首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract: Chondrichthyans are newly reported from the autochthonous Wordian Khuff Formation (middle Permian), cropping out in well‐exposed, low‐palaeolatitude sections in the interior Haushi‐Huqf area of Oman. The shark remains comprise isolated teeth, dermal denticles and fin spines and have been recovered by processing limestone in buffered acetic acid from bulk rock samples. The fauna consists of mainly ctenacanthiform and hybodontiform taxa, identified as Glikmanius cf. myachkovensis, Glikmanius culmenis sp. nov., Omanoselache hendersoni gen. et sp. nov., Omanoselache angiolinii gen. et sp. nov., cf. Omanoselache sp., Reesodus underwoodi gen et sp. nov., Teresodus amplexus gen. et sp. nov., Gunnellodus bellistriatus, Khuffia lenis gen. et sp. nov., Khuffia prolixa gen. et sp. nov. and Euselachii sp. indet. Additional specimens include rare teeth of the lonchidiid cf. ‘Palaeozoic Genus 1’ sp., of the neoselachian Cooleyella cf. fordi and a further indeterminate neoselachian, of an indeterminate petalodont and of the holocephalan Deltodus aff. mercurei and Solenodus cf. crenulatus. Fin spines add a further two taxa, Nemacanthus sp. and Amelacanthus cf. sulcatus, which have neoselachian affinities and therefore an unclear relationship to the recovered teeth. The occurrence of Nemacanthus within this Wordian fauna represents the oldest record of this taxon and its only known occurrence in the Palaeozoic. Of the remaining genera, Glikmanius has previously been recorded from the Wordian, whereas for all the others, this study represents their youngest known stratigraphic occurrence and first occurrence in Guadalupian (middle Permian) strata. This adds significantly to our knowledge of the global diversity of chondrichthyans preceding the end‐Guadalupian biotic crisis. Palaeogeographically, for all taxa, this study represents the first record from the western fringe of the marine Neotethyan basin, and only Cooleyella was previously known from the southern (Gondwanan) part of the Pangaean continental margin.  相似文献   

2.
The shark fauna from the Middle Triassic (Anisian) of North-Western Nevada   总被引:1,自引:0,他引:1  
The shark fauna from the Anisian of Nevada is dominated by durophagous hybodontiforms but also shows an important neoselachian component. Two new species of hybodontiform sharks, Acrodus cuneocostatus and Polyacrodus bucheri , are described in addition to a new neoselachian taxon: Mucrovenator minimus. The enameloid of the teeth of Acrodus and Polyacrodus comprises two layers, an outer compact layer and an inner bundled layer. For the typical three-layered enameloid of neoselachian teeth, we propose to replace the terms parallel-fibred enameloid and tangled-fibred enameloid by the more appropriate parallel-bundled and tangled-bundled enameloid.  相似文献   

3.
Abstract: Bulk sampling of upper Campanian to lower–middle Maastrichtian coastal and lagoonal deposits in five sections of the Tremp Formation in the south‐central Pyrenees yielded numerous neoselachian teeth. The fauna comprises nine taxa of which three species and one genus are new: Hemiscyllium sp., Lamniformes indet., Paratrygonorrhina amblysoda gen. et sp. nov., Coupatezia trempina sp. nov., Coupatezia sp., Coupatezia? sp., Rhombodus ibericus sp. nov. and Igdabatis indicus. The neoselachian fauna is dominated by small nectobenthic rays. This composition resembles assemblages known from the marine Upper Cretaceous, but differs from nearby localities of the Basque‐Cantabrian region and continental selachian associations of the French Pyrenees. The results indicate that Rhombodus might not be a reliable biostratigraphic marker for the Maastrichtian. The faunal composition suggests a shallow trans‐Tethyan connection between Eurasia and India at the end of the Cretaceous Period.  相似文献   

