首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
Introduced slugs have invaded many parts of the world where they were recognized as important pests of gardens and agriculture, but we know little about the effects of introduced slugs on rare plants in natural areas. The Hawaiian Islands have no native slugs, but over a dozen introduced slug species are now established. We reviewed Rare Plant Recovery Plans produced by the U.S. Fish and Wildlife Service for Hawaii and found that introduced slugs were specifically mentioned as threats or potential threats to 59 rare plant species (22% of all endangered and threatened plants), based mainly on anecdotal observations by field biologists. We then initiated an experimental field study to assess the impact of slug herbivory on the growth and survival of two endangered plant species (Cyanea superba, and Schidea obovata), one non-endangered native species (Nestegis sandwicensis) and two co-occurring invasive plant species (Psidium cattleianum and Clidemia hirta). In mesic forest on the Island of Oahu, we tracked the fate of outplanted seedlings in replicated 1 m2 plots, with and without slug control. Slugs decreased seedling survival of the endangered species by 51%, on average. Slugs did not significantly affect survival of the non-endangered or invasive plant species. Introduced slugs seem to be under-appreciated as a direct cause of plant endangerment. Invasive slugs may also facilitate the success of some invasive plant species by reducing competition with more palatable, native plant competitors. Slug control measures are relatively inexpensive and could facilitate rare plant establishment and population recovery.  相似文献   

2.
Consumer-facilitated invasions have been proposed as an alternative mechanism to direct competitive exclusion to explain the replacement of native plants by exotics. In a factorial field experiment manipulating competition from the exotic plant Alliaria petiolata and herbivory by exotic mollusks, we documented that mollusk herbivory significantly reduced the survival of two species of native palatable plants, but found minimal direct herbivore effects on less palatable species, including the invasive A. petiolata. These effects were evident after one growing season on younger juvenile plants of Aster cordifolius, but only after two growing seasons on older transplants of the same species, suggesting a greater vulnerability of young plants. In contrast to our expectations, A. petiolata competition alone had no effect on any of the six native species we tested. However, competition from A. petiolata did affect the survival of the most palatable native plant when mollusks were also present. While not significant for any other single species, this same pattern was observed for three of the five remaining native species tested. The selective grazing on palatable plants that we document provides novel evidence contributing to our understanding of observed shifts in the forest herbaceous layer towards the dominance of exotic plants and unpalatable species. More broadly, our results highlight the importance of the interactive effect of consumers and inter-specific competition in forest understories via its contribution to differential survival among regenerating species.  相似文献   

3.
The symbiosis between land plants and arbuscular mycorrhizal fungi (AMF) is one of the most widespread and ancient mutualisms on the planet. However, relatively little is known about the evolution of these symbiotic plant–fungal interactions in natural communities. In this study, we investigated the symbiotic AMF communities of populations of the native plant species Pilea pumila (Urticaceae) with varying histories of coexistence with a nonmycorrhizal invasive species, Alliaria petiolata (Brassicaceae), known to affect mycorrhizal communities. We found that native populations of P. pumila with a long history of coexistence with the invasive species developed more diverse symbiotic AMF communities. This effect was strongest when A. petiolata plants were actively growing with the natives, and in soils with the longest history of A. petiolata growth. These results suggest that despite the ancient and widespread nature of the plant–AMF symbiosis, the plant traits responsible for symbiotic preferences can, nevertheless, evolve rapidly in response to environmental changes.  相似文献   

4.

Background and Aims

Despite the selective pressure slugs may exert on seedling recruitment there is a lack of information in this context within grassland restoration studies. Selective grazing is influenced by interspecific differences in acceptability. As part of a larger study of how slug–seedling interactions may influence upland hay meadow restoration, an assessment of relative acceptability is made for seedlings of meadow plants to the slug, Deroceras reticulatum.

