification trees are consistent with those obtained earlier by probabilistic approach to bloom risk assessment. They can facilitate planning management interventions and setting restoration priorities.  相似文献   

2.
湖泊蓝藻水华发生机理研究进展   总被引:37,自引:6,他引:37  
马健荣  邓建明  秦伯强  龙胜兴 《生态学报》2013,33(10):3020-3030
蓝藻水华是富营养化湖泊常见的生态灾害,通过产生毒素、死亡分解时使水体缺氧和破坏正常的食物网威胁到饮用水安全、公众健康和景观,会造成严重的经济损失和社会问题,揭示其发生机理是进行防治的基础。综述了蓝藻水华发生机理的主要假说和证据,主要分为环境因子(营养盐、氮磷比、温度、微量元素、浮游动物牧食、水文和气象条件等)和生理生态特性(伪空泡、胶质鞘、CO2浓缩机制、适应低光强、贮藏营养物质、防晒、产毒素和固氮等)两个方面;评述了主要新理论,展望了今后的研究。到目前为止的研究表明寻找一两个关键因子并不能阐明蓝藻水华的发生机理。现存的理论或假说尽管已经在蓝藻水华的防治实践中产生重要作用,但仍然未能清楚地阐释其发生的客观规律。认为蓝藻水华是在各种环境因子(外因)的耦合驱动下,水华蓝藻由于其独特的生理生态特性(内因),产生巨大的生物量而在浮游植物群落中占绝对优势,在合适的水文气象条件下集聚于水表而形成。因此水华机理的研究应同时关注水华蓝藻的生理生态学规律和蓝藻水华发生的各种环境条件。不同环境因子协同影响水华蓝藻的不同生理生态特性的表达,从而影响水华的发生过程,将可能是以后研究的重点。蓝藻水华机理的研究在微观方面正趋向于应用分子生物学手段分析蓝藻生理过程,宏观方面则将广泛应用遥感遥测技术观测全湖蓝藻的变化规律。今后加强对水华蓝藻生理生态特性的基因表达与调控和环境多因子耦合作用于蓝藻水华过程的研究将有重要意义。蓝藻水华的机理研究包括现象、过程和原因3个层次的问题,通过大量的现象和过程的研究,不断揭示其发生过程中水华蓝藻的群落演替、种群发展、细胞活性和分子机理等变化规律,才能找到其发生的真正原因,为其防治提供理论依据和更好的治理措施。在蓝藻水华防治方面,控制营养盐和生态修复可能将是今后很长时间内最根本最有效和最具操作性的方法。  相似文献   

3.
Cyanobacterial blooms in eutrophic lakes are severe environmental problems worldwide. To characterize the spatiotemporal heterogeneity of cyanobacterial blooms, a high-throughput method is necessary for the specific detection of cyanobacteria. In this study, the cyanobacterial composition of three eutrophic waters in China (Taihu Lake, Dongqian Lake, and Dongzhen Reservoir) was determined by pyrosequencing the cpcBA intergenic spacer (cpcBA-IGS) of cyanobacteria. A total of 2585 OTUs were obtained from the normalized cpcBA-IGS sequence dataset at a distance of 0.05. The 238 most abundant OTUs contained 92% of the total sequences and were classified into six cyanobacterial groups. The water samples of Taihu Lake were dominated by Microcystis, mixed Nostocales species, Synechococcus, and unclassified cyanobacteria. Besides, all the samples from Taihu Lake were clustered together in the dendrogram based on shared abundant OTUs. The cyanobacterial diversity in Dongqian Lake was dramatically decreased after sediment dredging and Synechococcus became exclusively dominant in this lake. The genus Synechococcus was also dominant in the surface water of Dongzhen Reservoir, while phylogenetically diverse cyanobacteria coexisted at a depth of 10 m in this reservoir. In summary, targeted deep sequencing based on cpcBA-IGS revealed a large diversity of bloom-forming cyanobacteria in eutrophic lakes and spatiotemporal changes in the composition of cyanobacterial communities. The genus Microcystis was the most abundant bloom-forming cyanobacteria in eutrophic lakes, while Synechococcus could be exclusively dominant under appropriate environmental conditions.  相似文献   

