首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The timing of replication and division of the Chlamydomonas Ehrenberg nucleus in the vegetative cell cycle and at gametogenesis was examined, using fluorescence microspectrophotometry with two fluorochromes, mithramycin and 4′,6-diamidino-2-phenylindole (DAPI). Under appropriate conditions, these bind specifically to DNA, and the fluorescence of the DNA fluorochrome complex is a quantitative measure of the DNA content. The alga is a haplont, which produces 2n daughter cells at the time of vegetative reproduction; cytokinesis and daughter cell release lag behind karyokinesis. No nucleus was found to contain more than the 2c quantity of DNA. Hence daughter cell production proceeds by doubling of the nuclear DNA followed by karyokinesis, in a repetitive sequence. As reported previously for C. reinhardtii Dangeard, the gametes of C. moewusii Gerloff contain the 1c amount of nuclear DNA. Several conflicting interpretations of the cell cycle sequence proposed in the literature were resolved.  相似文献   

2.
Cell walls of forty Chlorella strains covering all species of the Algal Collection of Göttingen (C. fusca var. vacuolata, C. kessleri, C. luteoviridis, C. minutissima, C. protothecoides, C. saccharophila, C. sorokiniana, C. vulgaris, and C. zofingiensis) were compared. The nine species were divided into two groups according to the major sugar in the rigid wall. The first group had a glucose-mannose-rigid wall and included C. fusca var. vacuolata, C. luteoviridis, C. minutissima, C. protothecoides, C. saccharophila, and C. zofingiensis. The second group, with a glucosamine-rigid wall, included C. kessleri, C. sorokiniana, and C. vulgaris. Chlorella strains of the nine species were further classified by constituent sugars, ruthenium red stainability, and anisotropy of the cell walls.  相似文献   

3.
Morphological changes in the organellar nucleoids and mitochondria of living Chlamydomonas reinhardtii Dang were examined during the cell cycle under conditions of 12:12 light:dark. The nucleoids were stained with SYBR‐Green I, and the mitochondria were stained with 3,3‐dihexyloxacarbocyanine iodide. An mocG33 mutant, which contains one large chloroplast nucleoid throughout the cell cycle, was used to distinguish between the mitochondrial and chloroplast nucleoids. Changes in the total levels of organellar DNA levels were assessed by real‐time PCR. Each of the G1, S, M, and Smt,cp phases was estimated. At the start of the light period, the new daughter cells were in G1 and contained about 30 mitochondrial and 10 chloroplast nucleoids, which were dispersed and had diameters of 0.1 and 0.2 μm, respectively. During the G1 phase of the light period, and at the start of the S phase, both nucleoids formed short thread‐like or bead‐like structures, probably divided, and increased continuously in number, concomitantly with DNA synthesis. The nucleoids probably became smaller due to the decrease in DNA of each particle and were indistinguishable. The cells in the S and M phases contained extremely high numbers of scattered nucleoids. However, in the G1 phase of the dark period, the nucleoids again formed short thread‐like or bead‐like structures, probably fused, and decreased in number. The mitochondria appeared as tangled sinuous structures that extended throughout the cytoplasm and resembled a single large mitochondrion. During the cell cycle, the numbers of mitochondrial nucleoids and sinuous structures varied relative to one another.  相似文献   

4.
5.
The centric diatom, Thalassiosira weissflogii Grun., can be induced to undergo spermatogenesis by exposing cells maintained at saturating levels of continuous light to either dim light or darkness. Using flow cytometry to determine the relative DNA and chlorophyll content per cell, the number of cells within a population that responded to and induction signal was measured. From 0 to over 90% of a population differentiated into male gametes depending upon both the induction trigger and the population examined, regardless of the average cell size of the population. Through the use of synchromized cultures, we demonstrated that responsiveness to an induction trigger was a function of cell cycle stage; cells in early G1 were not yet committed to complete mitosis and were induced to form male gametes, whereas cells further along in their cell cycle were unresponsive to these same cues. A simple model combining the influence of light on the mitotic cell cycle and on the induction of spermatogenesis is proposed to explain the observed diversity in population responses to changes in light conditions.  相似文献   