Methods

Slug feeding damage to seedling monocultures of 23 meadow species and Brassica napus was assessed in microcosms over 14 d. The severity and rate of damage incurred by each plant species was analysed with a generalized additive mixed model. Plant species were then ranked for their relative acceptability.

Key Results

Interspecific variation in relative acceptability suggested seedlings of meadow species form a hierarchy of acceptability to D. reticulatum. The four most acceptable species were Achillea millefolium and the grasses Holcus lanatus, Poa trivialis and Festuca rubra. Trifolium pratense was acceptable to D. reticulatum and was the second highest ranking forb species. The most unacceptable species were mainly forbs associated with the target grassland, and included Geranium sylvaticum, Rumex acetosa, Leontodon hispidus and the grass Anthoxanthum odoratum. A strong positive correlation was found for mean cumulative feeding damage and cumulative seedling mortality at day 14.

Conclusions

Highly unacceptable species to D. reticulatum are unlikely to be selectively grazed by slugs during the seedling recruitment phase, and were predominantly target restoration species. Seedlings of highly acceptable species may be less likely to survive slug herbivory and contribute to seedling recruitment at restoration sites. Selective slug herbivory, influenced by acceptability, may influence community-level processes if seedling recruitment and establishment of key functional species, such as T. pratense is reduced.  相似文献   

5.
The understory is a diverse component of temperate forest ecosystems, contributing significantly to forest ecosystem services. Despite their importance, many native understories face stresses from current and past land use, habitat fragmentation, invasive species, and overabundant herbivores. We established a four block, three factor experiment to evaluate the relative contribution of native plant establishment, competitive effects from the invasive herb garlic mustard (Alliaria petiolata), and herbivory from white-tailed deer (Odocoileus virginianus) to better understand the mechanisms promoting low native plant richness and cover and understory dominance by the biennial exotic herb garlic mustard in a NE Wisconsin, USA forest. Four years of garlic mustard removal failed to increase native plant richness or cover in non-restored plots. However, deer access and the introduction of native plants (restoration treatment) both significantly enhanced native plant cover and richness, with restored species cover in fenced plots approximately 216 % that of open-access plots, and the majority of these species flowered at significantly higher proportions inside of fenced areas. In contrast, deer access did not significantly alter the cover, or seed production of garlic mustard. We also found no significant effect of garlic mustard presence on the cover or flowering of restored native species. We conclude that multiple factors, including limited natural establishment by native species and selective herbivory drove low native, high exotic dominance at our site, suggesting that a shift in focus from invasive plant removal to combined native plant restoration and herbivore control is needed to maximize the recovery of this degraded forest understory.  相似文献   

6.
After removing invasive plants, whether by herbicides or other means, typical restoration design focuses on rebuilding native plant communities while disregarding soil microbial communities. However, microbial–plant interactions are known to influence the relative success of native versus invasive plants. Therefore, the abundance and composition of soil microorganisms may affect restoration efforts. We assessed the effect of herbicide treatment on phytosymbiotic pink‐pigmented facultative methylotrophic (PPFM) bacteria and the potential consequences of native and invasive species establishment post‐herbicide treatment in the lab and in a coastal sage scrub (CSS)/grassland restoration site. Lab tests showed that 4% glyphosate reduced PPFM abundance. PPFM addition to seeds increased seedling length of a native plant (Artemisia californica) but not an invasive plant (Hirschfeldia incana). At the restoration site, methanol addition (a PPFM substrate) improved native bunchgrass (Nassella pulchra) germination and size by 35% over controls. In a separate multispecies field experiment, PPFM addition stimulated the germination of N. pulchra, but not that of three invasive species. Neither PPFM nor methanol addition strongly affected the growth of any plant species. Overall, these results are consistent with the hypothesis that PPFMs have a greater benefit to native than invasive species. Together, these experiments suggest that methanol or PPFM addition could be useful in improving CSS/grassland restorations. Future work should test PPFM effects on additional species and determine how these results vary under different environmental conditions.  相似文献   