4.
JAN REES 《Palaeontology》2010,53(4):887-902
Abstract: Callovian and Oxfordian strata in Ogrodzieniec near Zawiercie, southern Poland, have yielded two shark tooth assemblages that collectively include 14 neoselachian taxa. A previously unrecognised member of the Orectolobiformes, Akaimia altucuspis gen. et sp. nov., is described and characterised by a dentition remarkably similar to modern wobbegong sharks (Orectolobidae) by convergence. The assemblages also include the first anterior teeth ever found of the palaeospinacid ‘Synechodusprorogatus Kriwet, in addition to teeth from two other palaeospinacids, Sphenodus spp., four different orectolobiforms, two hexanchids and Protospinax spp. These shark tooth assemblages contribute to the poorly known Callovian and Oxfordian neoselachian faunas and indicate that the diversity was higher than previously appreciated, particularly within the Orectolobiformes.  相似文献   

5.
The skeletal morphology of Paraorthacodus jurensis, a Late Jurassic neoselachian from Nusplingen, is described based on the incomplete holotype and a newly discovered almost complete specimen. For the first time, the postcranial skeleton could be investigated. Paraorthacodus is characterized by a monognath dental heterodonty and tearing‐type dentition. The number of lateral cusplets in the lateral teeth differs between the holotype and the new specimen, possibly indicating sexual dimorphism. Clasper organs are not preserved in either of the two specimens. The notochord is sheathed by about 123 well‐calcified vertebral centra. The posterior‐most caudal vertebrae are lacking. The transition from monospondylous thoracic to diplospondylous abdominal vertebrae occurs at centra 48 and 49. The origin of the caudal fin is at the 80th centrum. Most conspicuous is the presence of a single spineless dorsal fin. In this respect, Paraorthacodus differs from most palaeospinacids, but resembles Macrourogaleus. Palidiplospinax possibly is sister to a group comprising Synechodus, Paraorthacodus, and Macrourogaleus (the Palaeospinacidae). A reinterpretation of dental and skeletal characters of synechodontiform taxa indicates that Synechodontiformes and Palaeospinacidae are monophyletic groupings of basal neoselachians. Synechodontiformes is probably sister to all living elasmobranchs.  相似文献   

6.
The Hexanchiformes (Cow Sharks) are regarded as a monophyletic taxon. Cladistic analysis shows that among the various neoselachian taxa proposed so far as the sister group of the Hexanchiformes a sister group relationship between the Hexanchiformes and a (still unnamed) taxon comprising the Squaliformes and Pristiophoriformes appears as the most probable hypothesis. In addition, MAISEY and WOLFRAM'S (1984) concept of hexanchiform interrelationships is critically reviewed. An alternative cladogram of hexanchiform interrelationships is developed which includes Recent as well as fossil hexanchiform taxa. In this cladogram the living genera Hexancbus and Notorynchus are sister groups and both taxa together form the sister group of the Recent Heptranchias. The fossil taxa +Notidanoides, +“Hexanchus” gracilis, +Notidanodon and +Weltonia are arranged in the stem lineage of recent Hexanchiformes.  相似文献   

7.
Abstract: Acid preparation of samples of a bonebed from the Cenomanian of central Canada yielded several thousand well‐preserved chondrichthyan teeth, in addition to numerous other vertebrate remains. Teeth and other remains of one species of chimaeroid, one species of hybodont shark, three species of Ptychodus, 10 species of neoselachian sharks and two species of batoid were recorded. The family Archaeolamnidae fam. nov., genera Meristodonoides gen. nov. and Telodontaspis gen. nov. and species Ptychodus rhombodus sp. nov., Telodontaspis agassizensis gen et sp. nov., Eostriatolamia paucicorrugata sp. nov., Roulletia canadensis sp. nov., Cretorectolobus robustus sp. nov. and Orectoloboides angulatus sp. nov. are described. Status of the genus Palaeoanacorax and the species Cretoxyrhina denticulata, Squalicorax curvatus and ‘Rhinobatosincertus are discussed, and reconstructed dentitions of Archaeolamna and Roulletia presented. The fauna is of low diversity and dominated by active hunters, with many species apparently endemic to the northern Western Interior Seaway.  相似文献   