6.
Dunaliella tertiolecta Butcher was grown at two intensities (33, 150μEin · m?2· s?1) of blue light and white light at 0.25, 0.50 and 1.00 M NaCl. Growth rates were used as an indication of the relative osmoregulatory ability of cells in the various treatments. There was no significant effect on growth rate due to various NaCl molarities. No significant difference in growth rate was found between blue- and white-light cultures at the high intensity, the average growth constant being 2.07 divisions/day. However, at the low intensity illumination, blue light produced a significant increase in growth rate; 1.42 vs. 0.93 divisions/day for blue light and white light grown cells respectively. The average glycerol content of exponentially dividing cells grown at 0.25, 0.50 and 1.00 M NaCl was 0.12, 0.41 and 1.12 mg/108 cells, respectively, as measured by gas chromatography. The intracellular glycerol content was significantly reduced by blue light at both light intensities and at each NaCl molarity. However, high light intensity reduced cellular glycerol content more than the reduction effected by blue light. Glycerol accumulated in the medium throughout culture growth. Intracellular glycerol content also increased with cellular aging reaching 2.72 mg/108 cells in stationary phase, low intensity 1.00 M NaCl cultures. A negative correlation between glycerol content and growth rate was found. Total inhibition of glycerol production could not be obtained by treatment with blue light. However, this negative correlation possibly indicates that D. tertiolecta expends energy producing an excess amount of glycerol over that required for osmoregulation, leading to a reduction in the growth rate for the organism.  相似文献   

7.
甘蔗幼叶片,叶鞘和幼茎在含有2.4-D的培养条件下脱分化的情况有明显差异。它们除了在形态学上有区别外,这三种材料原有的细胞分裂素和ABA的水平明显不同。在幼叶片脱分化及愈伤组织形成过程中,内源细胞分裂素和ABA的水平也发生了明显变化。据此我们认为在甘蔗组织培养中2.4-D可能通过调节内源激素的水平及其相互作用,引起培养物中某些生理生化过程发生改变,从而进行脱分化和愈伤组织形成。  相似文献   

8.
Cell‐cycle effects in phytoplankton have both general and specific influences over a variety of cellular processes. Understanding these effects requires that the majority of cells in a culture are progressing through the same cell‐cycle stage, which requires synchronous growth. We report the development of a silicon starvation–recovery synchrony for the first diatom with a sequenced genome, Thalassiosira pseudonana Hasle et Heimdale, which provides several novel insights into the process of cell‐wall formation. After 24 h of silicate starvation, flow cytometry measurements indicated that 80% of the cells were arrested in the early G1 phase of the cell cycle and then upon silicate replenishment progressed synchronously through the cycle. An early G1‐arrest point was not previously documented in diatoms. After silicate replenishment, girdle‐band synthesis was confined to a particular period in G1, and cells did not lengthen in accordance with each girdle band added, which has implications related to cell growth and separation processes in diatoms. Measurements of silicic acid uptake, intracellular pools, and silica incorporation into the cell wall, coupled with fluorescence visualization of newly synthesized cell‐wall structures, provide the first direct measurements of silica amounts in individual girdle bands and valves in a diatom. Fluorescence imaging indicated why valves in T. pseudonana do not have to reduce in size with each generation and enabled visualization of intermediates in structure formation. The development of a synchrony procedure for T. pseudonana enables correlation of cellular events with the cell cycle, which should facilitate the use of genomic information.  相似文献   

9.
Chlorella emersonii Shihira et Krauss var. emersonii exhibits ‘C4-like’ gas exchange characteristics when grown at air levels of CO2, but is ‘C3-like’ when grown with extra CO2. The total inorganic carbon concentration, and the free CO2 concentration, averaged over the cell interior are higher in air-adapted cells than can be accounted for by passive CO2 equilibration from the medium and the mean intracellular pH value. The ‘extra’ inorganic C in the air-grown cells probably cannot all be accounted for in terms of binding to proteins and requires an active transport process to account for it. The electrical potential of the cell interior becomes more negative when the ‘CO2 concentrating mechanism’ is operative; this is most readily explained if the active step in inorganic C accumulation is primary active uniport of HCO3?. Since the ‘CO2 concentrating mechanism’ can operate when CO2 is the species crossing the outer permeation barrier, it is suggested that the site of active HCO3? transport in Chlorella (and other eukaryotes) is the chloroplast envelope, and the plasmalemma in cyanobacteria. This scheme explains the obligatory role of the de-repressed carbonic anhydrase in C4-like photosynthesis in algae, but some other data support an explanation of C4-like photosynthesis in terms of special properties of carbonic anhydrase as a carbon donor to RuBP carboxylase-oxygenase.  相似文献   

