首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Industrial symbiosis (IS) is an important concept in the field of industrial ecology that has disseminated worldwide as a practice to decrease the ecological impact of industrial processes through the exchange of by‐products and waste between units in a system. The forestry industry is the main economic activity in the region of Lages in southern Brazil. IS relationships have expanded with the use of waste material from wood processing and strengthened cooperation between companies in different sectors. The aims of this article were to: a) quantify the level of IS in the system, b) identify the benefits of IS for participants, and c) explain why the network further developed IS to the formation of an industrial ecosystem. A questionnaire was administered during visits to 24 forestry companies in order to analyze their products and processes, commercial relations, positive impacts, and local insertion. The industrial symbiosis indicator (ISI) was determined using waste stream data from the system to represent the level of symbiosis among the companies in this region. The results show that the companies participate in a symbiotic network, mainly involving the exchange of chips, bark, sawdust and shavings. In most cases, these exchanges occur between nearby companies, constituting an extensive industrial ecosystem.  相似文献   

2.
Closing loops by intercompany recycling of by‐products is a core theme of industrial ecology (IE). This article considers whether industrial recycling networks or industrial symbiosis projects can be used as a starting point for much broader intercompany cooperation for sustainable development. Evidence presented is based on the results of an empirical investigation of the recycling network Styria in Austria, the recycling network Oldenburger Münsterland in Germany, and the manufacturing sector in Austria. Statistical analysis shows that the percentage of by‐products that are passed on to other companies for recycling purposes is not higher in member companies of the recycling networks than in the other companies of the manufacturing sector in Austria. In terms of cooperation, the relationships with the respective recycling partners are found to be very similar to regular customer relations. Furthermore, the companies of the recycling networks remain unaware of the network to which they belong. Instead, one of the main findings of this study is that intercompany recycling activities are regarded by the company representatives as bilateral market transactions, not as collaborative network activities. This has potentially significant implications for the use of industrial symbiosis networks as starting points for sustainability networks with broader cooperation toward sustainability. The findings raise interesting questions as to whether such broader cooperation might result from a conscious planning process or might emerge largely spontaneously as part of normal market coordination. In any case, intercompany recycling is clearly considered to be a very important field of collaborative action for sustainability in industry.  相似文献   

3.
Industrial symbiosis (IS) exchanges have been recognized to reduce greenhouse gas (GHG) emission, though methods for quantification of GHG emissions in IS exchanges are varied, and no standardized methods are available. This article proposes a practical approach to quantify total and allocated GHG emissions from IS exchanges by integrating the GHG protocol and life cycle assessment. The proposed method expands the system boundaries to include all IS companies, and the functional flow is set to be the sum of the main products. The total impact of a company is allocated to the main product. Three by‐product impact allocation methods of cutoff, avoidance, and 50/50 are proposed, and the total and distributed impacts of the IS systems in an industrial park are theoretically derived. The proposed method was tested to quantify GHG reduction in a real IS exchange developed between Korea Zinc (a zinc smelter) and Hankook Paper (a paper mill company) in the Ulsan Eco‐Industrial Park initiative. The total reduction of GHG emissions in this IS exchange, 60,522 tonnes of carbon dioxide per year, was the same in the GHG protocol, whereas GHG distribution between two companies depended on the allocation method. Given that the reduction of GHG emissions from IS exchanges is the product of the collaboration of giving companies and receiving companies, the 50/50 allocation method is best from an equivalent‐responsibility and benefit‐sharing perspective. However, this study suggests a more practical implementation approach based on a flexible and negotiable method of allocating the total GHG reduction between stakeholders.  相似文献   