8.
A new genus and species of catshark (Neoselachii, Carcharhiniformes, Scyliorhinidae) —Bavariscyllium tischlingeri n. gen. n. sp. — is described from the Late Jurassic (Tithonian) Plattenkalke of South Germany. The new taxon is known from a single articulated skeleton having the skull, the trunk and all of the fins preserved. The position of the first dorsal fin in relation to the pelvic fins and the dental morphology shows that the specimen belongs into the neoselachian family Scyliorhinidae. Two isolated tooth crowns from the Kimmeridgian of North Germany are identified asBavariscyllium sp. and represent the oldest unambigious fossil record of the Scyliorhinidae known so far.  相似文献   

9.
A phylogeny was generated for Leiognathidae, an assemblage of bioluminescent, Indo‐Pacific schooling fishes, using 6175 characters derived from seven mitochondrial genes (16S, COI, ND4, ND5, tRNA‐His, tRNA‐Ser, tRNA‐Leu), two nuclear genes (28S, histone H3), and 15 morphological transformations corresponding to features of the fishes' sexually dimorphic light‐organ system (LOS; e.g., circumesophageal light organ, lateral lining of the gas bladder, transparent flank and opercular patches). Leiognathidae comprises three genera, Gazza, Leiognathus, and Secutor. Our results demonstrate that Leiognathidae, Gazza, and Secutor are monophyletic, whereas Leiognathus is not. The recovered pattern of relationships reveals that a structurally complex, strongly sexually dimorphic and highly variable species‐specific light organ is derived from a comparatively simple non‐dimorphic structure, and that evolution of other sexually dimorphic internal and external features of the male LOS are closely linked with these light‐organ modifications. Our results demonstrate the utility of LOS features, both for recovering phylogeny and resolving taxonomic issues in a clade whose members otherwise exhibit little morphological variation. We diagnose two new leiognathid genera, Photopectoralis and Photoplagios, on the basis of these apomorphic LOS features and also present derived features of the LOS to diagnose several additional leiognathid clades, including Gazza and Secutor. Furthermore, we show that five distinct and highly specialized morphologies for male‐specific lateral luminescence signaling, which exhibit species‐specific variation in structure, have evolved in these otherwise outwardly conservative fishes. Leiognathids inhabit turbid coastal waters with poor visibility and are often captured in mixed assemblages of several species. We hypothesize that the species‐specific, sexually dimorphic internal and external modifications of the leiognathid LOS provide compelling evidence for an assortative mating scheme in which males use species‐specific patterns of lateral luminescence signaling to attract mates, and that this system functions to maintain reproductive isolation in these turbid coastal environments. © The Willi Hennig Society 2005.  相似文献   

10.
The paleobiology of the Cretaceous neoselachian shark,Squalicorax, has largely been based on isolated teeth. We examined partial and nearly complete skeletons of three species ofSqualicorax, S. falcatus (Aoassiz),S. kaupi (Agassiz), andS. pristodontus (Agassiz), that were collected from the U.S.A. These specimens suggest that the total body length (TL) ofS. falcatus typically measured 1.8–2.0 m, and probably did not exceed 3 m. Moderatesized individuals ofS. kaupi andS. pristodontus perhaps measured about 3 m TL. AlthoughS. pristodontus was the largest form among the three species examined, this taxon possessed a set of large jaws (with large but fewer teeth) relative to its body size compared toS. falcatus orS. kaupi. This suggests that tooth size is not an accurate indicator of the TL if one compares oneSqualicorax species to another. Neurocranial features suggest that the vision ofSqualicorax was not as acute as that of a contemporaneous macrophagous lamniform shark,Cretoxyrhina mantelli (Agassiz) , but olfaction ofSqualicorax may have been better thanC. mantelli. The morphology of placoid scales suggests thatSqualicorax was capable of fast swimming. New skeletal data support the view that the feeding dynamics ofSqualicorax was similar to the modern tiger shark (Galeocerdo Müller & Henle). The present data do not allow for exact ordinal placement, but, contrary to some previous interpretations,Squalicorax can be excluded from the Hexanchiformes and Orectolobiformes. The taxon should more appropriately be placed within the Lamniformes or Carcharhiniformes.   相似文献   