4.
冬季太湖表层底泥产毒蓝藻群落结构和种群丰度   总被引:1,自引:0,他引:1  
李大命  孔繁翔  于洋  阳振  史小丽 《生态学报》2011,31(21):6551-6560
应用荧光定量PCR对冬季太湖不同湖区底泥表面有毒微囊藻和总微囊藻种群丰度进行调查,同时基于PCR-DGGE技术对底泥中有毒微囊藻群落结构进行分析。结果表明:微囊藻在太湖底泥表面分布广泛,所有采样点都检测到有毒微囊藻存在,且不同湖区有毒微囊藻和总微囊藻种群丰度存在显著差异,有毒微囊藻和微囊藻基因型丰度范围分别为1.23×104-3.75×106拷贝数/g干重和2.56×104-1.07×107 拷贝数/g干重,有毒微囊藻与微囊种群丰度的比例为4.8%-35.2%;DGGE指纹图谱显示,冬季太湖不同湖区表层底泥中有毒微囊藻群落结构相似性较高,相似性系数为70.2%-96.0%。虽然不同湖区基因型组成存在差异,但所有样品中占优势的基因型是一致的。同时发现,优势基因型所占的比例与样品的香农多样性指数呈负相关。序列分析表明,mcyA序列长度为291bp,序列相似性超过97%。综合定量PCR结果和底泥中叶绿素a和藻蓝素浓度的测定结果,可以得出2010年冬季太湖蓝藻越冬主要集中在梅梁湾、竺山湾、贡湖湾和湖心。通过建立荧光定量PCR分析方法,为研究湖泊底泥中蓝藻种群丰度动态变化奠定了基础。  相似文献   

5.
蓝藻堆积和螺类牧食对苦草生长的影响   总被引:2,自引:0,他引:2  
何虎  何宇虹  姬娅婵  郭亮  刘正文  李宽意 《生态学报》2012,32(17):5562-5567
设计了双因素四组处理(对照组,加螺组,加藻组,螺藻组)的室外受控实验,模拟湖泊沿岸带水华蓝藻的堆积以及底栖螺类的牧食活动对沉水植物苦草生长的影响。结果表明:蓝藻堆积(水体叶绿素a浓度为220μg/L)对苦草的生长具有明显的抑制作用,和对照组以及加螺组相比,加藻组和螺藻组中苦草的相对生长率分别下降了40.9%和36.4%,分株数也分别下降了56.4%和64.1%,分析认为蓝藻在水体表层堆积所产生的遮光可能是抑制底层苦草生长的主要原因。然而,环棱螺能在一定程度上促进苦草的生长,加螺组和螺藻组中苦草的相对生长率和分株数分别要明显高于对照组和加藻组,这可能要归因于螺类的牧食去除了沉水植物表面附着生物。实验中蓝藻堆积和螺类牧食对苦草的各项生长指标均无显著的交互作用,但蓝藻对苦草生长的抑制作用要远大于螺类对植物生长的促进作用。研究证实了在富营养浅水湖泊中,水华蓝藻在湖泊沿岸带的堆积会严重胁迫沉水植物的生长,而底栖螺类的牧食活动则能在一定程度上提高植物在不良环境下的生存能力。  相似文献   

6.
Huber V  Wagner C  Gerten D  Adrian R 《Oecologia》2012,169(1):245-256
Past heat waves are considered harbingers of future climate change. In this study, we have evaluated the effects of two recent Central European summer heat waves (2003 and 2006) on cyanobacterial blooms in a eutrophic, shallow lake. While a bloom of cyanobacteria developed in 2006, consistent with our expectations, cyanobacterial biomass surprisingly remained at a record-low during the entire summer of 2003. Critical thresholds of abiotic drivers extracted from the long-term (1993–2007) data set of the studied lake using classification tree analysis (CTA) proved suitable to explain these observations. We found that cyanobacterial blooms were especially favoured in 2006 because thermal stratification was critically intense (Schmidt stability >44 g cm cm−2) and long-lasting (>3 weeks). Our results also suggest that some cyanobacterial species (Anabaena sp.) benefitted directly from the stable water column, whereas other species (Planktothrix sp.) took advantage of stratification-induced internal nutrient loading. In 2003, conditions were less favourable for cyanobacteria due to a spell of lower temperatures and stronger winds in mid-summer; as a result, the identified thresholds of thermal stratification were hardly ever reached. Overall, our study shows that extracting critical thresholds of environmental drivers from long-term records is a promising avenue for predicting ecosystem responses to future climate warming. Specifically, our results emphasize that not average temperature increase but changes in short-term meteorological variability will determine whether cyanobacteria will bloom more often in a warmer world.  相似文献   

