首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Maximum photosynthetic capacity indicates that the Antarctic psychrophile Chlamydomonas raudensis H. Ettl UWO 241 is photosynthetically adapted to low temperature. Despite this finding, C. raudensis UWO 241 exhibited greater sensitivity to low‐temperature photoinhibition of PSII than the mesophile Chlamydomonas reinhardtii P. A. Dang. However, in contrast with results for C. reinhardtii, the quantum requirement to induce 50% photoinhibition of PSII in C. raudensis UWO 241 (50 μmol photons) was comparable at either 8°C or 29°C. To our knowledge, this is the first report of a photoautotroph whose susceptibility to photoinhibition is temperature independent. In contrast, the capacity of the psychrophile to recover from photoinhibition of PSII was sensitive to temperature and inhibited at 29°C. The maximum rate of recovery from photoinhibition of the psychrophile at 8°C was comparable to the maximum rate of recovery of the mesophile at 29°C. We provide evidence that photoinhibition in C. raudensis UWO 241 is chronic rather than dynamic. The photoinhibition‐induced decrease in the D1 content in C. raudensis recovered within 30 min at 8°C. Both the recovery of the D1 content as well as the initial fast phase of the recovery of Fv/Fm at 8°C were inhibited by lincomycin, a chloroplast protein synthesis inhibitor. We conclude that the susceptibility of C. raudensis UWO 241 to low‐temperature photoinhibition reflects its adaptation to low growth irradiance, whereas the unusually rapid rate of recovery at low temperature exhibited by this psychrophile is due to a novel D1 repair cycle that is adapted to and is maximally operative at low temperature.  相似文献   

2.
3.
The psychrophilic Antarctic alga, Chlamydomonas raudensis Ettl (UWO241), grows under an extreme environment of low temperature and low irradiance of a limited spectral quality (blue‐green). We investigated the ability of C. raudensis to acclimate to long‐term imbalances in excitation caused by light quality through adjustments in photosystem stoichiometry. Log‐phase cultures of C. raudensis and C. reinhardtii grown under white light were shifted to either blue or red light for 12 h. Previously, we reported that C. raudensis lacks the ability to redistribute light energy via the short‐term mechanism of state transitions. However, similar to the model of mesophilic alga, C. reinhardtii, the psychrophile retained the capacity for long‐term adjustment in energy distribution between PSI and PSII by modulating the levels of PSI reaction center polypeptides, PsaA/PsaB, with minimal changes in the content of the PSII polypeptide, D1, in response to changes in light quality. The functional consequences of the modulation in PSI/PSII stoichiometry in the psychrophile were distinct from those observed in C. reinhardtii. Exposure of C. raudensis to red light caused 1) an inhibition of growth and photosynthetic rates, 2) an increased reduction state of the intersystem plastoquinone pool with concomitant increases in nonphotochemical quenching, 3) an uncoupling of the major light‐harvesting complex from the PSII core, and 4) differential thylakoid protein phosphorylation profiles compared with C. reinhardtii. We conclude that the characteristic low levels of PSI relative to PSII set the limit in the capacity of C. raudensis to photoacclimate to an environment enriched in red light.  相似文献   

4.
Chlamydomonas raudensis UWO 241 and SAG 49.72 represent the psychrophilic and mesophilic strains of this green algal species. This novel discovery was exploited to assess the role of psychrophily in photoacclimation to growth temperature and growth irradiance. At their optimal growth temperatures of 8 degrees C and 28 degrees C respectively, UWO 241 and SAG 49.72 maintained comparable photostasis, that is energy balance, as measured by PSII excitation pressure. Although UWO 241 exhibited higher excitation pressure, measured as 1-qL, at all growth light intensities, the relative changes in 1-qL were similar to that of SAG 49.72 in response to growth light. In response to suboptimal temperatures and increased growth irradiance, SAG 49.72 favoured energy partitioning of excess excitation energy through inducible, down regulatory processes (Phi(NPQ)) associated with the xanthophyll cycle and antenna quenching, while UWO 241 favoured xanthophyll cycle-independent energy partitioning through constitutive processes involved in energy dissipation (Phi(NO)). In contrast to SAG 49.72, an elevation in growth temperature induced an increase in PSI/PSII stoichiometry in UWO 241. Furthermore, SAG 49.72 showed typical threonine-phosphorylation of LHCII, whereas UWO 241 exhibited phosphorylation of polypeptides of comparable molecular mass to PSI reaction centres but the absence of LHCII phosphorylation. Thus, although both strains maintain an energy balance irrespective of their differences in optimal growth temperatures, the mechanisms used to maintain photostasis were distinct. We conclude that psychrophily in C. raudensis is complex and appears to involve differential energy partitioning, photosystem stoichiometry and polypeptide phosphorylation.  相似文献   