11.
Chlorella microalgae are increasingly used for various purposes such as fatty acid production, wastewater processing, or as health‐promoting food supplements. A mass spectrometry‐based survey of N‐glycan structures of strain collection specimens and 80 commercial Chlorella products revealed a hitherto unseen intragenus diversity of N‐glycan structures. Differing numbers of methyl groups, pentoses, deoxyhexoses, and N‐acetylglucosamine culminated in c. 100 different glycan masses. Thirteen clearly discernible glycan‐type groups were identified. Unexpected features included the occurrence of arabinose, of different and rare types of monosaccharide methylation (e.g. 4‐O‐methyl‐N‐acetylglucosamine), and substitution of the second N‐acetylglucosamine. Analysis of barcode ITS1–5.8S–ITS2 rDNA sequences established a phylogenetic tree that essentially went hand in hand with the grouping obtained by glycan patterns. This brief prelude to microalgal N‐glycans revealed a fabulous wealth of undescribed structural features that finely differentiated Chlorella‐like microalgae, which are notoriously poor in morphological attributes. In light of the almost identical N‐glycan structural features that exist within vertebrates or land plants, the herein discovered diversity is astonishing and argues for a selection pressure only explicable by a fundamental functional role of these glycans.  相似文献   

12.
Golgi‐resident type–II membrane proteins are asymmetrically distributed across the Golgi stack. The intrinsic features of the protein that determine its subcompartment‐specific concentration are still largely unknown. Here, we used a series of chimeric proteins to investigate the contribution of the cytoplasmic, transmembrane and stem region of Nicotiana benthamiana N–acetylglucosaminyltransferase I (GnTI) for its cis/medial‐Golgi localization and for protein–protein interaction in the Golgi. The individual GnTI protein domains were replaced with those from the well‐known trans‐Golgi enzyme α2,6–sialyltransferase (ST) and transiently expressed in Nicotiana benthamiana. Using co‐localization analysis and N–glycan profiling, we show that the transmembrane domain of GnTI is the major determinant for its cis/medial‐Golgi localization. By contrast, the stem region of GnTI contributes predominately to homomeric and heteromeric protein complex formation. Importantly, in transgenic Arabidopsis thaliana, a chimeric GnTI variant with altered sub‐Golgi localization was not able to complement the GnTI‐dependent glycosylation defect. Our results suggest that sequence‐specific features in the transmembrane domain of GnTI account for its steady‐state distribution in the cis/medial‐Golgi in plants, which is a prerequisite for efficient N–glycan processing in vivo.  相似文献   

13.
The cellular iron (Fe) quota of centric diatoms has been shown to vary in response to the ambient dissolved Fe concentration; however, it is not known how centric diatoms store excess intracellular Fe. Here, we use synchrotron X‐ray fluorescence (SXRF) element mapping to identify Fe storage features in cells of Thalassiosira pseudonana Hasle et Heimdal and Thalassiosira weissflogii G. A. Fryxell et Hasle grown at low and high Fe concentrations. Localized intracellular Fe storage features, defined as anomalously high Fe concentrations in regions of relatively low phosphorus (P), sulfur (S), silicon (Si), and zinc (Zn), were twice as common in T. weissflogii cells grown at high Fe compared to low‐Fe cells. Cellular Fe quotas of this strain increased 2.9‐fold, the spatial extent of the features increased 4.6‐fold, and the Fe content of the features increased 14‐fold under high‐Fe conditions, consistent with a vacuole storage mechanism. The element stoichiometry of the Fe features is consistent with polyphosphate‐bound Fe as a potential vacuolar Fe storage pool. Iron quotas increased 2.5‐fold in T. pseudonana grown at high Fe, but storage features contained only 2‐fold more Fe and did not increase in size compared to low‐Fe cells. The differences in Fe storage observed between T. pseudonana and T. weissflogii may have been due to differences in the growth states of the cultures.  相似文献   