7.
The increasing use of pesticides in broad-acre cropping in South eastern Australia is suspected to have reduced native carabid beetle populations which fortuitously control potential pest populations. Slugs are increasingly becoming an establishment pest of canola, which is often attributed to stubble retention introduced to arable farming systems. Exclusion enclosures were employed to test the effect of the native carabid Notonomus gravis on the exotic pest slug Deroceras reticulatum. The native predatory species limited D. reticulatum populations and this was further supported by a negative field association between the predator and slug numbers. However, while N. gravis contributed to control of slug populations, enclosure experiments suggest that slug damage was not reduced below economic thresholds by this predator alone. Although N. gravis provides a “lying in wait” pest control option for slugs, multiple predators and environmental interactions need to be considered in developing robust integrated pest management guidelines.  相似文献   

8.
Native generalist herbivores might limit plant invasion by consuming invading plants or enhance plant invasion by selectively avoiding them. The role of herbivores in plant invasion has been investigated in relation to plant native/introduced status, however, a knowledge gap exists about whether food selection occurs according to native/introduced status or to species. We tested preference of the native herbivore white-tailed deer (Odocoileus virginianus) for widespread and frequently occurring invasive introduced and native plants in the northeastern United States. Multiple-choice deer preference trials were conducted for the species and relative preference was determined using biomass consumption and feeding behavior. While more native than introduced plant biomass was consumed overall, deer food selection varied strongly by plant species. Results show consistent deer avoidance of several invasive introduced plants (Alliaria petiolata, Berberis thunbergii, and Microstegium vimineum) and a native plant (Dennstaedtia punctilobula). Other invasive introduced plants (Celastrus orbiculatus, Ligustrum vulgare, and Lonicera morrowii) and a native plant (Acer rubrum) were highly preferred. These results provide evidence that herbivore impacts on plant invaders depend on plant species palatability. Consequently, herbivore selectivity likely plays an important role in the invasion process. To the extent that herbivory impacts population demographics, these results suggest that native generalist herbivores promote enemy release of some plant invaders by avoiding them and contribute to biotic resistance of others by consuming them.  相似文献   

9.
The Harpalini species Harpalus rufipes, as many other generalist carabids, consume a wide variety of prey and it is known to feed on pest slugs such as the grey field slug Deroceras reticulatum, but quantitative data about the predatory activity of H. rufipes on slugs are very scarce. In laboratory experiments, we assessed the capability of male H. rufipes to kill eggs and different‐sized slugs of the pest species D. reticulatum in either the absence or the presence of alternative live prey (dipteran larvae and aphids). We also investigated the preference of H. rufipes for eggs and hatchlings of D. reticulatum in a choice experiment. H. rufipes killed considerable amounts of eggs and small juveniles (≤5.0 mg) of D. reticulatum, both in no‐choice and in choice situations. Medium‐sized juvenile slugs (10–20 mg) were seldom killed only in no‐choice situations, and no large juveniles (50–60 mg) were killed. Dipteran larvae and aphids were killed also in no‐choice and in choice situations. The type of alternative prey presented with slug eggs affected the survival of the eggs to H. rufipes predation. The presence of dipteran larvae as alternative prey did not affect the survival of juvenile slugs. When eggs and small juvenile slugs were offered together, the survivals of both items were similar. The obtained results under laboratory conditions suggest that the generalist predator H. rufipes might realise an important contribution to the control of pest slugs.  相似文献   