5.
Beth Szyszka 《BBA》2007,1767(6):789-800
Chlamydomonas raudensis UWO 241 and SAG 49.72 represent the psychrophilic and mesophilic strains of this green algal species. This novel discovery was exploited to assess the role of psychrophily in photoacclimation to growth temperature and growth irradiance. At their optimal growth temperatures of 8 °C and 28 °C respectively, UWO 241 and SAG 49.72 maintained comparable photostasis, that is energy balance, as measured by PSII excitation pressure. Although UWO 241 exhibited higher excitation pressure, measured as 1-qL, at all growth light intensities, the relative changes in 1-qL were similar to that of SAG 49.72 in response to growth light. In response to suboptimal temperatures and increased growth irradiance, SAG 49.72 favoured energy partitioning of excess excitation energy through inducible, down regulatory processes (ΦNPQ) associated with the xanthophyll cycle and antenna quenching, while UWO 241 favoured xanthophyll cycle-independent energy partitioning through constitutive processes involved in energy dissipation (ΦNO). In contrast to SAG 49.72, an elevation in growth temperature induced an increase in PSI/PSII stoichiometry in UWO 241. Furthermore, SAG 49.72 showed typical threonine-phosphorylation of LHCII, whereas UWO 241 exhibited phosphorylation of polypeptides of comparable molecular mass to PSI reaction centres but the absence of LHCII phosphorylation. Thus, although both strains maintain an energy balance irrespective of their differences in optimal growth temperatures, the mechanisms used to maintain photostasis were distinct. We conclude that psychrophily in C. raudensis is complex and appears to involve differential energy partitioning, photosystem stoichiometry and polypeptide phosphorylation.  相似文献   

6.
Many corals form obligate symbioses with photosynthetic dinoflagellates of the genus Symbiodinium Freudenthal (1962). These symbionts vary genotypically, with their geographical distribution and abundance dependent upon host specificity and tolerance to temperature and light variation. Despite the importance of these mutualistic relationships, the physiology and ecology of Symbiodinium spp. remain poorly characterized. Here, we report that rDNA internal transcribed spacer region 2 (ITS2) defined Symbiodinium type B2 associates with the cnidarian hosts Astrangia poculata and Oculina arbuscula from northerly habitats of the western Atlantic. Using pulse‐amplitude‐modulated (PAM) fluorometry, we compared maximum photochemical efficiency of PSII of type B2 to that of common tropical Symbiodinium lineages (types A3, B1, and C2) under cold‐stress conditions. Symbiont cultures were gradually cooled from 26°C to 10°C to simulate seasonal temperature declines. Cold stress decreased the maximum photochemical efficiency of PSII and likely the photosynthetic potential for all Symbiodinium clades tested. Cultures were then maintained at 10°C for a 2‐week period and gradually returned to initial conditions. Subsequent to low temperature stress, only type B2 displayed rapid and full recovery of PSII photochemical efficiency, whereas other symbiont phylotypes remained nonfunctional. These findings indicate that the distribution and abundance of Symbiodinium spp., and by extension their cnidarian hosts, in temperate climates correspond significantly with the photosynthetic cold tolerance of these symbiotic algae.  相似文献   