4.
The realization of regional synergies in industrial areas with intensive minerals processing provides a significant avenue toward sustainable resource processing. This article provides an overview of past and current synergy developments in two of Australia's major heavy industrial regions, Kwinana (Western Australia) and Gladstone (Queensland), and includes a comparative review and assessment of the drivers, barriers, and trigger events for regional synergies initiatives in both areas. Kwinana and Gladstone compare favorably with well‐known international examples in terms of the current level and maturity of industry involvement and collaboration and the commitment to further explore regional resource synergies. Kwinana stands out with regard to the number, diversity, complexity, and maturity of existing synergies. Gladstone is remarkable with regard to unusually large geographic boundaries and high dominance of one industry sector. Many diverse regional synergy opportunities still appear to exist in both industrial regions (particularly in Kwinana), mostly in three broad areas: water, energy, and inorganic by‐product reuse. To enhance the further development of new regional synergies, the Centre for Sustainable Resource Processing (CSRP), a joint initiative of Australian minerals processing companies, research providers, and government agencies, has undertaken several collaborative projects. These include research to facilitate the process of identifying and evaluating potential synergy opportunities and assistance for the industries with feasibility studies and implementation of selected synergy projects in both regions. The article also reports on the progress to date from this CSRP research.  相似文献   

5.
By‐product synergy is a growing practice worldwide. It consists in the maximization of resources utilization with the replacement of raw materials by by‐products as inputs for industrial processes. In order to support decision making in such strategic projects, appropriate tools must be developed. This article presents the results of a research project, which includes the development of a multiobjective mathematical programming model for the optimization of by‐product flows, synergy configurations, and investment decisions in eco‐industrial networks. This model is evaluated using data related to the Kalundborg industrial symbiosis (IS) in order to illustrate its utilization, as well as to assess, in a retrospective manner, the behavior of the companies involved with respect to both economic and environmental benefits of synergies. The experiments also illustrate the influence of the municipality on synergy implementation and how a scenario‐based approach can be used to anticipate raw material price increase. The results are generally coherent with the actual timing of synergy initializations. Further, the considerable effect of water price on the length of investments’ payback period illustrates the impact of policies and regulations on IS.  相似文献   

6.
The concept of industrial symbiosis (IS) over the last 20 years has become a well‐recognized approach for environmental improvements at the regional level. Many technical solutions for waste and by‐product material, water, and energy reuse between neighboring industries (so‐called synergies) have been discovered and applied in the IS examples from all over the world. However, the potential for uptake of new synergies in the regions is often limited by a range of nontechnical barriers. These barriers include environmental regulation, lack of cooperation and trust between industries in the area, economic barriers, and lack of information sharing. Although several approaches to help identify and overcome some of the nontechnical barriers were examined, no methodology was found that systematically assessed and tracked the barriers to guide the progress of IS development. This article presents a new tool—IS maturity grid—to tackle this issue in the regional IS studies. The tool helps monitor and assess the level of regional industrial collaboration and also indicates a potential path for further improvements and development in an industrial region, depending on where that region currently lies in the grid. The application of the developed tool to the Gladstone industrial region of Queensland, Australia, is presented in the article. It showed that Gladstone is at the third (active) stage of five stages of maturity, with cooperation and trust among industries the strongest characteristic and information barriers the characteristic for greatest improvement.  相似文献   

7.
Eco‐industrial networks (EINs, of which eco‐industrial parks are a subset) have gained support as a solution that simultaneously reduces environmental burdens and promotes economic interests. EINs operate under a mutualistic framework, where waste materials and energy are exchanged between industries to their mutual benefit, creating a diverse web of flows. Recent studies have focused on analogies between food webs (FWs) and EINs, measuring a network's success at ecological imitation as representative of its sustainability. Studies have focused heavily on the number of links and nodes in a network, but have neglected the economic reality that each investment comes at the opportunity cost of all alternatives. This analysis focuses on the nestedness metric as used by ecologists to address this pivotal facet to the FW‐EIN analogy. Nestedness describes an ecological strategy for the position of links between nodes in a network in a way that maximizes network cycling for a given number of connections. This metric presents many advantages for EIN design and analysis, including maturity independence, size normalization, and a strong statistical record in highly mutualistic ecological systems. Application of nestedness to EINs indicates a lower presence of nested structures and more randomness than what is typically seen in FWs. The industrial networks also display a correlation between high nestedness and internal cycles, suggesting that the reuse of materials and energy in EINs can be improved upon by increasing the nestedness of structures.  相似文献   