10.
Epichloë spp. are endophytes of grasses, and form epiphytic external stromata on flowering tillers. E. typhina was first noticed infecting Dactylis glomerata (= orchardgrass, cocksfoot) stands in the Willamette Valley in 1996, and soon became the primary factor limiting the longevity of seed production fields. Several species of slugs are present in these fields, and we investigated their role in E. typhina biology. Pre‐dawn surveys of D. glomerata fields in 2009 and 2010 found Prophysaon andersoni and Arion subfuscus slugs feeding on the fungal stromata. When unfertilised and fertilised immature stromata predominated, approximately 80% of the individuals of these two species that were seen on plants were found on the stromata. As the majority of stromata reached maturity the presence of these species on stromata declined to between 20–40%. The common agricultural slug pest, Deroceras reticulatum, was on stromata only 20% of the time early in the season, and declined to <5% at stromata maturity. Observations of frass from slugs determined that the most common constituent was the food sources upon which the slug species was usually found during these surveys. Typically 100% of the frass from P. andersoni and A. subfuscus contained stroma material, compared to 25% for D. reticulatum. Spermatia, and ascospores later in the season, were commonly seen in the frass of slugs that consumed stromata. Some slugs that had no stroma material in their frass appeared to have consumed spermatia and ascospores from the leaf surface. A multiple‐choice laboratory test confirmed the different proportional preferences of P. andersoni and D. reticulatum for stroma (0.72 vs 0.20) and leaf (0.07 vs 0.38), respectively. Two laboratory multiple‐choice tests, and a field survey, found that P. andersoni preferred unfertilised and immature stroma over mature stroma. D. reticulatum is the most common and abundant slug in Willamette Valley grass seed fields, yet it is the least likely to move spermatia between unfertilised stromata, or ascospores to uninfected plants. P. andersoni and A. subfuscus are mycophagous, frequently transport viable spermatia and ascospores in their frass; yet they are generally confined to field edges. Data and observations suggest the role of slugs in the epidemiology of E. typhina is small compared to other factors.  相似文献   

11.
Lewis KC  Bazzaz FA  Liao Q  Orians CM 《Oecologia》2006,148(3):384-395
We investigated geographic patterns of herbivory and resource allocation to defense, growth, and reproduction in an invasive biennial, Alliaria petiolata, to test the hypothesis that escape from herbivory in invasive species permits enhanced growth and lower production of defensive chemicals. We quantified herbivore damage, concentrations of sinigrin, and growth and reproduction inside and outside herbivore exclusion treatments, in field populations in the native and invasive ranges. As predicted, unmanipulated plants in the native range (Hungary, Europe) experienced greater herbivore damage than plants in the introduced range (Massachusetts and Connecticut, USA), providing evidence for enemy release, particularly in the first year of growth. Nevertheless, European populations had consistently larger individuals than US populations (rosettes were, for example, eightfold larger) and also had greater reproductive output, but US plants produced larger seeds at a given plant height. Moreover, flowering plants showed significant differences in concentrations of sinigrin in the invasive versus native range, although the direction of the difference was variable, suggesting the influence of environmental effects. Overall, we observed less herbivory, but not increased growth or decreased defense in the invasive range. Geographical differences in performance and leaf chemistry appear to be due to variation in the environment, which could have masked evolved differences in allocation.  相似文献   

12.
1. Subterranean carabid larvae are more numerous than surface‐active adults, yet very little is known about their ecological significance, dietary preferences or ability to regulate populations of prey species, particularly pests. Part of the reason for this is that predator–prey interactions beneath the soil are almost impossible to observe. 2. Extensive field studies have shown that adult Pterostichus melanarius (Illiger) can affect the temporal and spatial dynamics of their slug prey. However, if larvae too are feeding on slugs, this could radically affect overall predator–prey dynamics. 3. We tested the hypotheses that P. melanarius larvae would kill and consume two slug species, Deroceras reticulatum Müller and Arion intermedius Normand, under laboratory and semi‐field conditions, and that there would be no significant difference in rates of predation on these slug species. 4. A new monoclonal antibody was developed that was capable of detecting the presence of slug proteins in the guts of P. melanarius larvae. 5. Pterostichus melanarius larvae killed both A. intermedius and D. reticulatum in the laboratory, feeding to a greater extent, and growing more rapidly, on the latter. The larvae were equally effective at reducing numbers of both slug species in a crop of wheat grown in semi‐field mini plots, but predation was affected by density‐dependent intra‐specific competition amongst the beetle larvae. 6. Future modelling of the dynamic interactions between carabids and slugs will need to take into account predation by larvae.  相似文献   