7.
An unusual psychrophilic green alga was isolated from the deepest portion of the photic zone (<0.1% of incident PAR) at a depth of 17 m in the permanently ice‐covered lake, Lake Bonney, Antarctica. Here we identify and report the first detailed morphological and molecular examination of this Antarctic green alga, which we refer to as strain UWO 241. To determine the taxonomic identity, UWO 241 was examined using LM and TEM and partial sequences of the small subunit (SSU), internal transcribed spacer (ITS) 1 and ITS2 regions (including the 5.8S) of the ribosomal operon. These data were compared with those of previously described taxa. We identified UWO 241 as a strain of Chlamydomonas raudensis Ettl (SAG 49.72). Chlamydomonas raudensis is closely related to C. noctigama Korshikov (UTEX 2289) as well as foraminifer symbionts such as C. hedleyi Lee, Crockett, Hagen et Stone (ATCC 50216). In addition, its morphology, pigment complement, and phototactic response to temperature are reported. Chlamydomonas raudensis (UWO 241) contains relatively high levels of lutein and low chl a/b ratios (1.6±0.15), and the phototactic response was temperature dependent. The Antarctic isolate (UWO 241) included the typical photosynthetic pigments found in all chl a/b containing green algae. It possesses a small eyespot and, interestingly, was positively phototactic only at higher nonpermissive growth temperatures. Comparison of SSU and ITS rDNA sequences confirms the identification of the strain UWO 241 as C. raudensis Ettl and contradicts the previous designation as C. subcaudata Wille.  相似文献   

8.
To understand the effects of low temperature stress on Kappaphycus alvarezii and the responses of antioxidant systems and photosystem II (PSII), behaviour in K. alvarezii thalli exposed to low temperatures (20°C, 17°C and 14°C) for 2 hours was evaluated. Compared with the control at 26°C, activities of some antioxidant enzymes including superoxide dismutase (SOD), peroxidase (POD), ascorbate peroxidase (APX) and the level of antioxidant substance (reduced glutathione) increased in K. alvarezii thalli when exposed to lowered temperatures (20°C, 17°C). Hydroxyl free radical (·OH) scavenging activity of K. alvarezii thalli also increased at 20°C and 17°C compared with the control. This indicated that the resistance to low temperature stress in the antioxidant system of K. alvarezii increased at lowered temperatures of 20°C and 17°C. However, at the lowest temperature (14°C), no significant increases of this algal antioxidant were observed. Under low temperature stress, the maximum quantum yield of PSII photochemistry (FV/FM) and PSII actual photochemical efficiency (ΦPSII) decreased in K. alvarezii thalli, suggesting that the photosynthetic capacity declined. Components of the photosynthetic apparatus (such as the oxygen-evolving complex, light absorption antennas, reaction centres, electron acceptor sides and electron donor sides of PSII) were damaged by low temperature stress to varying degrees. In addition, it was found that low temperature stress led to decreases of both D1 protein and Rubisco LSU (Rubisco large subunit) protein levels. This work is a significant contribution towards understanding the basic mechanism involved in the resistance and the adaptation of K. alvarezii to low temperature stress conditions.  相似文献   

9.
Here, we explore the responses of photosynthesis and related cellular processes in the thermotolerant microalga Micractinium sp. acclimated to limiting and saturating irradiances combined with elevated temperatures, using a novel computer-controlled multi-sensor system. This system allows for the monitoring of online values of oxygen exchange during photosynthesis and respiration with high accuracy. Micractinium sp. cells showed maximum growth and net oxygen production rates under the optimal temperature of 25°C regardless of the light acclimation conditions. Our results show that the upper thermal threshold for Micractinium sp. photosynthesis and growth ranges between 35°C and 40°C. This microalga exhibited stable photosynthetic efficiency and effective non-photochemical quenching (NPQ) under saturating light, and was more susceptible to temperature change when acclimated to limiting light levels. These results demonstrate that the acclimation of thermotolerant microalgae to saturating light helps to enhance the thermal tolerance of PSII. This feature results from enhanced heat stability of PSII photochemistry and oxygen evolution.  相似文献   

