首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 594 毫秒
1.
1. River restoration has received considerable attention, with much recent focus on restoring river hydromorphology to improve impoverished aquatic communities. However, we still lack a clear understanding of the response of aquatic biota to river restoration. 2. We studied the effects of hydromorphological restoration on benthic invertebrate assemblages in 25 river sites in Germany using standardised methods. Restoration efforts were primarily aimed to restore habitat heterogeneity; correspondingly, habitat diversity increased at most sites. 3. Similarity of benthic invertebrate assemblages between restored and unrestored river sections was low (mean similarity was 0.32 for Jaccard and 0.46 for Sørensen). Community‐based metrics, such as the percentage of Ephemeroptera, Plecoptera and Trichoptera taxa, also differed between restored and unrestored sections. 4. Only three of the 25 restored sections were classified as having ‘good ecological quality’ class according to the European Water Framework Directive criteria; hence, poor water quality is probably one factor impeding recolonisation. 5. Our results show that isolated restoration measures do not necessarily result in positive effects on aquatic biota and that better understanding of the interconnectedness within a catchment is required before we can adequately predict biotic responses to structural river restoration.  相似文献   

2.
The Hackensack Meadowlands District is a large heavily degraded, brackish marsh system in the urbanized northeastern region of New Jersey, USA. Six study sites were used, three of which were restored (Mill Creek, Skeetkill Creek and Vince Lombardi), and three others were unrestored (Richard DeKorte Park, Cedar Creek and Kingsland Creek). Highly significant differences were found with respect to snail abundance and gill parasite abundance. In the three restored sites, significantly more Littoridinops tenuipes were found, and Fundulus heteroclitus had significantly more digenean trematode metacercariae gill infections than at unrestored sites. As habitat quality improves following restoration, the number of suitable digenean trematode parasite hosts multiplies as substrate for benthic invertebrates (first intermediate host) increases and usage by other species, such as Fundulus spp. (second intermediate host), is encouraged, which then attracts more wading birds (definitive host). Though the restoration process enhances trophic complexity, including primary consumers (gastropods), secondary consumers (fish) and tertiary consumers (wading birds), and ultimately parasite diversity, restoration also helps facilitate parasite life cycles.  相似文献   

3.
Stream restoration projects have become increasingly common, and the need for systematic post‐project evaluation, particularly for small‐scale projects, is evident. This study describes how a 70‐m restored reach of a small urban stream, Baxter Creek (in Poinsett Park, El Cerrito, California), was quickly and inexpensively evaluated using habitat, biological, and resident‐attitude assessments. The restoration involved opening a previously culverted channel, planting riparian vegetation, and adding in‐stream step‐pool sequences and sinuosity. Replicated benthic macroinvertebrate samples from the restored site and an upstream unrestored site were compared using several metrics, including taxa richness and a biotic index. Both biological and habitat quality improved in the restored compared with the unrestored section. However, when compared with a creek restored 12 years before, habitat condition was of lower quality in the recently restored creek. A survey of the neighborhood residents indicated that, overall, they were pleased with the restored creek site. The approach used in this demonstration project may be applicable to other small‐scale evaluations of urban stream restorations.  相似文献   

4.
5.
Amphibians and reptiles (herpetofauna) have been linked to specific microhabitat characteristics, microclimates, and water resources in riparian forests. Our objective was to relate variation in herpetofauna abundance to changes in habitat caused by a beetle used for Tamarix biocontrol (Diorhabda carinulata; Coleoptera: Chrysomelidae) and riparian restoration. During 2013 and 2014, we measured vegetation and monitored herpetofauna via trapping and visual encounter surveys (VES) at locations affected by biocontrol along the Virgin River in the Mojave Desert of the southwestern United States. Twenty‐one sites were divided into four riparian stand types based on density and percent cover of dominant trees (Tamarix, Prosopis, Populus, and Salix) and presence or absence of restoration. Restoration activities consisted of mechanically removing non‐native trees, transplanting native trees, and restoring hydrologic flows. Restored sites had three times more total lizard and eight times more yellow‐backed spiny lizard (Sceloporus uniformis) captures than other stand types. Woodhouse's toad (Anaxyrus woodhousii) captures were greatest in unrestored and restored Tam‐Pop/Sal sites. Results from VES indicated that herpetofauna abundance was greatest in the restored Tam‐Pop/Sal site compared with the adjacent unrestored Tam‐Pop/Sal site. Tam sites were characterized by having high Tamarix cover, percent canopy cover, and shade. Restored Tam‐Pop/Sal sites were most similar in habitat to Tam‐Pop/Sal sites. Two species of herpetofauna (spiny lizard and toad) were found to prefer habitat components characteristic of restored Tam‐Pop/Sal sites. Restored sites likely supported higher abundances of these species because restoration activities reduced canopy cover, increased native tree density, and restored surface water.  相似文献   