10.
The cell division cycle in several pelagic dinoflagellate species has been shown to be phased with the diurnal cycle, suggesting that their cell cycle may be regulated by a circadian clock. In this study, we examined the cell cycle of an epibenthic dinoflagellate, Gambierdiscus toxicus Adachi and Fukuyo (Dinophyceae), and found that cell division was similarly phased to the diurnal cycle. Cell division occurred during a 3-h window beginning 6 h after the onset of the dark phase. Cell cycle progression in higher eukaryotes is regulated by a cell cycle regulatory protein complex consisting of cyclin and the cyclin-dependent kinase CDC2. In this report, we identified a CDC2-like kinase in G. toxicus that displays activity in vitro against a known substrate of CDC2 kinase, histone H1. As in higher eukaryotes, CDC2 kinase was expressed constitutively in G. toxicus throughout the cell cycle, but it was activated only late in the dark phase, concurrent with the presence of mitotic cells. These results indicate that cell division in G. toxicus is regulated by molecular controls similar to those found in higher eukaryotes.  相似文献   

11.
The influence of dodecylbenzene sulfonate (DBS) and Triton X-100 (TX-100) was examined on two species of Chlorella exhibiting conspicuous differences in cell wall composition. Chlorella emersonii has both a classical polysaccharidic wall and a thin trilaminar outer wall (TLS) composed of nonhydrolyzable macromolecules. Chlorella vulgaris lacks a TLS. Photosynthetic capacity was measured following short exposures (1 h) of the algae at different physiological stages to high DBS and TX-100 concentrations, up to 1 g·L?1. Comparisons with untreated controls indicated that 1) the presence of a TLS in C. emersonii was associated with a very high resistance to the anionic (DBS) and nonionic (TX-100) detergents at all growth stages, and net photosynthesis was not significantly affected in that species, 2) a high toxicity, particularly pronounced with TX-100, was observed for actively growing cells of the TLS-devoid species, C. vulgaris, and 3) aging exerted a protective influence, especially efficient against DBS, on the latter species. Additional observations, including fluorescence spectra and high-performance liquid chromatography pigment analyses, were conducted following short exposures of actively growing cells. Fluorescence emission spectra revealed that the chlorophyll a-protein complexes in thylakoid membranes were not substantially affected by DBS and TX-100, even in the case of C. vulgaris. In sharp contrast, fluorescence excitation spectra on the latter species showed 1) that excitation transfer from antenna pigments to chlorophyll a in reaction centers was substantially altered with both detergents and 2) that the two detergents affected different parts of the photosynthetic system of the TLS-devoid species. Analyses of C. vulgaris extracts indicated significant decreases in pigment content following exposure to DBS and, to a lesser extent, to TX-100. Longer exposure experiments (1 day) were conducted with actively growing algae. The TLS-containing species still showed a very high resistance and no important changes in photosynthetic capacity compared to cells exposed for 1 h. For the sensitive TLS-devoid species, the detrimental influence of TX-100, already very high after 1 h, was not increased. DBS toxicity was markedly increased and may reflect a lower uptake rate of DBS by C. vulgaris. Taken together, these observations confirm the important protective role of TLS against detergents. They also provide information on the factors controlling detergent toxicity in the sensitive, TLS-devoid species and on the different modes of action of DBS and TX-100 on its photosynthetic system. Such large differences in microalgal sensitivity to detergents, related to TLS occurrence, should have important consequences for the selection of suitable species in toxicity tests.  相似文献   

