首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
The freshwater green algal family Hydrodictyaceae (Sphaeropleales, Chlorophyta) has traditionally consisted of four coenobial genera, Pediastrum Meyen 1829, Hydrodictyon Roth 1797, Sorastrum Kützing 1845, and Euastropsis Lagerheim1894. Two recent molecular phylogenetic studies demonstrated the need for reevaluation of the generic and species boundaries in this morphology‐rich family. This study expands the previous work to include phylogenetic analyses of 103 ingroup isolates representing North America, Europe, and Australia, with an emphasis on the common and geographically widespread species Pediastrum duplex. Nucleotide sequence data were collected from the nuclear LSU (26S rDNA) and the chloroplast RUBISCO LSU (rbcL) genes, totaling >3,000 aligned characters. The 26S and rbcL data sets were analyzed using maximum‐likelihood (ML) and Bayesian phylogenetic methods. In addition, SEM was used to examine the wall morphology of a majority of the isolates. The results supported previous indications that the P. duplex Meyen 1829 morphotype is nonmonophyletic and resolved some previously ambiguous relationships recovered in earlier phylogenetic estimations using fewer isolates. These new data allowed testing of the recent taxonomic revisions of the family that split Pediastrum into five genera. Some of the previous revisions by Buchheim et al. (2005) were well supported (erection of Stauridium and Monactinus), while others were not (Pediastrum, Pseudopediastrum, Parapediastrum).  相似文献   

2.
Paxillus involutus (basidiomycetes, Boletales) is a common ectomycorrhizal fungus in the Northern Hemisphere. The fungus displays significant variation in phenotypic characters related to morphology, physiology, and ecology. Previous studies have shown that P. involutus contains several intersterility groups and morphological species. In this study, we have used concordance of multiple gene genealogies to identify genetically isolated species of P. involutus. Fragments from five protein coding genes in 50 isolates of P. involutus collected from different hosts and environments in Europe and one location in Canada were analysed using phylogenetic methods. Concordance of the five gene genealogies showed that P. involutus comprises at least four distinct phylogenetic lineages: phylogenetic species I (with nine isolates), II (33 isolates), III (three isolates), and IV (five isolates). The branches separating the four species were long and well supported compared with the species internodes. A low level of shared polymorphisms was observed among the four lineages indicating a long time since the genetic isolation began. Three of the phylospecies corresponded to earlier identified morphological species: I to P. obscurosporus, II to P. involutus s. str., and III to P. validus. The phylogenetic species had an overlapping geographical distribution. Species I and II differed partly in habitat and host preferences.  相似文献   

3.
Complete nuclear-encoded small-subunit ribosomal RNA (rRNA) sequences were determined from Nephroselmis olivacea Stein, Pseudoscourfieldia marina (Throndsen) Manton, Scherffelia dubia (Perty) Pascher, and Tetraselmis striata Butcher (Chlorophyta) to investigate the evolutionary position of these scaly green flagellates. Results of neighbor-joining and maximum parsimony phylogenetic analyses demonstrate at least two independent prasinophyte lineages defined by N. olivacea/P. marina and S. dubia/T. striata, which together with the Chlorophyceae, Pleurastrophyceae, and Ulvophyceae form a monophyletic group. Within this assemblage, N. olivacea and P. marina represent an early-diverging lineage that is evolutionarily distinct from the later-diverging S. dubia/T. striata clade. The branch point of the S. dubia/T. striata clade precedes the near-simultaneous radiation of the Chlorophyceae, Ulvophyceae, and Microthamniales. Though interrelationships between these three latter groups of algae are not resolved, the phylogenetic analyses demonstrate that the Prasinophyceae (sensu Moestrup and Throndsen) and the Pleurastrophyceae (sensu Mattox and Stewart) are not monophyletic classes.  相似文献   