7.
The increasing occurrence of cyanobacterial blooms in freshwaters is of great concern due to the ability of many cyanobacteria to produce cyanotoxins. In the present work, the eutrophied Vela Lake (Central Portugal), used for recreational purposes and as a water source for agriculture, was monitored every fortnight between 2000 and 2001. Phytoplankton diversity and densities were measured and correlated to environmental parameters. A seasonal phytoplanktonic succession was observed and it was mainly correlated with conductivity, temperature, total suspended solids and nutrients availability (particularly phosphorus). Diatoms were dominant during winter months (inferior temperatures and higher nutrients availability) followed by green algae in early spring and then cyanobacteria from late spring until early autumn (less nutrient availability and higher temperatures). A massive cyanobacterial bloom of Aphanizomenon flos-aquae occurred early in May 2001 and was preceded by the lowest nitrogen levels measured in the water during all the study period. At the time of this bloom senescence, dissolved oxygen was severely depleted and a massive death of ichthyofauna was recorded. A Microcystis aeruginosa bloom was also detected in July 2001 and it occurred following a rapid decrease in abundance of green algae and diatoms. By considering not only the environmental parameters but also the occurrence of cyanobacterial blooms as explanatory variables in a canonical correspondence analysis, the variance explained for the phytoplanktonic assemblage during the study period was increased in about 7% achieving a total of 61.0%, indicating a correlation that may be due to the known competitive advantage and/or allelopathy of the bloom-forming cyanobacteria towards microalgae.  相似文献   

8.
Cyanobacterial blooms are an increasing threat to water quality and global water security caused by the nutrient enrichment of freshwaters. There is also a broad consensus that blooms are increasing with global warming, but the impacts of other concomitant environmental changes, such as an increase in extreme rainfall events, may affect this response. One of the potential effects of high rainfall events on phytoplankton communities is greater loss of biomass through hydraulic flushing. Here we used a shallow lake mesocosm experiment to test the combined effects of: warming (ambient vs. +4°C increase), high rainfall (flushing) events (no events vs. seasonal events) and nutrient loading (eutrophic vs. hypertrophic) on total phytoplankton chlorophyll‐a and cyanobacterial abundance and composition. Our hypotheses were that: (a) total phytoplankton and cyanobacterial abundance would be higher in heated mesocosms; (b) the stimulatory effects of warming on cyanobacterial abundance would be enhanced in higher nutrient mesocosms, resulting in a synergistic interaction; (c) the recovery of biomass from flushing induced losses would be quicker in heated and nutrient‐enriched treatments, and during the growing season. The results supported the first and, in part, the third hypotheses: total phytoplankton and cyanobacterial abundance increased in heated mesocosms with an increase in common bloom‐forming taxa—Microcystis spp. and Dolichospermum spp. Recovery from flushing was slowest in the winter, but unaffected by warming or higher nutrient loading. Contrary to the second hypothesis, an antagonistic interaction between warming and nutrient enrichment was detected for both cyanobacteria and chlorophyll‐a demonstrating that ecological surprises can occur, dependent on the environmental context. While this study highlights the clear need to mitigate against global warming, oversimplification of global change effects on cyanobacteria should be avoided; stressor gradients and seasonal effects should be considered as important factors shaping the response.  相似文献   

9.
The occurrence of cyanobacterial blooms has been re-ported in fresh water all over the world~[1].Cyanobacterial bloom in ponds and reservoirs are associated with adverse ef-fects on organisms.including acute toxicity in animals and cases of illness in humans when the toxins released into the aquatic environment after cyanobacterial cell lysis~[2].  相似文献   

10.
Song  Hao  Xu  Jiahui  Lavoie  Michel  Fan  Xiaoji  Liu  Guangfu  Sun  Liwei  Fu  Zhengwei  Qian  Haifeng 《Applied microbiology and biotechnology》2017,101(4):1685-1696