6.
Oyster reef restoration has become a principal strategy for ameliorating the loss of natural Crassostrea virginica populations and increasing habitat provision. In 2014, a large‐scale, high‐relief, 23‐ha subtidal C. virginica reef was restored at the historically productive Half Moon Reef in Matagorda Bay, TX, using concrete and limestone substrates. Encrusting and motile fauna were sampled seasonally until 17 months postrestoration at the restored reef and at adjacent unrestored sites. Restored oysters developed rapidly and were most abundant 3 months postrestoration, with subsequent declines possibly due to interacting effects of larval settlement success on new substrate versus post‐settlement mortality due to competitors and predators. Oyster densities were 2× higher than in a restored oyster population in Chesapeake Bay that was reported to be the largest reestablished metapopulation of native oysters in the world. Resident fauna on the restored reef were 62% more diverse, had 433% greater biomass, and comprised a distinct faunal community compared to unrestored sites. The presence of three‐dimensional habitat was the most important factor determining resident faunal community composition, indicating that substrate limitation is a major hindrance for oyster reef community success in Texas and other parts of the Gulf of Mexico. There were only minor differences in density, biomass, and diversity of associated fauna located adjacent (13 m) versus distant (150 m) to the restored reef. The two substrate types compared had little influence on oyster recruitment or faunal habitat provision. Results support the use of reef restoration as a productive means to rebuild habitat and facilitate faunal enhancement.  相似文献   

7.
Fire‐maintained woodlands and savannas are important ecosystems for vertebrates in many regions of the world. These ecosystems are being restored by forest managers, but little information exists on herpetofaunal responses to this restoration in areas dominated by shortleaf pine (Pinus echinata). We compared habitat characteristics and herpetofaunal communities in restored pine woodlands to relatively unmanaged, second‐growth forests in the Ouachita Mountains of western Arkansas, USA. We found woodland restoration with periodic burning affected species differently; some species benefited, some species appeared negatively affected, but most species did not respond clearly either way. Overall reptile captures were significantly (p = 0.041) greater in pine‐woodlands than in unrestored forest; one species of snake and three species of lizards were captured more often in woodlands than unrestored forests. Among anurans, we found no significant difference in captures between woodlands and unrestored forests for any species. Among salamanders, we captured western slimy salamanders (Plethodon albagula) almost exclusively in unrestored forest, but captures of other species did not differ between the two treatments. Historically, the Ouachita region likely consisted of a mosaic that included both fire‐maintained habitats (woodlands, savannas, and prairies) and areas of denser forest on mesic sites that were less likely to burn. Consequently, landscapes that retain both open woodlands and denser, less‐intensely burned forest (in the form of unharvested greenbelts or separate stands) would likely promote and maintain a greater diversity of herpetofauna.  相似文献   

8.
Developing objective tools for tracking progress of restored sites is of general concern. Here, we present an innovative approach based on principal response curves (PRC) and species classification according to their preferential habitats to monitor changes in community composition. Following large‐scale restoration of a cut‐over peatland, vegetation was surveyed biannually over 8 years. We evaluated whether the establishing plant communities fell within the range of natural variation. We used both general diversity curves and PRC applied on plant species grouped by preferred habitat to compare restored sites and unrestored sites to a reference ecosystem. After 8 years, diversity and richness differed between the sites, with Forest and Ruderal species more prominent in unrestored sites, and Peatland, Forest, and Wetland species dominant in restored sites. The PRC revealed that the restored site became rapidly dominated by typical peatland plants, the main drivers of temporal changes being Sphagnum rubellum, Pohlia nutans, and Mylia anomala. Some differences remained between the restored and the undisturbed species pools: the former had more herbaceous species associated with wetlands such as Calamagrostis canadensis and Typha latifolia and the latter had more forested species like Kalmia angustifolia throughout the study. PRC revealed to be an efficient tool identifying species driving changes at the community level after restoration. In our case study, examining PRC scores after classifying species according to their preferred habitat allowed to illustrate objectively how restoration promotes target species (associated to peatlands) and how lack of intervention benefits ruderal species.  相似文献   