4.
5.
6.
The Caribbean Islands are one of the world’s 34 biodiversity hotspots, remarkable for its biological richness and the high level of threat to its flora and fauna. The palms (family Arecaceae) are well represented in the West Indies, with 21 genera (three endemic) and 135 species (121 endemic). We provide an overview of phylogenetic knowledge of West Indian Palms, including their relationships within a plastid DNA-based phylogeny of the Arecaceae. We present new data used to reconstruct the phylogeny of tribe Cryosophileae, including four genera found in the West Indies, based on partial sequences of the low-copy nuclear genes encoding phosphoribulokinase (PRK) and subunit 2 of RNA polymerase II (RPB2). Recently published phylogenetic studies of tribe Cocoseae, based on PRK sequences, and tribes Cyclospatheae and Geonomateae, based on PRK and RPB2 sequences, also provide information on the phylogenetic relationships of West Indian palms. Results of these analyses show many independent origins of the West Indian Palm flora. These phylogenetic studies reflect the complex envolutionary history of the West Indies and no single biogeographical pattern emerges for these palms. The present day distributions of West Indian palms suggest complicated evolutionary interchange among islands, as well as between the West Indies and surrounding continents. We identified six palm lineages that deserve conservation priority. Species-level phylogenies are needed for Copernicia, Sabal, and Roystonea before we can build a more complete understanding of the origin and diversification of West Indian palms. An erratum to this article can be found at  相似文献   

7.
A number of species in the plant pathogen genus Armillaria are known from South America where they cause root rot disease on a wide variety of hosts. Knowledge pertaining to phylogenetic relationships of these species with those of other Armillaria species is almost non-existent. In addition, very few cultures representing these species are available, making DNA-based phylogenetic analyses impossible. The aim of this study was to characterise a collection of Armillaria isolates from the Patagonian Andes using DNA sequences and to determine their phylogenetic relationships with other Armillaria species. DNA sequences were obtained from the internal transcribed regions (ITS1, 5.8S and ITS4) and ribosomal large subunit (LSU) gene and used in phylogenetic analyses. Phylogenetic trees generated from the sequences separated the Armillaria isolates into four lineages. Lineages I and II represented A. novae-zelandiae and A. luteobubalina, respectively. Isolates belonging to A. novae-zelandiae from Malaysia, New Zealand, Australia and South America showed considerable intra-clade sub-structure. Lineages III and IV are probably distinct species and are most closely related to A. hinnulea and an unnamed species isolated from New Zealand and Kenya. This is the first comprehensive study of the phylogenetic relationships of Armillaria species from Patagonia and it provides a foundation for future research in this region.  相似文献   

8.
Hypotheses on the taxonomic status of two Bolivian Pristimantis with taxonomic problems are assessed by an integrative taxonomic approach that integrates three independent lines of evidence: external morphology, prezygotic reproductive barriers (advertisement calls) and reciprocal monophyly (phylogenetic analyses of partial 16S mtDNA sequences). Central Andean Bolivian populations previously assigned to either P. peruvianus or P. dundeei, and lowland Amazonian populations from southern Peru and northern Bolivia previously considered P. peruvianus do not correspond to these species. Indeed, multivariate analyses of qualitative and quantitative morphological and bioacoustic characters, and phylogenetic analyses support the hypothesis that they represent different, previously unknown, cryptic lineages. They are herein described as new species. The former is a sibling species of P. fenestratus that inhabits the Amazonian and semideciduous forests of the Andean foothills in central Bolivia. The latter is sibling to the Andean species P. danae and is parapatric to it in the Amazonian lowland forests and adjacent foothills of northern Bolivia, southern Peru and adjacent Brazil. Most species of Neotropical frogs, and especially Pristimantis, have been described by using external qualitative morphological characters only. An extended integrative taxonomic approach, as exemplified herein, may lead to the discovery of many other cryptic and sibling lineages that would increase the species numbers of tropical areas. © 2009 The Linnean Society of London, Zoological Journal of the Linnean Society, 2009, 155 , 97–122.  相似文献   