10.
In a study of the responses of photosystem II (PSII) to high temperature in suspension-cultured cells of soybean (Glycine max L. Merr.), we found that high temperatures inactivated PSII via two distinct pathways. Inactivation of PSII by moderately high temperatures, such as 41°C, was reversed upon transfer of cells to 25°C. The recovery of PSII required light, but not the synthesis of proteins de novo. By contrast, temperatures higher than 45°C inactivated PSII irreversibly. An increase in the growth temperature from 25 to 35°C resulted in an upward shift of 3°C in the profile of the heat-induced inactivation of PSII, which indicated that the thermal stability of PSII had been enhanced. This acclimative response was reflected by the properties of isolated thylakoid membranes: PSII in thylakoid membranes from cells that had been grown at 35°C exhibited greater thermal stability than that from cells grown at 25°C. Disruption of the vesicular structure of thylakoid membranes with 0.05% Triton X-100 decreased the thermal stability of PSII to a similar level in both types of thylakoid membrane. Proteins released by Triton X-100 from thylakoid membranes from cells grown at 35°C were able to increase the thermal stability of Triton-treated thylakoid membranes. These observations suggest that proteins that are associated with thylakoid membranes might be involved in the enhancement of the thermal stability of PSII.  相似文献   

11.
Cook  Greg  Teufel  Amber  Kalra  Isha  Li  Wei  Wang  Xin  Priscu  John  Morgan-Kiss  Rachael 《Photosynthesis research》2019,141(2):209-228

Chlamydomonas sp. UWO241 is a psychrophilic alga isolated from the deep photic zone of a perennially ice-covered Antarctic lake (east lobe Lake Bonney, ELB). Past studies have shown that C. sp. UWO241 exhibits constitutive downregulation of photosystem I (PSI) and high rates of PSI-associated cyclic electron flow (CEF). Iron levels in ELB are in the nanomolar range leading us to hypothesize that the unusual PSI phenotype of C. sp. UWO241 could be a response to chronic Fe-deficiency. We studied the impact of Fe availability in C. sp. UWO241, a mesophile, C. reinhardtii SAG11-32c, as well as a psychrophile isolated from the shallow photic zone of ELB, Chlamydomonas sp. ICE-MDV. Under Fe-deficiency, PsaA abundance and levels of photooxidizable P700 (ΔA820/A820) were reduced in both psychrophiles relative to the mesophile. Upon increasing Fe, C. sp. ICE-MDV and C. reinhardtii exhibited restoration of PSI function, while C. sp. UWO241 exhibited only moderate changes in PSI activity and lacked almost all LHCI proteins. Relative to Fe-excess conditions (200 µM Fe2+), C. sp. UWO241 grown in 18 µM Fe2+ exhibited downregulation of light harvesting and photosystem core proteins, as well as upregulation of a bestrophin-like anion channel protein and two CEF-associated proteins (NdsS, PGL1). Key enzymes of starch synthesis and shikimate biosynthesis were also upregulated. We conclude that in response to variable Fe availability, the psychrophile C. sp. UWO241 exhibits physiological plasticity which includes restructuring of the photochemical apparatus, increased PSI-associated CEF, and shifts in downstream carbon metabolism toward storage carbon and secondary stress metabolites.

  相似文献   

12.
Thermotolerance of photosynthesis in salt‐adapted Atriplex centralasiatica plants (100–400 mm NaCl) was evaluated in this study after detached leaves and whole plants were exposed to high temperature stress (30–48 °C) either in the dark or under high light (1200 mol m?2 s?1). In parallel with the decrease in stomatal conductance, intercellular CO2 concentration and CO2 assimilation rate decreased significantly with increasing salt concentration. There was no change in the maximal efficiency of PSII photochemistry (Fv/Fm) with increasing salt concentration, suggesting that there was no damage to PSII in salt‐adapted plants. On the other hand, there was a striking difference in the response of PSII and CO2 assimilation capacity to heat stress in non‐salt‐adapted and salt‐adapted leaves. Leaves from salt‐adapted plants maintained significantly higher Fv/Fm values than those from non‐salt‐adapted leaves at temperatures higher than 42 °C. The Fv/Fm differences between non‐salt‐adapted and salt‐adapted plants persisted for at least 24 h following heat stress. Leaves from salt‐adapted plants also maintained a higher net CO2 assimilation rate than those in non‐salt‐adapted plants at temperatures higher than 42 °C. This increased thermotolerance was independent of the degree of salinity since no significant changes in Fv/Fm and net CO2 assimilation rate were observed among the plants treated with different concentrations of NaCl. The increased thermotolerance of PSII induced by salinity was still evident when heat treatments were carried out under high light. Given that photosynthesis is considered to be the physiological process most sensitive to high temperature damage, increased thermotolerance of photosynthesis may be of significance since A. centralasiatica, a typical halophyte, grows in the high salinity regions in the north of China, where the temperature in the summer is often as high as 45 °C.  相似文献   