9.
Forest managers are setting Ponderosa pine (Pinus ponderosa) forests in the southwestern United States on a trajectory toward a restored ecosystem by reducing tree densities and managing with prescribed fire. The process of restoration dramatically alters forest stands, and the effects of these changes on wildlife remain unclear. Our research evaluated which aspects of habitat alteration from restoration treatments may be affecting the habitat quality of Western Bluebird (Sialia mexicana), an insectivorous songbird whose populations are declining. Habitat loss resulting from fire‐suppression activities may be partially responsible for their population declines; thus, the bluebird is a good representative species for assessing how the reconstruction of presuppression forest conditions can affect wildlife. We measured habitat variables at 63 successful and 19 unsuccessful Western Bluebird nests in 1999–2001 and 2003. We compared habitat models that represented bluebird biology and habitat changes from restoration. Two models of nest success that included (1) an increased herbaceous and bare ground cover and (2) increased Gambel oak (Quercus gambelii) densities and reduced Ponderosa pine densities were most supported by the data. Increased herbaceous ground cover and Gambel oak density likely represent improved invertebrate assemblages and thus improved forage abundance for nesting bluebirds. Lower Ponderosa pine densities may provide bluebirds with open perches from which to hunt and thereby improve the availability of invertebrates as a food source. We also provide a landscape‐scale example of changes to bluebird habitat quality from treatments, which we recommend as a useful tool in restoration planning.  相似文献   

10.
The meanders and floodplains of the Kushiro River were restored in March 2011. A 1.6‐km stretch of the straightened main channel was remeandered by reconnecting the cutoff former channel and backfilling the straightened reach, and a 2.4‐km meander channel was restored. Additionally, flood levees were removed to promote river–floodplain interactions. There were four objectives of this restoration project: to restore the in‐stream habitat for native fish and invertebrates; to restore floodplain vegetation by increasing flooding frequency and raising the groundwater table; to reduce sediment and nutrient loads in the core wetland areas; to restore a river–floodplain landscape typical to naturally meandering rivers. In this project, not only the natural landscape of a meandering river but also its function was successfully restored. The monitoring results indicated that these goals were likely achieved in the short term after the restoration. The abundance and species richness of fish and invertebrate species increased, most likely because the lentic species that formerly inhabited the cutoff channel remained in the backwater and deep pools created in the restored reach. In addition, lotic species immigrated from neighboring reaches. The removal of flood levees and backfilling of the formerly straightened reach were very effective in increasing the frequency of flooding over the floodplains and raising the water table. The wetland vegetation recovered rapidly 1 year after the completion of the meander restoration. Sediment‐laden floodwater spread over the floodplain, and approximately 80–90% of the fine sediment carried by the water was filtered out by the wetland vegetation.  相似文献   

11.
A critical component in the effort to restore the Kissimmee River ecosystem is the reestablishment of an aquatic invertebrate community typical of free‐flowing rivers of the southeastern United States. This article evaluates early responses of benthic and snag‐dwelling macroinvertebrates to restoration of flow and habitat structure following Phase I construction (interim period) of the Kissimmee River Restoration Project. Replicate benthic and snag samples were collected from remnant river channels in Pool A (Control site), and Pool C, the site of the first phase of restoration (Impact site). Samples were collected quarterly for 2 years prior to construction (baseline) and monthly or quarterly for 3 years following Phase I construction and restoration of flow. Baseline benthic data indicate a community dominated by taxa tolerant of organic pollution and low levels of dissolved oxygen, including the dipterans Chaoborus americanus (Chaoboridae) and the Chironomus/Goeldichironomus group (Chironomidae). Baseline snag data indicate a community dominated by gathering‐collectors, shredders, and scrapers. Passive filtering‐collector invertebrates were rare. Following restoration of flow, benthic invertebrate communities are numerically dominated by lotic taxa, including bivalves and sand‐dwelling chironomids (e.g. Polypedilum spp., Cryptochironomus spp., and Tanytarsini). Snags within the Phase I area support an invertebrate community dominated by passive filtering‐collectors including Rheotanytarsus spp. (Chironomidae) and Cheumatopsyche spp. (Hydropsychidae). Results indicate that restoration of flow has resulted in ecologically significant changes to the river habitat template not observed in Pool A. Observed shifts in benthic and snag macroinvertebrate community structure support previously developed hypotheses for macroinvertebrate responses to hydrologic restoration.  相似文献   