9.
To investigate the phylogenetic relationships among Leymus and related diploid genera, the genome donor of Leymus, and the evolutionary history of polyploid Leymus species, chloroplast trnQ–rps16 sequences were analyzed for 36 accessions of Leymus representing 25 species, together with 11 diploid taxa from six monogenomic genera. The phylogenetic analyses (Neighbor‐Joining and MJ network) supported three major clades (Ns, St and Xm). Sequence diversity and genealogical analysis suggested that 1) Leymus species from the same areas or neighboring geographic regions are closely related; 2) most of the Eurasian Leymus species are closely related to Psathyrostachys: P. juncea might serve as the Ns genome donor of polyploid Eurasian Leymus species; 3) the Xm genome may originate from ancestral lineages of Pseudoroegneria (St), Lophopyrum (Ee), Australopyrum (W) and Agropyron (P); 4) the trnQ–rps16 sequences of Leymus are evolutionarily distinct, and may clarify parental lineages and phylogenetic relationships in Leymus.  相似文献   

10.
Alternative evolutionary hypotheses generated from features of vegetative cell morphology and motile cell ultra-structure were investigated using a molecular data set. Complete nuclear-encoded small subunit (18S) ribosomal RNA (rRNA) gene sequences were determined for six species (three each) of the chlorococcalean green algae “Neo chloris” and Characium. Based on motile cell ultra-structure, it was previously shown that both genera could be separated into three distinct groups possibly representing three separate orders and two classes of green algae. 18S rRNA gene sequences were also obtained for three additional taxa, Dunaliella parva Lerche, Pediastrum duplex Meyen, and Friedmannia israelensis Chantanachat and Bold. These organisms were selected because each, in turn, is a representative of one of the three ultrastructural groups into which the Neochloris and Characium species are separable. Phylogenetic analyses utilizing the molecular data fully support the ultrastructural findings, suggesting that the similar vegetative cell morphologies observed in these organisms have resulted from convergence.  相似文献   

11.
The phylogenetic relationships among the wall lizards of the Podarcis hispanicus complex that inhabit the south-east (SE) of the Iberian Peninsula and other lineages of the complex remain unclear. In this study, four mitochondrial and two nuclear markers were used to study genetic relationships within this complex. The phylogenetic analyses based on mtDNA gene trees constructed with ML and BI, and a species tree using *BEAST support three divergent clades in this region: the Valencia, Galera and Albacete/Murcia lineages. These three lineages were also corroborated in species delimitation analyses based on mtDNA using bPTP, mPTP, GMYC, ABGD and BAPS. Bayesian inference species delimitation method (BPP) based on both nuclear data and a combined data set (mtDNA + nuclear) showed high posterior probabilities for these three SE lineages (≥0.94) and another Bayesian analysis (STACEY) based on combined data set recovered the same three groups in this region. Divergence time dating of the species tree provided an estimated divergence of the Galera lineage from the other SE group (Podarcis vaucheri, (Albacete/Murcia, Valencia)) at 12.48 Ma. During this period, the Betic–Rifian arc was isolated, which could have caused the isolation of the Galera form distributed to the south of the Betic Corridor. Although lizards from the Albacete/Murcia and Galera lineage are morphologically similar, they clearly represent distinct genetic lineages. The noteworthy separation of the Galera lineage enables us to conclude that this lineage must be considered as a new full species.  相似文献   

12.
《Fungal biology》2022,126(5):366-374
Early phylogenetic analysis of Pythium insidiosum, the etiologic agent of pythiosis in mammals, showed the presence of a complex comprising three monophyletic clusters. Two included isolates recovered from cases of pythiosis in the Americas (Cluster I) and Asia (Cluster II), whereas the third cluster included four diverged isolates three from humans in Thailand and the USA, and one isolate from a USA spectacled bear (Cluster III). Thereafter, several phylogenetic analyses confirmed the presence of at least three monophyletic clusters, with most isolates placed in clusters I and II. Recent phylogenetic analyses using isolates from environmental sources and from human cases in India, Spain, Thailand, and dogs in the USA, however, showed the presence of two monophyletic groups each holding two sub-clusters. These studies revealed that P. insidiosum possesses different phylogenetic patterns to that described by early investigators. In this study, phylogenetic, population genetic and protein MALDI-TOF analyses of the P. insidiosum isolates in our culture collection, as well as those available in the database, showed members in the proposed cluster III and IV are phylogenetically different from that in clusters I and II. Our analyses of the complex showed a novel group holding two sub-clusters the USA (Cluster III) and the other from different world regions (Cluster IV). The data showed the original P. insidiosum cluster III is a cryptic novel species, now identified as P. periculosum. The finding of a novel species within P. insidiosum complex has direct implications in the epidemiology, diagnosis, and management of pythiosis in mammalian hosts.  相似文献   