13.
The Antarctic psychrophilic green alga Chlamy‐domonas sp. UWO 241 is an emerging model for studying microbial adaptation to polar environments. However, little is known about its evolutionary history and its phylogenetic relationship with other chlamydomonadalean algae is equivocal. Here, we attempt to clarify the phylogenetic position of UWO 241, specifically with respect to Chlamydomonas rau‐densis SAG 49.72. Contrary to a previous report, we show that UWO 241 is a distinct species from SAG 49.72. Our phylogenetic analyses of nuclear and plastid DNA sequences reveal that UWO 241 represents a unique lineage within the Moewusinia clade (sensu Nakada) of the Chlamydomonadales (Chlorophyceae, Chlorophyta), closely affiliated to the marine species Chlamydomonas parkeae SAG 24.89.  相似文献   

14.
Abstract

Effects of drought and exogenous glycine betaine and proline on Photosystem II (PSII) photochemistry were studied in barley leaves under heat stress induced by exposing them to 45°C for 10 min. Polyphasic fluorescence transient (OJIP) was used to evaluate PSII photochemistry in leaves treated with either glycine betaine or proline, combined or not with heat treatment. A distinct K step in the fluorescence transient OJIP appeared in control leaves, indicating an inactivation of the oxygen evolving complex (OEC). Drought stress and exogenous glycine betaine and proline modified the shape of the OJIP curve of leaves heated at 45°C and the K step was not as pronounced. Increased thermostability of PSII may be associated with the resistance of OEC and increased energy connectivity between PSII units. The thermostability of PSII was also reflected by a lower decrease in maximum quantum yield of primary photochemistry (?Po = F V/F M) and performance index (PI). Exogenous application of glycine betaine or proline can play an important role in enhancing plant stress tolerance and may help reduce effects of environmental stresses.  相似文献   

15.
Abstract This study reports on the low temperature tolerance and cold hardiness of larvae of false codling moth, Thaumatotibia leucotreta. We found that larvae have mean critical thermal minima (lower limits of activity) of 6.7°C which was influenced by feeding status. The effects of low temperature exposure and duration of exposure on larval survival were assessed and showed that the temperature at which 50% of the population survives is ?11.5 ± 0.3°C after 2 h exposure. The supercooling point (SCP, i.e., freezing temperature) was investigated using a range of cooling rates and under different conditions (feeding and hydration status) and using inoculative freezing treatments (in contact with water or orange juice). The SCP decreased significantly from ?15.6°C to ?17.4°C after larvae were fasted for 24 h. Twenty‐four hour treatments at either high or low relative humidity (95.9% or 2.4%) also significantly decreased SCP to ?17.2°C and ?18.2°C respectively. Inoculative freezing (by water contact) raised SCP from ?15.6°C to ?6.8°C which could have important implications for post‐harvest sterilization. Cooling rates did not affect SCP which suggests that there is limited phenotypic plasticity of SCP during the larval life‐stage, at least over the short time‐scales investigated here. In conclusion, larvae of T. leucotreta are chill‐susceptible and die upon freezing. These results are important in understanding this pest's response to temperature variation, understanding pest risk status and improving post‐harvest sterilization efficacy.  相似文献   