12.
1. We asked whether unionid mussels influence the distribution and abundance of co‐occurring benthic algae and invertebrates. In a yearlong field enclosure experiment in a south‐central U.S. river, we examined the effects of living mussels versus sham mussels (shells filled with sand) on periphyton and invertebrates in both the surrounding sediment and on mussel shells. We also examined differences between two common unionid species, Actinonaias ligamentina (Lamarck 1819) and Amblema plicata (Say 1817). 2. Organic matter concentrations and invertebrate densities in the sediment surrounding mussels were significantly higher in treatments with live mussels than treatments with sham mussels or sediment alone. Organic matter was significantly higher in the sediment surrounding Actinonaias than that surrounding Amblema. Actinonaias was more active than Amblema and may have increased benthic organic matter through bioturbation. 3. Living mussels increased the abundance of periphyton on shells and the abundance and richness of invertebrates on shells, whereas effects of sham mussels were similar to sediment alone. Differences in the amount of periphyton growing on the shells of the two mussel species reflected differences in mussel activity and shell morphology. 4. Differences between living and sham mussel treatments indicate that biological activities of mussels provide ecosystem services to the benthic community beyond the physical habitat provided by shells alone. In treatments containing live mussels we found significant correlations between organic matter and chlorophyll a concentrations in the sediment, organic matter concentrations and invertebrate abundance in the sediment and the amount of chlorophyll a on the sediment and invertebrate abundance. There were no significant correlations among these response variables in control treatments. Thus, in addition to providing biogenic structure as habitat, mussels likely facilitate benthic invertebrates by altering the availability of resources (algae and organic matter) through nutrient excretion and biodeposition. 5. Effects of mussels on sediment and shell periphyton concentrations, organic matter concentrations and invertebrate abundance, varied seasonally, and were strongest in late summer during periods of low water volume, low flow, and high water temperature. 6. Our study demonstrates that freshwater mussels can strongly influence the co‐occurring benthic community, but that effects of mussels are context‐dependent and may vary among species.  相似文献   

13.
Recovery of Bird Species in Minimally Restored Indonesian Tin Strip Mines   总被引:1,自引:0,他引:1  
Bird species richness and individual abundances were recorded in old, unrestored tin strip mine plots, in mined plots restored 1, 2, and 3 years before the study, and in adjacent, unmined, natural secondary forest plots on the 11,340‐km2 Indonesian island of Bangka (2°S, 106°E). The objective was to assess the ecological recovery of unrestored and minimally restored mine plots compared with surrounding reference forest. Unrestored mines had not been mined or used for any other purpose for 14–30 years; plots in their first, second, and third year since restoration were old mines planted with Acacia mangium (Leguminosae) at a density of 400 trees/ha. Natural secondary forest plots 20 or more years since the last disturbance were immediately adjacent to both unrestored and restored plots. Bird surveys on 4‐ha plots were performed during the 1995 breeding season. A comparison of data from unrestored plots of widely varying ages showed no significant differences among them for species richness, diversity (Shannon–Wiener index, H′), or individual abundance, indicating that little natural bird community recovery had occurred over time in the plots. However, increases did occur in restored sites over only 3 years for both species richness (r 2 = 0.29, p = 0.04) and diversity (r 2 = 0.45, p = 0.009). All values for third‐year restored plots, however, were still significantly lower than corresponding values for adjacent natural secondary forest plots. The quick return of bird activity on the plots after minimal efforts at restoration supports the idea that simple, inexpensive restoration can be effective for “jump starting” degraded systems at large scales. Such a restoration strategy might be of particular value for degraded land in developing nations, where scientific, professional, and financial resources might be in short supply. Using this strategy, a small number of restoration professionals could mobilize the labor of many local people in many areas, serving to both improve ecological systems and to educate and engage local populations in restoration and conservation projects.  相似文献   