Physico-chemical parameters, hydrological conditions, and microbial interactions can affect the growth and persistence of cyanobacteria, but the interacting effects among these bloom-forming factors are still poorly known. This hampers our capacity to predict the occurrence of cyanobacterial bloom accurately. Here, we studied the relationship between temperature, N and P cycles, and the microbial community abundance and diversity at 0.5 m under the surface of West Lake (China) from January 21 to November 20, 2015, in order to better understand the key factors regulating temporal changes in the cyanobacterial community. Using high throughput sequencing of the 16S rRNA gene V3-V4 region, we studied the diversity and abundance of bacteria. In parallel, we measured physico-chemical parameters and followed the abundance of key genes involved in N fixation, denitrification, and nutrient uptake. Multivariate analyses suggest that P concentration and water temperature are the key factors controlling the outbreak of summer cyanobacterial bloom. RT-qPCR analyses of the bacterial community and measurements of the copy number of denitrification-related gene (nirK, nosZ, nirS) show that denitrification potential and denitrifying bacteria relative abundance (Pseudomonas and Bacillus) increased in concert with diazotrophic cyanobacterial genera (Anabaena, Nostoc, Aphanizomenon flos-aquae) and the common bloom-forming non-diazotrophic cyanobacterium genus Microcystis. The present study brings new insights on the complex interplay between physico-chemical parameters, heterotrophic bacterial community composition, nitrogen cycle, and cyanobacteria dominance in a eutrophic lake.

  相似文献   

11.
也西湖噬藻体的分离与鉴定   总被引:1,自引:0,他引:1  
周科  杜康  朱洁  周丛照  李琼 《微生物学通报》2020,47(10):3161-3170
【背景】噬藻体是一类特异性侵染蓝藻的病毒,广泛存在于淡水和海水水体中,参与调控宿主蓝藻的丰度和种群密度,被认为是潜在的蓝藻水华生物防控工具。但目前的研究多集中于海洋噬藻体,对淡水噬藻体的生物学特性和结构生物学等研究较少。【目的】分离更多种类的淡水噬藻体,为研究淡水噬藻体的三维结构、侵染机制、与宿主的共进化关系,及其在蓝藻水华防治中的应用提供理论基础。【方法】采集中国科学技术大学西校区内景观湖也西湖水华暴发水域的水样,利用液体培养基和双层固体平板法对17种宿主蓝藻进行筛选,通过NaCl-PEG沉淀法和氯化铯密度梯度离心分离和纯化噬藻体,并利用负染电镜观察噬藻体的形态,同时采用梯度稀释法测定裂解液的效价。【结果】发现也西湖的水样可特异性侵染本实验室分离自巢湖的一株拟鱼腥藻Pan。侵染后的裂解液中存在4株形态各异的噬藻体,包括1株短尾噬藻体和3株长尾噬藻体,其中包括首次发现的1株含有非典型长轴状头部结构的淡水噬藻体。【结论】也西湖作为巢湖流域的一个小型水体,具有与巢湖类似的水华蓝藻及其噬藻体分布谱,因此可以用于模拟大型湖泊进行相关分子生态学和生物防控的研究。  相似文献   

12.
富营养化湖泊蓝藻水华暴发预警监控技术简述   总被引:1,自引:0,他引:1  
史绵红  刘伟  朱余  张劲松 《生态科学》2009,28(4):370-374
富营养化所引起的蓝藻水华严重破坏生态环境,威胁人类健康,制约我国部分地区社会和国民经济的可持续发展.现阶段虽然没有彻底解决的有效办法,但是通过在蓝藻水华高发期进行实时的预警监控,可以为该环境问题的及时应对提供技术依据.论文首先对现阶段富营养化湖泊蓝藻水华暴发的预警监控技术现状进行了简述,随后在对巢湖西半湖近几年相关监测数据进行分析的基础上,就蓝藻水华预警监测因子的选择提出了建议,期望蓝藻水华预警监控指标能够更趋完整,从而更加有效的降低和减少由蓝藻水华暴发所带来的各种不利影响和损失.  相似文献   