13.
Threadfin breams and relatives of the family Nemipteridae comprise 69 currently recognized species in five genera. They are found in the tropical and subtropical Indo‐West Pacific and most are commercially important. Using recently developed molecule‐based approaches exploiting DNA sequence variation among species/specimens, this study reconstructed a comprehensive phylogeny of the Nemipteridae, examined the validity of species and explored the cryptic diversity of the family, and tested previous phylogenetic hypotheses. A combined data set (105 taxa from 41 morphospecies) with newly determined sequences from two nuclear genes (RAG1 and RH) and one mitochondrial gene (COI), and a data set with only COI gene sequences (329 newly obtained plus 328 from public databases from a total of 53 morphospecies) were used in the phylogenetic analysis. The latter was further used for species delimitation analyses with two different tools to explore species diversity. Our phylogenetic results showed that all the currently recognized genera were monophyletic. The monotypic genus Scaevius is the sister group of Pentapodus and they together are sister to Nemipterus. These three genera combined to form the sister group of the clade comprising Parascolopsis and Scolopsis. The validity of most of the examined species was confirmed except in some cases. The combined evidence from the results of different analyses revealed a gap in our existing knowledge of species diversity in the Nemipteridae. We found several currently recognized species contain multiple separately evolving metapopulation lineages within species; some lineages should be considered as new species for further assignment. Finally, some problematic sequences deposited in public databases (probably due to misidentification) were also revised in this study to improve the accuracy for prospective DNA barcoding work on nemipterid fishes.  相似文献   

14.
Species of Prasiolales (Trebouxiophyceae, Chlorophyta) are among the most common terrestrial and freshwater algae in polar regions. Comprehensive molecular studies of this group are available for Antarctica, but not yet for Arctic regions. We examined the diversity of the Prasiolales in the Svalbard Archipelago combining morphological observations of field-collected material, culture studies, molecular data (plastid rbcL and tufA sequences) and literature records. We confirmed the widespread occurrence of Prasiola crispa and P. fluviatilis, species recorded from Spitsbergen since the 19th century. Molecular phylogenetic analyses led to the discovery of two new genera of Prasiolales. Prasionema payeri is morphologically identical to filamentous stages of P. crispa, but represents an early-diverging lineage in the order. Prasionella wendyae is a colonial alga reproducing by aplanospores; its phylogenetic position is among the basal lineages of the order, but it could not be reliably reconstructed due to weak statistical support. The inclusion of P. wendyae in the prasiolalean phylogeny determined the paraphyly of Rosenvingiella, requiring the establishment of the new genus Rosenvingiellopsis for R. constricta. A poorly known species described from Spitsbergen, Ulothrix discifera, is transferred here to Rosenvingiella. Whereas some species of Prasiolales have bipolar distribution (P. crispa), others appear to be restricted to one or other of the poles. Our results suggest that polar regions are still a major repository of unknown algal diversity and highlight the importance of continued field surveys and the use of molecular data.  相似文献   