13.
S. M. Buckland  J. P. Grime 《Oikos》2000,91(2):336-352
Using closed, ventilated outdoor microcosms, plant communities were allowed to assemble from a pool of 48 herbaceous species comprising a wide range of plant functional types. The experiment involved factorial manipulation of soil fertility, invertebrate herbivores (slugs, grass aphids) and their predators (ground beetles, ladybirds). In the absence of herbivores the vegetation on soils of high, moderate and low fertility was dominated by plant species which under natural field conditions are restricted to fertile soils. At high fertility, the rate of competitive exclusion was rapid compared with communities persisting at lower fertility which remained species‐rich with high densities of individuals.
The effects of herbivory were profound and attributable mainly to the slug Deroceras reticulatum. At moderate and low soil fertility the main effect of herbivores was to change the ranking of plant species; palatable grasses (e.g. Poa annua, Poa trivialis and Lolium perenne) were suppressed and plant species of slower growth rate (e.g. Festuca rubra, Anthoxanthum odoratum, Festuca ovina) were promoted. More subtle impacts of herbivory altered the size structure of plant populations suggesting the preference, by slugs, for seedlings and small (suppressed) plants. Although ladybirds and their larvae persisted in low numbers in some microcosms, carnivory was more strongly in evidence (lower densities of D. reticulatum and reduced consumption of lettuce discs) in relation to the activities of the ground beetle Pterostichus melanarius. Only in the low fertility treatment, however, was this potential translated into effects on vegetation; for several plant species the frequency of large individuals increased in the presence of P. melanarius.
We conclude that outdoor microcosms provide a valuable ecological tool and, in particular, allow investigation of (a) the role of herbivores in promoting slow‐growing plant species in the vegetation of infertile habitats and (b) the protection of palatable plants against herbivores by carnivores.  相似文献   

14.
Harpalus rufipes and Poecilus cupreus are two widespread polyphagous carabids which are known to destroy eggs of the pest slug Deroceras reticulatum in the laboratory. To examine the effect of temperature on the predation of the eggs of D. reticulatum by H. rufipes and P. cupreus, a laboratory experiment with different temperatures and a semi‐field experiment including simulated warming were performed. In both experiments, H. rufipes killed more eggs than P. cupreus, and the predatory activity of the former increased significantly with increasing temperature. To our knowledge, this is the first study on predatory activity of polyphagous carabids on the eggs of a pest slug performed under a climate warming scenario. Results suggest that biological pest control performed by polyphagous carabids such as H. rufipes upon pest slugs may be enhanced under predicted climate warming conditions.  相似文献   

15.
  • Mutualistic (e.g. pollination) and antagonistic (e.g. herbivory) plant–insect interactions shape levels of plant fitness and can have interactive effects.
  • By using experimental plots of Brassica rapa plants infested with generalist (Mamestra brassicae) and specialised (Pieris brassicae) native herbivores and with a generalist invasive (Spodoptera littoralis) herbivore, we estimated both pollen movement among treatments and the visiting behaviour of honeybees versus other wild pollinators.
  • Overall, we found that herbivory has weak effects on plant pollen export, either in terms of inter‐treatment movements or of dispersion distance. Plants infested with the native specialised herbivore tend to export less pollen to other plants with the same treatment. Other wild pollinators preferentially visit non‐infested plants that differ from those of honeybees, which showed no preferences. Honeybees and other wild pollinators also showed different behaviours on plants infested with different herbivores, with the former tending to avoid revisiting the same treatment and the latter showing no avoidance behaviour. When taking into account the whole pollinator community, i.e. the interactive effects of honeybees and other wild pollinators, we found an increased avoidance of plants infested by the native specialised herbivore and a decreased avoidance of plants infested by the invasive herbivore.
  • Taken together, our results suggest that herbivory may have an effect on B. rapa pollination, but this effect depends on the relative abundance of honeybees and other wild pollinators.
  相似文献   