8.
Reusing heat through process integration in heat exchanger networks has long been a key measure for increasing energy efficiency in energy‐intensive industries. Thermal pinch analysis is commonly used for a systematic matching of process streams and thus planning of optimal process integration in large chemical plants. The possible savings increase with the amount of heat and the number of integrated process streams. Therefore co‐ siting of several companies in a symbiotic network opens new opportunities for process integration even in small and medium‐size enterprises (SMEs), but also introduces new challenges. Thermal pinch analysis is extended here to account for piping distances and fluctuations and limited availability of energy flows by adding additional costs for the piping system and a backup utility system in the optimization function. Cooperative game theory is proposed to derive a sharing of savings between the partners of the industrial symbiosis that is optimal for each partner and should prevent partners from leaving the network because of higher benefits in a subgroup or alone. It is argued that knowledge about the optimality of a network for each partner creates trust between the partners that is a necessary base for the long‐term commitment needed in industrial symbioses. An exemplary symbiotic network combining the production of pulp and woody biomass energy carriers is used to illustrate the proposed approaches.  相似文献   

9.
Industrial synergies join two or more organizations that initially functioned as independent economic actors—that may originate from different sectors—together in order to share resources and exchange by‐products for mutual environmental, financial, and social benefits for its participants. Industrial symbioses (ISs) are networks of industrial synergies that can be initiated and created over time in various manners. In practice, the initiation of an industrial synergy, and particularly the identification of by‐product compatibilities, relies on direct or facilitated knowledge and information sharing, which is essential for discovering industrial synergy opportunities. Beyond its potential contribution to facilitate knowledge and information sharing among organizations, the Social Semantic Web (SSW) also has the potential to facilitate the initiation of industrial synergy by systematically and automatically identifying and recommending by‐products exchange compatibilities to potential partners. This framework exploits the ability of the sematic web to enable the search for analogies between potential partners within a region or district and existing industrial synergies around the world. This paper proposes the Social Semantic Web for Industrial Synergies Initiation (SSWISI) framework for the initiation of industrial synergies, which is based on the Social Semantic Web. The framework proposed in this paper adopts the concept of Linked Open Data (LOD), which enables the sharing and exchanging of information with external systems. This feature distinguishes the proposed framework from the existing approaches in its initiation of industrial synergies.  相似文献   

10.
In view of urbanization trends coupled with climate‐change challenges, it is increasingly important to establish less‐harmful means of urban living. To date, urban metabolism (UM) studies have quantified the aggregate material and energy flows into and out of cities and, further, have identified how consumer activity causes these flows. However, little attention has been paid to the networks of conversion processes that link consumer end‐use demands to aggregate metabolic flows. Here, we conduct a systematic literature search to assemble a database of 202 urban energy, water, and waste management processes. We show how the database can help planners and policy makers choose the preferred process to meet a specific resource management need; identify synergies between energy, water, and waste management processes; and compute optimal networks of processes to meet an area's consumer demand at minimum environmental cost. We make our database publicly available under an open‐source license and discuss the possibilities for how it might be used alongside other industrial ecology data sets to enhance research opportunities. This will encourage more holistic UM analyses, which appreciate how both consumer activity and the engineered urban system work together to influence aggregate metabolic flows and thus support efforts to make cities more sustainable.  相似文献   

11.
Eco‐industrial initiatives, which close industrial loops by turning wastes at one point in a value chain into inputs at another point, are attracting growing interest as a solution to the problem of sustainability of industrial systems. Although Germany and Japan have made important advances in building recycling incentives into their industrial systems and sought competitive advantage from doing so, China is arguably taking the issue even further (in principle) through its pursuit of a circular economy, now enshrined in law as an official national development goal. In this article, we review a number of the eco‐industrial initiatives taken in China and compare them using a common graphical representation with comparable initiatives taken in the West and elsewhere in East Asia. Our aim is to demonstrate some common themes across the case studies, such as the transformation from the former linear economy to a circular economy and the evolutionary processes in which dynamic linkages are gradually established over time. We discuss the drivers of these eco‐industrial initiatives as well as the inhibitors, setting the initiatives in an evolutionary framework and introducing a notion of Pareto eco‐efficiency to evaluate them. We make the argument that China might be capturing latecomer advantages through its systematic promotion of eco‐industrial initiatives within a circular economy framework.  相似文献   