13.
Cyanobacterial blooms are a current cause for concern globally, with vital water sources experiencing frequent and increasingly toxic blooms in the past decade. These increases are resultant of both anthropogenic and natural factors, with climate change being the central concern. Of the more affected parts of the world, Africa has been considered particularly vulnerable due to its historical predisposition and lag in social economic development. This review collectively assesses the available information on cyanobacterial blooms in Africa as well as any visible trends associated with reported occurrences over the last decade. Of the 54 countries in Africa, only 21 have notable research information in the area of cyanobacterial blooms within the last decade, although there is substantial reason to attribute these blooms as some of the major water quality threats in Africa collectively. The collected information suggests that civil wars, disease outbreaks and inadequate infrastructure are at the core of Africa’s delayed advancement. This is even more so in the area of cyanobacteria related research, with 11 out of 21 countries having recorded toxicity and physicochemical parameters related to cyanobacterial blooms. Compared to the rest of the continent, peripheral countries are at the forefront of research related to cyanobacteria, with countries such as Angola having sufficient rainfall, but poor water quality with limited information on bloom occurrences. An assessment of the reported blooms found nitrogen concentrations to be higher in the water column of more toxic blooms, validating recent global studies and indicating that phosphorous is not the only factor to be monitored in bloom mitigation. Blooms occurred at low TN: TP ratios and at temperatures above 12 °C. Nitrogen was linked to toxicity and temperature also had a positive effect on bloom occurrence and toxicity. Microcystis was the most ubiquitous of the cyanobacterial strains reported in Africa and the one most frequently toxic. Cylindrospermopsis was reported more in the dry, north and western parts of the continent countries as opposed to the rest of the continent, whilst Anabaena was more frequent on the south eastern regions. In light of the entire continent, the inadequacy in reported blooms and advances in this area of research require critical intervention and action.  相似文献   

14.
Cyanobacterial blooms occur when algal densities exceed baseline population concentrations. Cyanobacteria can produce a large number of secondary metabolites. Odorous metabolites affect the smell and flavor of aquatic animals, whereas bioactive metabolites cause a range of lethal and sub-lethal effects in plants, invertebrates, and vertebrates, including humans. Herein, the bioactivity, chemistry, origin, and biosynthesis of these cyanobacterial secondary metabolites were reviewed. With recent revision of cyanobacterial taxonomy by Anagnostidis and Komárek as part of the Süβwasserflora von Mitteleuropa volumes 19(1–3), names of many cyanobacteria that produce bioactive compounds have changed, thereby confusing readers. The original and new nomenclature are included in this review to clarify the origins of cyanobacterial bioactive compounds.Due to structural similarity, the 157 known bioactive classes produced by cyanobacteria have been condensed to 55 classes. This review will provide a basis for more formal procedures to adopt a logical naming system. This review is needed for efficient management of water resources to understand, identify, and manage cyanobacterial harmful algal bloom impacts.  相似文献   

15.
Cyanobacterial blooms are becoming more common in many reef habitats. The broadly acting feeding deterrent compound ypaoamide, produced by a mixed cyanobacterial assemblage, has been linked to bloom formation and mass fish die-offs ( Siganus argenteus and Siganus spinus ) in Guam. Specific metabolites produced by Lyngbya majuscula Gomont act as both feeding attractants to the specialist herbivore Stylocheilus longicauda , and as effective feeding deterrents to generalist fishes. Two-dimensional TLC (2D-TLC) analysis of cyanobacterial crude extracts was used to select chemically distinct populations (chemotypes) of bloom-forming filamentous cyanobacteria for chemical and ecological evaluation. Crude extracts produced by different species, chemotypes, and chemically distinct Micronesian marine cyanobacterial assemblages deter feeding activity of generalist reef herbivores. The ecological function of cyanobacterial secondary metabolites, especially as related to diversity of compound production and the relationship of metabolite production to bloom formation is discussed.  相似文献   

16.
【背景】水体富营养化导致的蓝藻水华对淡水资源造成了严重污染。利用环境友好型的溶藻菌可有效控制蓝藻的生长,是防治蓝藻水华形成的有效途径之一。【目的】优化溶藻细菌EHB01对铜绿微囊藻(Microcystis aeruginosa)的溶藻条件,以期为治理蓝藻水华污染提供高效的溶藻菌制剂。【方法】采用单因素试验对溶藻的发酵液浓度、温度、光照以及C:N和N:P进行分析,并对溶藻细菌EHB01发酵液的碳源、氮源和p H进行优化。基于单因素试验,选用中心组合试验设计(central composite design,CCD)确定关键因子的最佳数量水平,并以Desig-Expert 8.0.5进行回归分析,通过响应面分析获得溶藻效果最佳的参数。【结果】发酵液浓度对溶藻率的影响表现为持续上升;温度对溶藻率表现为先上升后下降;而光照、C:N和N:P均对细菌EHB01发酵液溶藻率的影响表现为先降低后上升的趋势。溶藻细菌EHB01发酵液所需的最佳碳源为蔗糖,氮源为硝酸钾,pH为7.5,优化条件下溶藻率达86.97%,与优化之前相比提高了21.72%。【结论】采用响应面法优化得出溶藻细菌EHB01发酵液最优的...  相似文献   