12.
The relationships between growth rate, cell‐cycle parameters, and cell size were examined in two unicellular cyanobacteria representative of open‐ocean environments: Prochlorococcus (strain MIT9312) and Synechococcus (strain WH8103). Chromosome replication time, C, was constrained to a fairly narrow range of values (~4–6 h) in both species and did not appear to vary with growth rate. In contrast, the pre‐ and post‐DNA replication periods, B and D, respectively, decreased with increasing growth rate from maxima of ~30 and 10–20 h to minima of ~4–6 and 2–3 h, respectively. The combined duration of the chromosome replication and postreplication periods (C+D), a quantity often used in the estimation of Prochlorococcus in situ growth rates, varied ~2.4‐fold over the range of growth rates examined. This finding suggests that assumptions of invariant C+D may adversely influence Prochlorococcus growth rate estimates. In both strains, cell mass was the greatest in slowly growing cells and decreased 2‐ to 3‐fold over the range of growth rates examined here. Estimated cell mass at the start of replication appeared to decrease with increasing growth rate, indicating that the initiation of chromosome replication in Prochlorococcus and Synechococcus is not a simple function of cell biomass, as suggested previously. Taken together, our results reflect a notable degree of similarity between oceanic Synechococcus and Prochlorococcus strains with respect to their growth‐rate‐specific cell‐cycle characteristics.  相似文献   

13.
The cellular content of carbon, nitrogen, amino acids, polysaccharides, phosphorus and adenosine trtphosphate (ATP) was determined at several stages during the life cycle of the dinoflagellate Scrippsiella trochoidea (Stein) Loeblich. Carbon per cell decreased slightly between exponential and stationary phase growth in vegetative cells whereas nitrogen per cell did not change. Both of these cellular components increased markedly on encystment and then decreased to vegetative cell levels during dormancy and germination. C/N ratios increased gradually during cyst dormancy and activation, reflecting a more rapid decrease in N than in C pools, even though both decreased through time. Amino acid composition was relatively constant during the vegetative cell stages; glutamic acid was the dominant component. Arginine was notably higher in cysts than in vegetative cells but decreased significantly during germination, suggesting a role in nitrogen storage. The ratio of neutral ammo acids to total ammo acids (NAA/TAA) decreased as cysts were formed and then gradually increased during storage and germination. The ratio of basic ammo acids to total ammo acids (BAA/TAA) changed in the opposite direction of NAA/TAA, whereas the ratio of acidic acids to total amino adds (AAA/TAA) was generally invariant. Ammo acid pools were not static during the resting slate in the cysts: there was degradation or biosynthesis of certain, but not all, classes of these compounds. The monosacchande composition of cold and hot water extracted polysaccharides was quite different between cells and cysts. A high percentage of glucose in cysts suggests that the storage carbohydrate is probably in the form of glucan. Total cellular phosphorus was higher in all cyst stages than in vegetative cells. However, ATP-cell?1 decreased as vegetative cells entered stationary phase and encysted, and continued to decrease in cysts during dark cold storage. ATP increased only as the cysts were activated at warm temperatures in the light and began to germinate. The above data demonstrate that dormancy and quiescence are not periods of inactive metabolism but instead are times when numerous biochemical transformations are occurring that permit prolonged survival in a resting state.  相似文献   

14.
Karenia brevis (C. C. Davis) G. Hansen et Moestrup is a dinoflagellate responsible for red tides in the Gulf of Mexico. The signaling pathways regulating its cell cycle are of interest because they are the key to the formation of toxic blooms that cause mass marine animal die‐offs and human illness. Karenia brevis displays phased cell division, in which cells enter S phase at precise times relative to the onset of light. Here, we demonstrate that a circadian rhythm underlies this behavior and that light quality affects the rate of cell‐cycle progression: in blue light, K. brevis entered the S phase early relative to its behavior in white light of similar intensity, whereas in red light, K. brevis was not affected. A data base of 25,000 K. brevis expressed sequence tags (ESTs) revealed several sequences with similarity to cryptochrome blue‐light receptors, but none related to known red‐light receptors. We characterized the K. brevis cryptochrome (Kb CRY) and modeled its three‐dimensional protein structure. Phylogenetic analysis of the photolyase/CRY gene family showed that Kb CRY is a member of the cryptochrome DASH (CRY DASH) clade. Western blotting with an antibody designed to bind a conserved peptide within Kb CRY identified a single band at ~55 kDa. Immunolocalization showed that Kb CRY, like CRY DASH in Arabidopsis, is localized to the chloroplast. This is the first blue‐light receptor to be characterized in a dinoflagellate. As the Kb CRY appears to be the only blue‐light receptor expressed, it is a likely candidate for circadian entrainment of the cell cycle.  相似文献   