12.
The most commonly cited definition of industrial symbiosis (IS), by Chertow (2000) , has served well to foster discussion and research for more than a decade. The definition reflected the state of research and practice at the time; as both have advanced, some terms have been interpreted in substantially different ways. In this article we analyze those generally used terms for their connection to the ecological metaphor that is the root of industrial ecology, and their varied interpretations in IS research and practice over time. We then propose an updated definition intended to communicate the essence of IS as a tool for innovative green growth: IS engages diverse organizations in a network to foster eco‐innovation and long‐term culture change. Creating and sharing knowledge through the network yields mutually profitable transactions for novel sourcing of required inputs and value‐added destinations for non‐product outputs, as well as improved business and technical processes. We posit that, although geographic proximity is often associated with IS, it is neither necessary nor sufficient—nor is a singular focus on physical resource exchange.  相似文献   

13.
In 2005, South Korea initiated the 15‐year National Eco‐Industrial Park Development Program in three stages to gradually transform aged industrial complexes into eco‐industrial parks (EIPs) by promoting industrial symbiosis (IS). Building upon the pilot experiences from the first 5 years, the second phase of the program focused on the scaling‐up of IS at a broader regional level. Key scaling‐up strategies included the expansion of target areas by connecting multiple industrial complexes, the standardization of processes and dissemination of learning, and the development of large‐scale projects that could contribute to the regional development. In this study, we examined the evolution of IS over the last 10 years between 2005 and 2014, primarily to understand the characteristics and impact of these scaling‐up strategies. Our findings showed that the scale of IS in the second phase had increased in various aspects in comparison to that in the first phase. The number of operating projects had increased from 52 to 159, the number of participating firms increased from 90 to 596, and the average distance of IS increased from 40 to 48 kilometers. The size of economic and environmental benefits also increased along with an increase in the private investment and government research funding. We further analyzed the role of the regional EIP centers as facilitators, how their activities influenced the scaling‐up of IS, and discussed the characteristics of the Korea's approach to IS.  相似文献   

14.
Models of eco‐industrial parks (EIPs) might help us transform our production systems by fostering the emergence of sustainable EIPs since such models have the potential to support the decision‐making processes of cooperative companies that participate and to decrease operational uncertainties. In this article, a conceptual framework for modeling the operation of EIPs is presented. The framework is underpinned by complex adaptive systems theory, industrial ecology, and an analysis of the experiences of existing EIPs. The proposed framework draws on the observed strengths of two types of industrial symbiosis models—planned eco‐industrial parks (PEIPs) and EIPs that developed through self‐organizing symbiosis (SOS)—as well as their observed weaknesses and the features of complex adaptive systems. From this analysis, five key properties to be modeled are deduced: functionality, reliability, life span, theoretical knowledge, and adaptability. It is proposed that the properties of functionality and theoretical knowledge are determined by the goals of the EIP and its member companies, while the property of adaptability is determined by the understanding that the companies in an EIP have of the environment surrounding the EIP, while the properties of reliability and life span are determined by the internal and external relationships of the companies that make up an EIP.  相似文献   

15.
Like many economic exchanges, industrial symbiosis (IS) is thought to be influenced by social relationships and shared norms among actors in a network. While many implicit references to social characteristics exist throughout the literature, there have been few explicit attempts to operationalize and measure the concepts. The “short mental distance,”“trust,”“openness,” and “communication” recorded among managers in Kalundborg, Denmark, set a precedent for examining and encouraging social interactions among key personnel in the dozens of eco‐industrial networks around the world. In this article we explore the relationships among various aspects of social embeddedness, social capital, and IS. We develop a conceptual framework and an approach using quantitative and qualitative methods to identify and measure these social characteristics, including social network structure, communication, and similarities in norms and conceptions of waste, and apply them in an industrial network in Nanjangud, South India. The findings suggest that there is a fairly high level of shared norms about dealing with waste—the “short mental distance”—in this network, but by‐product transactions are only weakly correlated with the structure and content of communication among managers. Replication of this approach can increase the understanding and comparability of the role of social characteristics in eco‐industrial activities around the world.  相似文献   