16.
Below‐ground interactions between soil microbial communities and plants play important roles in shaping plant community structure, but are currently poorly understood. Understanding these processes has important practical implications, including for restoration. In this study, we investigated whether soil microbes from remnant areas can aid the restoration of old‐fields, and whether soil microbes from an old‐field encourages further invasive establishment. In a glasshouse experiment, we measured growth and survival of two native grasses (Austrostipa nodosa and Rytidosperma auriculatum) and an invasive grass (Lolium rigidum) grown in sterile soil inoculated with whole soil from three locations: an old‐field, a remnant grassland, and a seed orchard planted with native grasses 7 years ago. Plants grown in sterile, non‐inoculated soil acted as controls. The orchard inoculant was included to test whether soil microbes from an area cultivated with native grasses induced plant responses similar to remnant areas. The remnant treatment resulted in the highest biomass and no mortality for R. auriculatum. All inoculant types increased the biomass of the invasive species equally. The native grass, A. nodosa, was the most sensitive to the addition of inoculum, whereas the invasive L. rigidum suffered very low mortality across all treatments. Overall, mortality was highest in the old‐field treatment at 42.9%. These results give insights into how soil microbes can affect community structure and dynamics, e.g. the high mortality of natives with old‐field inoculant may be one mechanism that allows invasive species to dominate. Poorer performance of native species with the orchard inoculant suggests it would not make a suitable replacement for remnant soil; therefore, more work is needed to understand the requirements of target species and their interactions before this technique can be exploited to maximum benefit.  相似文献   

17.
Nonnative ungulates can alter the structure and function of forest ecosystems. Feral pigs in particular pose a substantial threat to native plant communities throughout their global range. Hawaiian forests are exceptionally vulnerable to feral pig activity because native vegetation evolved in the absence of large mammalian herbivores. A common approach for conserving and restoring forests in Hawaii is fencing and removal of feral pigs. The extent of native plant community recovery and nonnative plant invasion following pig removal, however, is largely unknown. Our objective was to quantify changes in native and nonnative understory vegetation over a 16 yr period in adjacent fenced (pig‐free) vs. unfenced (pig‐present) Hawaiian montane wet forest. Native and nonnative understory vegetation responded strongly to feral pig removal. Density of native woody plants rooted in mineral soil increased sixfold in pig‐free sites over 16 yr, whereas establishment was almost exclusively restricted to epiphytes in pig‐present sites. Stem density of young tree ferns increased significantly (51.2%) in pig‐free, but not pig‐present sites. Herbaceous cover decreased over time in pig‐present sites (67.9%). In both treatments, number of species remained constant and native woody plant establishment was limited to commonly occurring species. The nonnative invasive shrub, Psidium cattleianum, responded positively to release from pig disturbance with a fivefold increase in density in pig‐free sites. These results suggest that while common native understory plants recover within 16 yr of pig removal, control of nonnative plants and outplanting of rarer native species are necessary components of sustainable conservation and restoration efforts in these forests.  相似文献   