15.
Li, J.T., Li, Y., Murphy, R.W., Rao, D.‐Q. & Zhang, Y.‐P. (2012). Phylogenetic resolution and systematics of the Asian tree frogs, Rhacophorus (Rhacophoridae, Amphibia). —Zoologica Scripta, 41, 557–570. The treefrog genus Rhacophorus, a large genus with 80 species, has a wide range, occurring eastward from India to China, Japan, South‐east Asia, the Greater Sunda Islands and the Philippines. The phylogenetic relationships and taxonomic recognition of many species are very controversial. To stabilize the taxonomy, the phylogenetic relationships among about 52 species are investigated from 96 samples using mtDNA sequence data. Matrilineal relationships based on maximum likelihood and Bayesian inference methods resolve three well‐supported lineages (A, B and C), although the phylogenetic relationships among three lineages remain ambiguous. Analyses support recognition of two previously assigned subgenera, Leptomantis and Rhacophorus, and these correspond to lineages A and B, respectively. Given that we have three strongly supported lineages, that these lineages are morphologically distinct, and the constrained geographic distributions of these groups, we recognize each lineage as a taxon. Subgenus Leptomantis includes species mainly from Malaysia, Indonesia and the Philippines. Subgenus Rhacophorus contains a mix of species occurring in India, Indochina and southern China. Lineage C accommodates species distributed mostly in East Asia, including Japan and China. Based on genetic and morphological data from type localities, the taxonomic recognition of some species needs to be reconsidered. Rhacophorus pingbianensis and Polypedates spinus are considered as junior synonyms of Rhacophorus duboisi. Specimens of Rhacophorus rhodopus from Vietnam and Hainan, China likely represent an undescribed, cryptic species.  相似文献   

16.
Although environmental DNA surveys improve our understanding of biodiversity, interpretation of unidentified lineages is limited by the absence of associated morphological traits and living cultures. Unidentified lineages of marine stramenopiles are called “MAST clades”. Twenty‐five MAST clades have been recognized: MAST‐1 through MAST‐25; seven of these have been subsequently discarded because the sequences representing those clades were found to either (1) be chimeric or (2) affiliate within previously described taxonomic groups. Eighteen MAST clades remain without a cellular identity. Moreover, the discarded “MAST‐13” has been used in different studies to refer to two different environmental sequence clades. After establishing four cultures representing two different species of heterotrophic stramenopiles and then characterizing their morphology and molecular phylogenetic positions, we determined that the two different species represented the two different MAST‐13 clades: (1) a lorica‐bearing Bicosoeca kenaiensis and (2) a microaerophilic flagellate previously named “Cafeteria marsupialis”. Both species were previously described with only light microscopy; no cultures, ultrastructural data or DNA sequences were available from these species prior to this study. The molecular phylogenetic position of three different “C. marsupialis” isolates was not closely related to the type species of Cafeteria; therefore, we established a new genus for these isolates, Cantina gen. nov.  相似文献   

17.
Recent disease outbreaks have raised awareness of tropical pathogens, especially mosquito-borne viruses. Dengue virus (DENV) is a widely studied mammalian pathogen transmitted by various species of mosquito in the genus Aedes, especially Aedes aegypti and Aedes albopictus. The prevailing view of the research community is that endemic viral lineages that cause epidemics of DENV in humans have emerged over time from sylvatic viral lineages, which persist in wild, non-human primates. These notions have been examined by researchers through phylogenetic analyses of the envelope gene (E) from the four serotypes of DENV (serotypes DENV-1 to DENV-4). In these previous reports, researchers used visual inspection of a phylogeny in order to assert that sylvatic lineages lead to endemic clades. In making this assertion, these researchers also reasserted the model of periodic sylvatic to endemic disease outbreaks. Since that study, there has been a significant increase in data both in terms of metadata (e.g., place and host of isolation) and genetic sequences of DENV. Here, we re-examine the model of sylvatic to endemic shifts in viral lineages through a phylogenetic tree search and character evolution study of metadata on the tree. We built a dataset of nucleotide sequences for 188 isolates of DENV that have metadata on sylvatic or endemic sampling along with three orthologous sequences from West Nile virus as the outgroup for the phylogenetic analysis. In contrast to previous research, we find that there are several shifts from endemic to sylvatic lineages as well as sylvatic to endemic lineages, indicating a much more dynamic model of evolution. We propose that a model that allows oscillation between sylvatic and endemic hosts better captures the dynamics of DENV transmission.  相似文献   