15.
Cell division patterns in Thalassiosira fluviatilis grown in a cyclostat were analyzed as a function of temperature, photoperiod, nutrient limitation and average cell size of the population. Typical cell division patterns in populations doubling more than once per day had multiple peaks in division rate each day, with the lowest rates always being greater than zero. Division bursts occurred in both light and dark periods with relative intensities depending on growth conditions. Multiple peaks in division rate were also found, when population growth rates were reduced to less than one doubling per day by lowering temperature, nutrients, or photoperiod and the degree of division phasing was not enhanced. Temperature and nutrient limitation shifted the timing of the major division burst relative to the light/dark cycle. Average cell volume of the inoculum was found to be a significant determinant of the average population growth rate and the timing and magnitude of the peaks in division rate. The results are interpreted in the context of a cell cycle model in which generation times are “quantized” into values separated by a constant time interval.  相似文献   

16.
Synchronous release of ellipsoidal biflagellated zoo-spores from thick-walled akinetes of Haematococcus lacustris (Gir.) Rostaf. (UTEX 16) was induced. After being released, the zoospores divided rapidly at a rate that depended on the initial concentration of urea in the culture medium. Cells fused after approximately five doublings, and the DNA content of most cells doubled within 50 h. Spherical nonmotile palmella cells and aplanospores appeared after 100 h of incubation in media containing high (1.7 g·L?1) and low (0.85 g·L?1) urea concentrations. Thereafter, the number of nonmotile cells increased with time, whereas motile cell numbers decreased with time. Nonmotile cells continued to grow and divide by forming 4–32 aplanospores, for up to 200 h of incubation in the high-urea medium. The size of the nonmotile cells and the number of daughter cells formed within was inversely proportional to the growth rate of the cultures. Within the first 100 h of incubation, dry weight biomass of the zoo-spores increased from about 0.3 to 0.8 g·L?1. In the following 180 h, dry weight biomass reached 1.7 g·L?1 in the low-urea medium and 2.5 g·L?1 in the high-urea medium. The astaxanthin content of zoospores decreased with time, whereas there was a net accumulation of astaxanthin in the nonmotile cells. The specific rate of accumulation of astaxanthin in motile and nonmotile cells, however, was practically identical.  相似文献   

17.
Synchronized populations of the chlorococcal alga Scenedesmus armatus (Chod.) Chod. were grown under five irradiance levels. During the cell cycles of these populations, reproductive processes such as DNA replication, nuclear division, protoplast fission, and daughter cell release and growth processes such as RNA and protein accumulation were followed. The amount of RNA and proteins increased stepwise with a short time interval between individual steps during which the rate of RNA and protein accumulation decreased. At each of the steps, the amount of RNA and protein approximately doubled and the number of steps increased with irradiance. At the end of each of the growth steps, a commitment to trigger the sequence of reproductive events (DNA replication, nuclear division, protoplast fission) was attained. After attaining the commitment point, the cells were able to trigger and terminate the whole reproductive sequence without any further growth, that is, even in the dark when the external supply of energy was cut off. With increasing irradiance, the number of commitment points attained during one cell cycle increased from one to four. Consequently, one to four sequences of the reproductive steps were triggered, and each of them ended by doubling the reproductive structures, which resulted in the formation of 2, 4, 8, or 16 daughter cells. The length of the precommitment periods shortened with increasing irradiance as the result of an increasing rate in growth. The length of postcommitment periods showed light independence and remained constant at the range of irradiances at which the number of growth steps and, consequently, the number of sequences of reproductive events did not change. At higher irradiances, the number of sequences of reproductive events increased, which caused a prolongation of postcommitment periods. The length of the cell cycle varied as a result of this distinct effect of irradiance on pre- and postcommitment periods.  相似文献   