16.
The terrestrial cyanobacterium Nostoc commune Vaucher ex Bornet et Flahault occurs worldwide, including in Japan and on the Antarctic continent. The terrestrial green alga Prasiola crispa (Lightf.) Kütz. is also distributed in Antarctica. These two species need to acclimate to the severe Antarctic climate including low ambient temperature and desiccation under strong light conditions. To clarify this acclimation process, the physiological characteristics of the photosynthetic systems of these two Antarctic terrestrial organisms were assessed. The relative rate of photosynthetic electron flow in N. commune collected in Japan and in Antarctica reached maxima at 900 and 1,100 μmol photons · m?2 · s?1, respectively. The difference seemed to reflect the presence of high amounts of UV‐absorbing substances within the Antarctic cyanobacterium. On the other hand, the optimal temperatures for photosynthesis at the two locations were 30°C–35°C and 20°C–25°C, respectively. This finding suggested a decreased photosynthetic thermotolerance in the Antarctic strain. P. crispa exhibited desiccation tolerance and dehydration‐induced quenching of PSII fluorescence. Re‐reduction of the photooxidized PSI reaction center, P700, was also inhibited at fully dry states. Photosynthetic electron flow in P. crispa reached a maximum at 20°C–25°C and at a light intensity of 700 μmol photons ? m?2 ? s?1. Interestingly, the osmolarity of P. crispa cells suggested that photosynthesis is performed using water absorbed in a liquid form rather than water absorbed from the air. Overall, these data suggest that these two species have acclimated to optimally photosynthesize under conditions of the highest light intensity and the highest temperature for their habitat in Antarctica.  相似文献   

17.
18.
This study examined how light and temperature interact to influence growth rates, chl a, and photosynthetic efficiency of the oceanic pennate diatom Pseudo‐nitzschia granii Hasle, isolated from the northeast subarctic Pacific. Growth rates were modulated by both light and temperature, although for each irradiance tested, the growth rate was always the greatest at ~14°C. Chl a per cell was affected primarily by temperature, except at the maximum chl a per cell (at 10°C) where the effects of light were noticeable. At both ends of the temperature gradient, cells displayed evidence of chlorosis even at low light intensities. Chl fluorescence data suggested that cells at 8°C were significantly more efficient in their photosynthetic processes than cells at 20°C, despite having comparable concentrations of chl. Cells at low temperature showed photosynthetic characteristics similar to high‐irradiance‐adapted cells. The decline of growth rates beyond the optimum growth temperature coincided with the cell's inability to accumulate chl in response to increasing temperature. The decline in photosynthetic ability at 20°C was likely due to a combination of high‐temperature stress on cellular membranes and a decline in chl. Our results highlight the important interactions between light and temperature and the need to incorporate these interactions into the development of phytoplankton models for the subarctic Pacific.  相似文献   

19.
20.
Occurrences whereby cnidaria lose their symbiotic dinoflagellate microalgae (Symbiodinium spp.) are increasing in frequency and intensity. These so‐called bleaching events are most often related to an increase in water temperature, which is thought to limit certain Symbiodinium phylotypes from effectively dissipating absorbed excitation energy that is otherwise used for photochemistry. Here, we examined photosynthetic characteristics and hydrogen peroxide (H2O2) production, a possible signal involved in bleaching, from two Symbiodinium types (a thermally “tolerant” A1 and “sensitive” B1) representative of cnidaria–Symbiodinium symbioses of reef‐building Caribbean corals. Under steady‐state growth at 26°C, a higher efficiency of PSII photochemistry, rate of electron turnover, and rate of O2 production were observed for type A1 than for B1. The two types responded very differently to a period of elevated temperature (32°C): type A1 increased light‐driven O2 consumption but not the amount of H2O2 produced; in contrast, type B1 increased the amount of H2O2 produced without an increase in light‐driven O2 consumption. Therefore, our results are consistent with previous suggestions that the thermal tolerance of Symbiodinium is related to adaptive constraints associated with photosynthesis and that sensitive phylotypes are more prone to H2O2 production. Understanding these adaptive differences in the genus Symbiodinium will be crucial if we are to interpret the response of symbiotic associations, including reef‐building corals, to environmental change.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号