18.
Envall  Mats  Norenburg  Jon L. 《Hydrobiologia》2001,456(1-3):145-163
Interstitial nemerteans of the genus Ototyphlonemertes are difficult to organize into traditional morphospecies. They occur in a multitude of slightly different local varieties that form a seemingly continuous morphological cline. In this paper, we summarize most published morphological data on the group, plus 73 new records of geographic varieties from the Mediterranean Sea in the East to the Sea of Japan in the West. We summarize morphological variation, partition traits into character and character states, propose a standardized protocol for examination of live specimens and discuss the phylogenetic structure of the group. The phylogenetic discussion leads to a hypothesis that partitions all varieties (including the established species) into six groups. These are the smallest morphologically homogenous sets of varieties (corresponding to traditional morphospecies) we can diagnose on phylogenetically reliable traits. Variation within the groups appears to be unreliable phylogenetic markers that may distinguish ecological forms rather than relatedness. However, we distinguish four of the groups by combinations of two traits, one apomorphy for a more inclusive group and one plesiomorphy, and the remaining two by one trait each that may be either a unique plesiomorphy or an apomorphy depending on the rooting, and most of them may thus join paraphyletic groups of cryptic monophyletic units. We call this kind of group phylomorph and name them the Duplex-, Pallida-, Cirrula-, Fila-, Lactea- and Macintoshi-morph (referring to the first established species within each group, i.e. Ototyphlonemertes duplex, O. pallida, O. cirrula, O. fila, O. lactea and O. macintoshi respectively). The phylogenetic scheme provides a simple tool to allocate geographical varieties to a group of possible `species' and a phylogenetic null-hypothesis for further tests with genetic data.  相似文献   

19.
The tropical Asian taxa of the species‐rich genus Solanum (Solanaceae) have been less well studied than their highly diverse New World relatives. Most of these tropical Asian species, including the cultivated brinjal eggplant/aubergine and its wild progenitor, are part of the largest monophyletic Solanum lineage, the ‘spiny solanums’ (subgenus Leptostemonum or the Leptostemonum clade). Here we present the first phylogenetic analysis of spiny solanums that includes broad sampling of the tropical Asian species, with 42 of the 56 currently recognized species represented. Two nuclear and three plastid regions [internal transcribed spacer (ITS), waxy, ndhF‐rpL32, trnS‐trnG and trnT‐trnF] were amplified and used to reconstruct phylogenetic relationships using maximum likelihood and Bayesian methods. Our analyses show that Old World spiny solanums do not resolve in a single clade, but are part of three unrelated lineages, suggesting at least three independent introductions from the New World. We identify and describe several monophyletic groups in Old World solanums that have not been previously recognized. Some of these lineages are coherent in terms of morphology and geography, whereas others show considerable morphological variation and enigmatic distribution patterns. Tropical Asia occupies a key position in the biogeography of Old World spiny solanums, with tropical Asian taxa resolved as the closest relatives of diverse groups of species from Australia and Africa.  相似文献   

20.
The genetic structure of Potato virus Y (PVY) populations in Japan was analysed using 20 isolates; five were retrieved from the public DNA sequence databases, and an additional 15 complete genomic sequences were determined using field samples collected in Japan. Recombination and phylogenetic analyses of a total of 149 isolates from Japan and other countries showed that PVY has three major lineages (C, N and O); at least one, two and six sublineages in C, N and O lineages, respectively. One recombination pattern was newly found among Japanese PVYNTN strain isolates, which was most closely related to the PVYNTN strain isolates previously found in Europe and North America. On the other hand, PVYO was a complex of several divergent lineages, and there were at least three non‐recombinant subpopulations in Japan. Studies on nucleotide diversities of populations and phylogenetic relationships of the isolates in the PVY sequences showed that Japanese PVY populations were in part distinct from the European and North American populations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号