14.
1. Most Finnish streams were channelised during the 19th and 20th century to facilitate timber floating. By the late 1970s, extensive programmes were initiated to restore these degraded streams. The responses of fish populations to restoration have been little studied, however, and monitoring of other stream biota has been negligible. In this paper, we review results from a set of studies on the effects of stream restoration on habitat structure, brown trout populations, benthic macroinvertebrates and leaf retention. 2. In general, restoration greatly increased stream bed heterogeneity. The cover of mosses in channelised streams was close to that of unmodified reference sites, but after restoration moss cover declined to one‐tenth of the pre‐restoration value. 3. In one stream, densities of age‐0 trout were slightly lower after restoration, but the difference to an unmodified reference stream was non‐significant, indicating no effect of restoration. In another stream, trout density increased after restoration, indicating a weakly positive response. The overall weak response of trout to habitat manipulations probably relates to the fact that restoration did not increase the amount of pools, a key winter habitat for salmonids. 4. Benthic invertebrate community composition was more variable in streams restored 4–6 years before sampling than in unmodified reference streams or streams restored 8 years before sampling. Channelised streams supported a distinctive set of indicator species, most of which were filter‐feeders or scrapers, while most of the indicators in streams restored 8 years before sampling were shredders. 5. Leaf retentiveness in reference streams was high, with 60–70% of experimentally released leaves being retained within 50 m. Channelised streams were poorly retentive (c. 10% of leaves retained), and the increase in retention following restoration was modest (+14% on average). Aquatic mosses were a key retentive feature in both channelised and natural streams, but their cover was drastically reduced through restoration. 6. Mitigation of the detrimental impacts of forestry (e.g. removal of mature riparian forests) is a major challenge to the management of boreal streams. This goal cannot be achieved by focusing efforts only on restoration of physical structures in stream channels, but also requires conservation and ecologically sound management of riparian forests.  相似文献   

15.
Globally, river degradation has decimated freshwater fish populations. To help reverse this trend in a southeastern Australia river, we used multiple restoration actions, including reintroduction of instream woody habitat, riparian revegetation, removal of a weir hindering fish movement, fencing out livestock, and controlling riparian weeds. We monitored the responses of native fish at the segment scale (20 km) and reach scale (0.3 km) over 7 years to assess the effectiveness of the different restoration strategies. Two closely related species, Murray cod Maccullochella peeli and trout cod Maccullochella macquariensis, increased at the restored segment compared with the control segment. However, inherent differences between river segments and low sample size hampered assessment of the mechanisms responsible for segment‐scale changes in fish abundance. In contrast, at the reach scale, only M. peeli abundance significantly increased in reaches supplemented with wood. These differential responses by 2 closely related fish species likely reflect species‐specific responses to increased habitat availability and enhanced longitudinal connectivity when the weir improved passage around a fishway. Changes in M. peeli abundance in segments supplemented with and without wood suggest an increase in carrying capacity and not simply a redistribution of individuals within the segment, facilitated the observed expansion. Our findings confirm the need to consider individual fish species' habitat preferences carefully when designing restoration interventions. Further, species‐specific responses to restoration actions provide waterway managers with precise strategies to target fish species for recovery and the potential to predict fish outcomes based on ecological preferences.  相似文献   

16.
Restoring Stream Ecosystems: Lessons from a Midwestern State   总被引:3,自引:0,他引:3  
Reach‐scale stream restorations are becoming a common approach to repair degraded streams, but the effectiveness of these projects is rarely evaluated or reported. We surveyed governmental, private, and nonprofit organizations in the state of Indiana to determine the frequency and nature of reach‐scale stream restorations in this midwestern U.S. state. For 10 attempted restorations in Indiana, questionnaires and on‐site assessments were used to better evaluate current designs for restoring stream ecosystems. At each restoration site, habitat and water quality were evaluated in restored and unrestored reaches. Our surveys identified commonalities across all restorations, including the type of restoration, project goals, structures installed, and level of monitoring conducted. In general, most restorations were described as stream‐relocation projects that combined riparian and in‐stream enhancements. Fewer than half of the restorations conducted pre‐ or post‐restoration monitoring, and most monitoring involved evaluations of riparian vegetation rather than aquatic variables. On‐site assessments revealed that restored reaches had significantly lower stream widths and greater depths than did upstream unrestored reaches, but riparian canopy cover often was lower in restored than in unrestored reaches. This study provides basic information on midwestern restoration strategies, which is needed to identify strengths and weaknesses in current practices and to better inform future stream restorations.  相似文献   