17.
Aims: The present study was conducted to evaluate the possibility of using cyanobacterial bloom materials as a medium for white rot fungi and the capability of white rot fungi, Trichaptum abietinum 1302BG and Lopharia spadicea to biodegrade dried cyanobacterial bloom material taken from Taihu Lake. Methods and Results: The results showed T. abietinum 1302BG and L. spadicea could use the cyanobacterial bloom materials taken from Taihu Lake for growth to measure the mycelial plaque and dry‐weight mycelial pellicles of fungi. The removal rate of dried cyanobacterial bloom materials incubated with white rot fungi is approximately 100%. Conclusions: The cyanobacterial bloom material can be used as a glucose substitute in white rot fungi medium. The white rot fungi, T. abietinum 1302BG and L. spadicea, can also directly decrease the biomass of cyanobacterial bloom material taken from Taihu Lake. Significance and Impact of the Study: Cyanobacterial bloom thrives in eutrophic fresh waters all over the world. Micro‐organisms, particularly fungi, have attracted attention as possible agents for the degradation of phytoplankton species. Dealing with cyanobacterial bloom material as a medium for fungi instead of directly discharging them as organic fertilizers is a new, safe and environmentally friendly approach.  相似文献   

18.
Role of Predatory Bacteria in the Termination of a Cyanobacterial Bloom   总被引:10,自引:0,他引:10  
Changes in cyanobacterial abundance and in the occurrence of bacteria of bacteria capable of lysing cyanobacteria were monitored over a period of 6 months (May to October 1998) in eutrophic Brome Lake (Quebec, Canada), in which dense cyanobacterial blooms recur regularly. By screening lake water, we isolated two strains of lytic bacteria, from the family Cytophagaceae. When tested on 12 cyanobacteria and 6 heterotrophic bacteria, strain 1 lysed only Anabaena flos-aquae and strain 2 lysed only Synechococcus cedorum, Synechococcus leopoliensis, Synechococcus elongatus, and Anacystic nidulans: both liquid and agar-grown cultures of these cyanobacteria were lysed. The number of plaque forming units of bacteria increased dramatically during the decline of the bloom. The results are consistent with an important role for these host-specific lytic bacteria in control and elimination of cyanobacterial blooms in this lake.  相似文献   

19.
Cyanobacterial biomass obtained from water blooms was successfully utilized as a material for lactic acid production. The starch contained in the biomass could be converted to D- and L-lactic acid with 80–90% yield by Lactobacillus amylovorus, in a manner similar to that contained in laboratory-cultured cyanobacterial biomass. The starch was also available for L-lactic acid production with similar high yields by L. agilis and L. ruminis that specifically produce L-lactic acid. The lactic acid production from the cyanobacterial biomass did not require any supplements such as yeast extract which are essential for lactic acid production from reagent soluble starch, indicating that nutrients contained in the cyanobacterial biomass might be effectively used for the production instead of the supplements. The starch content of the fresh cyanobacterial biomass from water bloom was increased from 10 to 19 and 24% by cultivation in 1 and 5% CO2 in air, respectively. Using such starch-rich biomass, the concentration of lactic acid produced was successfully increased without changes in the conversion yield. These results indicate that wastewater bloom cyanobacteria could be utilized for the production of a useful compound, lactic acid.  相似文献   

20.
Chlorophyll a concentration and cyanobacterial cell density are regularly employed as dual criteria for determinations of the alert level for cyanobacterial bloom. However, chlorophyll a is not confined only to the cyanobacteria, but is found universally in eukaryotic algae. Furthermore, the determination of cyanobacterial cell counts is notoriously difficult, and is unduly dependent on individual variation and trained skill. A cyanobacteria-specific parameter other than the cell count or chlorophyll a concentration is, accordingly, required in order to improve the present cyanobacterial bloom alert system. Phycocyanin has been shown to exhibit a strong correlation with a variety of bloom-related factors. This may allow for the current alert system criteria to be replaced by a three-stage alert system based on phycocyanin concentrations of 0.1, 30, and 700 microg/L. This would also be advantageous in that it would become far more simple to conduct measurements without the need for expensive equipment, thereby enabling the monitoring of entire lakes more precisely and frequently. Thus, an alert system with superior predictive ability based on high-throughput phycocyanin measurements appears feasible.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号