18.
The time in the cell cycle when CO2 provision was required for cell development and division was determined in synchronous cultures of Chlamydomonas segnis Ettl bubbled with air (0.03% CO2) or air enriched with 5% CO2 under continuous light at 25°C and pH 7. Provision of CO2 (% in air v/v) during the G1-phase was found to be essential for the completion of the cell cycle. There was no demand for CO2 supply throughout the S-phase and mitosis. Using cultures adapted to CO2 concentrations ranging from 0.03 to 5% in air, the apparent CO2 concentration (Km) required for the cells to develop during the G-1-phase and to attain one half the maximal rates of photo-synthetic O2 evolution was calculated as 0.05%. This value increased to 0.1 and 0.5% during the S-phase. For total protein and carbohydrate accumulation, which would reflect inorganic carbon (CO2+ HCO3?) assimilation, the Km (% CO2) were ca. 0.1 and 0.14 throughout the cell cycle, respectively. The CO2 concentration at which the cells exhibited the shortest generation time (6.7 h) was 0.1%. These results showed that during development, cells photosynthesizing (evolving O2) at maximal rates but accumulating protein and carbohydrate at one half the maximal rates or less would complete their vegetative life cycle in the shortest time.  相似文献   

19.
Cell division in most eukaryotic algae grown on alternating periods of light and dark (LD) is synchronized or phased so that cell division occurs only during a restricted portion of the LD cycle. However, the phase angle of the cell division gate, the time of division relative to the beginning of the light period, is known to be affected by growth conditions such as nutrient status and temperature. In this study, it is shown that the phase angle of cell division in a diatom, Cylindrotheca fusiformis Reimann and Lewin, is affected by the N-limited growth rate; cell division occurred later in the dark period (12:12 h LD cycle) when the growth rate was infradian (D = 0.42 d?1) than when it was ultradian (D = 1.0 d?1). Nitrogen-pulses did not affect the phase angle of the division gate, but could shift the time of peak cell division activity within the division gate. The effects, if any, of N-pulses were dependent upon the growth rate and the time of day that the pulses were administered. These responses indicate that the timing of cell division in this diatom is not determined solely by the zeitgeber from the LD cycle, but rather that a LD cycle control mechanism and a N-mediated control mechanism are both involved and are somewhat interdependent. In addition, an increase in protein was observed immediately after administering a N-pulse to C. fusiformis in the ultradian growth mode indicating that the accumulation of protein can be uncoupled from the cell division cycle.  相似文献   

20.
Ethmodiscus spp. is an important contributor to oceanic tropical-ooze sediments and thus might be an important transport vehicle of carbon from the ocean surface to sediments. The knowledge of its cell cycle and growth rate, which is still lacking, is necessary to evaluate the importance of Ethmodiscus in nutrient cycling and to solve the discrepancy between its high sedimentary abundance and rarity in the plankton. We used immunofluorescence of a cell cycle protein, prolqerating cell nuclear antigen (PCNA), and DNA-specific staining to study the progression of the cell cycle and roughly estimate the growth rate for E. rex (Rattray) Wiseman and Hendey in the southwestern North Atlantic Ocean and Caribbean Sea in June 1994 and January 1995. During the cell division cycle, the chloroplasts appeared to synthesize DNA before the nucleus (S phase). Following the S phase, the nucleus moved from one end of the cell toward the center underneath the midline of the girdle band (G2 phase) where it divided (M phase). During a very brief period, the parent cell split and moved apart from the girdle midline, and two new valves were produced (late M phase). The two daughter nuclei apparently remained attached at the joint of the two newly produced valves, where they appeared to be responsible for coordinating the symmetrical formation of the new valves. The morphologically complete daughter cells remained joined for a short period of time before separating into solitary cells whose nucleus was located at one end of the cell. Derived from the phase fraction curves, the duration of the cell cycle phases decreased in the order from G1, S, G2, to M. A conservative estimate of the growth rate in the study area obtained by using PCNA immunostaining was 0.39–0.46 d?1 in June and 0.15 d?1 in January. The validity and implication of the growth rate estimates are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号