14.
Shark teeth and an ornithischian dinosaur tooth are described from a new palynologically dated Rhaetian locality at Lons-le-Saunier (Jura, France). The structure of the enameloid of the teeth ofSynechodus rhaeticus has been studied, but this appears quite different from the usual pattern seen in neoselachian sharks, making the precise relationships of this species difficult to determine. On the other hand,‘Hybodus’ minor, which has long be thought to be a hybodont shark, is included among the Synechodontiformes. The find of the tooth of an ornithischian dinosaur is also reported. Study of the Lonsle-Saunier site seems to indicate a change in the marine faunas during the Rhaetian transgression, preferentially affecting the neoselachian sharks, which increase in abundance, and thedurophasous bony fishes, which become dominated bySareodon tomicus.  相似文献   

15.
The state of development of advanced embryos of the direct‐developing Ecuadorian caecilian Caecilia orientalis (Caeciliidae: Gymnophiona: Amphibia) was examined. Because it is established that development is correlated with reproductive modes in a number of features, we included comparison with taxa that represent the major reproductive modes and all of the modern normal tables and ossification sequences. The embryos of C. orientalis most closely resemble those of stage 47/48 Gegeneophis ramaswamii, an Indian caeciliid, and stage 47/48 Hypogeophis rostratus, a Seychellian caeciliid, both direct developers, in details of bone mineralization, chondrocranial degeneration, and vertebrogenesis. They are most like stage 45 H. rostratus in external features (gills, pigmentation, etc.). They are less similar to prehatchings of Ichthyophis kohtaoensis, an ichthyophiid with free‐living larvae, and to fetuses of the viviparous caeciliid Dermophis mexicanus and the viviparous typhlonectid Typhlonectes compressicauda at comparable total lengths in both skeletal development and external features. The similarity of developmental features among the direct‐developers suggests a correlation with mode of life history. A noteworthy feature is that C. orientalis has an armature of multiple rows of teeth on the lower jaw with tooth crowns that resemble the “fetal” teeth of viviparous taxa and that are covered with a layer of oral mucosal epithelium until full development and eruption, but the upper jaw bears a single row of widely spaced, elongate, slightly recurved teeth that resemble those of the adult. J. Morphol., 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

16.
17.
Eophlebotomus is re‐examined, with the discovery of important new features and colleagues that were inaccurately described by previous workers. Hennig's scheme deriving the venation of Horaiella from that of Eophlebotomus could equally well have used a trichomyiine or a sycoracine as the starting point and therefore does not specifically support the hypothesis that Horaiella is the sister group. The phlebotomine‐like features of Eophlebotomus are plesiomorphies mostly also occurring in Sycoracinae, but there are also several synapomorphies supporting a particular relationship between Eophlebotomus and Sycoracinae or Trichomyiinae or both. It is hypothesized that Eophlebotomus represents a basal offshoot of the lineage leading to Sycoracinae and Trichomyiinae.  相似文献   

18.
19.
Fossil tip‐dating allows for the inclusion of morphological data in divergence time estimates based on both extant and extinct taxa. Neoselachii have a cartilaginous skeleton, which is less prone to fossilization compared to skeletons of Osteichthyans. Therefore, the majority of the neoselachian fossil record is comprised of single teeth, which fossilize more easily. Neoselachian teeth can be found in large numbers as they are continuously replaced. Tooth morphologies are of major importance on multiple taxonomic levels for identification of shark and ray taxa. Here, we review dental morphological characters of squalomorph sharks and test these for their phylogenetic signal. Subsequently, we combine DNA sequence data (concatenated exon sequences) with dental morphological characters from 85 fossil and extant taxa to simultaneously infer the phylogeny and re‐estimate divergence times using information of 61 fossil tip‐dates as well as eight node age calibrations of squalomorph sharks. Our findings show that the phylogenetic placement of fossil taxa is mostly in accordance with their previous taxonomic allocation. An exception is the phylogenetic placement of the extinct genus ?Protospinax , which remains unclear. We conclude that the high number of fossil taxa as well as the comprehensive DNA sequence data for extant taxa may compensate for the limited number of morphological characters identifiable on teeth, serving as a backbone for reliably estimating the phylogeny of both extinct and extant taxa. In general, tip‐dating mostly estimates older node ages compared to previous studies based on calibrated molecular clocks.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号