17.
In the context of delta restoration and its impact on salmonid rearing, success is best evaluated based on whether out‐migrating juvenile salmon can access and benefit from suitable estuarine habitat. Here, we integrated 3 years of post‐restoration monitoring data including habitat availability, invertebrate prey biomass, and juvenile Chinook salmon (Oncorhynchus tshawytscha) physiological condition to determine whether individuals profited from the addition of 364 ha of delta habitat in South Puget Sound, Washington, United States. Productivity in the restored mudflat was comparable to reference sites 3 years after dike removal, surpassing a mean total of 6 million kJ energy from invertebrate prey. This resulted from the development of a complex network of tidal channels and a resurgence in dipteran biomass that was unique to the restoration area. Consequently, a notable shift in invertebrate consumption occurred between 2010 and 2011, whereby individuals switched from eating primarily amphipods to dipteran flies; however, dietary similarity to the surrounding habitat did not change from year to year, suggesting that this shift was a result of a change in the surrounding prey communities. Growth rates did not differ between restored and reference sites, but catch weight was positively correlated with prey biomass, where greater prey productivity appeared to offset potential density‐dependent effects. These results demonstrate how the realized function of restoring estuarine habitat is functionally dependent. High prey productivity in areas with greater connectivity may support healthy juvenile salmon that are more likely to reach the critical size class for offshore survival.  相似文献   

18.
We investigated temporal effects of restoration on river morphology, on species and functional composition of benthic invertebrates, floodplain vegetation and carabid beetles at three study sites in the mountain river Lahn (Germany). We sampled restored and nearby non-restored sections 3–5 years and 7–9 years after restoration. In the restored sections, instream microhabitat heterogeneity was higher due to the increased presence of finer substrates, while cobbles and coarse gravel were still dominant. Instream habitat composition did not change between the two sampling events. Areas of restored floodplain were characterized by a more diverse habitat mosaic and by unvegetated bars, vegetated islands and secondary channels. In restored sections, floodplain habitat heterogeneity was maintained 7–9 years after restoration, but vegetated areas increased, while unvegetated bars and aquatic areas decreased. The species composition of all studied groups was more variable over time in restored than non-restored sections. In contrast to benthic invertebrates, the immigration rate of floodplain vegetation and carabid beetle species was higher in restored sections. Assemblage composition of all three organism groups changed over time, with the highest change in carabid beetles and smallest in benthic invertebrates. Restoration changed the abundances of functional response groups, mainly for carabid beetles, by supporting species that indicate increased hydrodynamics and early successional stages. Changes of functional response groups in non-restored and restored sections across time indicated decreased hydrodynamics or hydrological connectivity for all organism groups. Although the response of organism groups differed, our results support the conjecture that restored sections accumulate species and enhance the local species pool.  相似文献   

19.
The densities of two benthic fishes, the Siberian stone loach (Noemacheilus barbatulus) and the wrinklehead sculpin (Cottus nozawae), and the biomass of their food resources (i.e., periphyton and benthic invertebrates) were compared between forest and grassland streams in northern Hokkaido, Japan, to examine whether riparian deforestation had positive effects on the benthic fishes via enhancement of food availability. The comparisons indicated that riparian vegetation had little influence on periphyton, invertebrates, or fishes. Regression analysis indicated that spatial variations in loach and sculpin densities were explained more by substrate heterogeneity, competitor abundance, or both, rather than by food abundance. However, when the two species were combined as benthic insectivores, a strong correlation was found between total benthic fish density and invertebrate biomass. Our results suggest that, although total benthic fish abundance was food limited, riparian vegetation had no positive effects via food availability on the benthic fishes in our streams.  相似文献   

20.
One potential, unintended ecological consequence accompanying forest restoration is a shift in invasive animal populations, potentially impacting conservation targets. Eighteen years after initial restoration (ungulate exclusion, invasive plant control, and out planting native species) at a 4 ha site on Maui, Hawai'i, we compared invasive rodent communities in a restored native dry forest and adjacent non‐native grassland. Quarterly for 1 year, we trapped rodents on three replicate transects (107 rodent traps) in each habitat type for three consecutive nights. While repeated trapping may have reduced the rat (Black rat, Rattus rattus) population in the forest, it did not appear to reduce the mouse (House mouse, Mus musculus) population in the grassland. In unrestored grassland, mouse captures outnumbered rat captures 220:1, with mice averaging 54.9 indiv./night versus rats averaging 0.25 indiv./night. In contrast, in restored native forest, rat captures outnumbered mouse captures by nearly 5:1, averaging 9.0 indiv./night versus 1.9 indiv./night for mice. Therefore, relatively recent native forest restoration increased Black rat abundance and also increased their total biomass in the restored ecosystem 36‐fold while reducing House mouse biomass 35‐fold. Such a community shift is worrisome because Black rats pose a much greater threat than do mice to native birds and plants, perhaps especially to large‐seeded tree species. Land managers should be aware that forest restoration (i.e. converting grassland to native forest) can invoke shifts in invasive rodent populations, potentially favoring Black rats. Without intervention, this shift may pose risks for intended conservation targets and modify future forest restoration trajectories.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号