18.
There is currently much interest in restoration ecology in identifying native vegetation that can decrease the invasibility by exotic species of environments undergoing restoration. However, uncertainty remains about restoration's ability to limit exotic species, particularly in deserts where facilitative interactions between plants are prevalent. Using candidate native species for restoration in the Mojave Desert of the southwestern U.S.A., we experimentally assembled a range of plant communities from early successional forbs to late‐successional shrubs and assessed which vegetation types reduced the establishment of the priority invasive annuals Bromus rubens (red brome) and Schismus spp. (Mediterranean grass) in control and N‐enriched soils. Compared to early successional grass and shrub and late‐successional shrub communities, an early forb community best resisted invasion, reducing exotic species biomass by 88% (N added) and 97% (no N added) relative to controls (no native plants). In native species monocultures, Sphaeralcea ambigua (desert globemallow), an early successional forb, was the least invasible, reducing exotic biomass by 91%. However, the least‐invaded vegetation types did not reduce soil N or P relative to other vegetation types nor was native plant cover linked to invasibility, suggesting that other traits influenced native‐exotic species interactions. This study provides experimental field evidence that native vegetation types exist that may reduce exotic grass establishment in the Mojave Desert, and that these candidates for restoration are not necessarily late‐successional communities. More generally, results indicate the importance of careful native species selection when exotic species invasions must be constrained for restoration to be successful.  相似文献   

19.
Interspecific interactions play an important role in the success of introduced species. For example, the ‘enemy release’ hypothesis posits that introduced species become invasive because they escape top–down regulation by natural enemies while the ‘invasional meltdown’ hypothesis posits that invasions may be facilitated by synergistic interactions between introduced species. Here, we explore how facilitation and enemy release interact to moderate the potential effect of a large category of positive interactions – protection mutualisms. We use the interactions between an introduced plant (Japanese knotweed Fallopia japonica), an introduced herbivore (Japanese beetle Popillia japonica), an introduced ant (European red ant Myrmica rubra), and native ants and herbivores in riparian zones of the northeastern United States as a model system. Japanese knotweed produces sugary extrafloral nectar that is attractive to ants, and we show that both sugar reward production and ant attendance increase when plants experience a level of leaf damage that is typical in the plants’ native range. Using manipulative experiments at six sites, we demonstrate low levels of ant patrolling, little effect of ants on herbivory rates, and low herbivore pressure during midsummer. Herbivory rates and the capacity of ants to protect plants (as evidenced by effects of ant exclusion) increased significantly when plants were exposed to introduced Japanese beetles that attack plants in the late summer. Beetles were also associated with greater on‐plant foraging by ants, and among‐plant differences in ant‐foraging were correlated with the magnitude of damage inflicted on plants by the beetles. Last, we found that sites occupied by introduced M. rubra ants almost invariably included Japanese knotweed. Thus, underlying variation in the spatiotemporal distribution of the introduced herbivore influences the provision of benefits to the introduced plant and to the introduced ant. More specifically, the presence of the introduced herbivore converts an otherwise weak interaction between two introduced species into a reciprocally beneficial mutualism. Because the prospects for facilitation are linked to the prospects for enemy release in protection mutualisms, species introductions can have complex effects on existing species interactions, between both native and introduced species.  相似文献   

20.
Invasive plants may be attacked both above ground and below ground. Few studies have, however, investigated the simultaneous effects of above‐ground and below‐ground herbivory. In the present study, we report the effects of beetle herbivory and nematode infection on alligator weed, Alternanthera philoxeroides, an invasive plant in China. We found that the root‐knot nematode Meloidogyne incognita widely occurred on the plant in south China. To examine its effect on the plant in conjunction with above‐ground herbivory, we conducted a field common garden experiment with a local insect defoliator, Cassida piperata. We also included the native congener Alternanthera sessilis in our experiments for a comparison of the response of invasive and native species. We found no significant effects on plant biomass of the nematode infection in conjunction with the above‐ground herbivory. Further chemical analysis, however, showed that the water‐soluble carbohydrate content in roots of A. philoxeroides was significantly increased in plants attacked by both the nematode and the herbivore compared with the water‐soluble carbohydrate content in plants attacked by only the nematode or herbivore alone. We found no such change in the native congener A. sessilis. Together these results may suggest that A. philoxeroides tolerates joint above‐ground and below‐ground damage by allocating more resources to below‐ground material.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号