16.
张其春  郗永勤 《生态学报》2017,37(11):3607-3618
挖掘城市废弃物中有价值的资源,已经成为世界各国开展废弃物开发与管理的共同选择。产业共生是推动经济绿色发展和提高资源效率的战略工具,已经成为探讨废弃物资源化利用问题的重要视角。将产业共生理论引入城市废弃物资源化利用领域,提出城市废弃物资源化共生网络的概念,并将其典型特征概括为"四个统一",即价值网络与责任网络的统一,集聚共生与虚拟共生的统一,稳健型与脆弱性的统一以及自组织性与主体建构性的统一。借鉴超网络理论构建城市废弃物资源化共生网络体系的结构模型,并从共生单元、共生模式、共生界面和共生环境4个层面对该模型进行详细解析。城市废弃物资源化共生网络可分为核心网络和外围网络,两者之间存在全方位、多层次的合作机制。在城市废弃物资源化共生网络中,共生单元具有多层次性和多样性特征,它们之间存在着不同类型、效率各异的共生关系,推动共生模式向对称互惠一体化共生进化是破解城市废弃物资源化利用难题的关键;共生界面具有物质交换、能量传递、信息共享、知识传播及利益协调等多样化功能,而共生关系的进化以及共生界面功能发挥又依赖于优越的共生环境。此外,城市废弃物资源化共生网络有依托型、平等型、嵌套型和虚拟型等4种运作模式,国内典型案例分析表明这4种运作模式将长期并存。  相似文献   

17.
The German government has recently initiated funding schemes that incentivize strategies for wood‐based bioeconomy regions. Regional wood and chemical industries have been encouraged to act symbiotically, that is, share pilot plant facilities, couple processes where feasible, and cascade woody feedstock throughout their process networks. However, during the planning stages of these bioeconomy regions, options need to be assessed for sustainably integrating processes and energy integration between the various industries that produce bio‐based polymers and engineered wood products. The aim of this paper is to identify the environmental sustainability of industrial symbiosis for producing high‐value‐added, bio‐based products in the wood‐based bioeconomy region of Central Germany. An analysis was conducted of three possible future scenarios with varying degrees of symbiosis in the bioeconomy network. A life cycle assessment (LCA) approach was used to compare these three scenarios to a traditional fossil‐based production system. Eleven environmental impact categories were considered. The results show that, in most cases, the bioeconomy network outperformed the fossil‐based production system, mitigating environmental impacts by 25% to 130%.  相似文献   

18.
The identification of potential by‐product exchanges is important for fostering industrial symbiosis. To discover these potential exchanges, this article extends the analysis of local industrial symbiosis to a national scale. A waste input‐output table, which is a material flow accounting tool, was compiled and used as a database to examine the existing exchanges of by‐products. The supplies and demands of industrial wastes or by‐products were compared to highlight their potential use for promoting higher exchange flows. The analysis of the linkages indicated that the majority of each of the by‐products were reused by the few industries that had the technology and operational capacity for reuse. This finding is useful for determining which industries are good candidates for promoting further industrial symbiosis (IS). Based on a nation‐wide analysis that considered the industrial characteristics of Taiwan comprehensively, 23 types of major by‐products with greater reuse flows and 216 potential exchange patterns were identified between the industries. In addition, three types of eco‐industrial networks were characterized as follows according to their dominant types: (1) fossil fuel, metal, and mineral‐dominated; (2) agricultural and synthetic material‐dominated; and (3) information and communications technology (ICT) and chemical industry‐dominated eco‐industrial networks. This analysis highlights the resource exchange potentials and provides information to new firms for networking with existing businesses.  相似文献   

19.
This article describes a decision‐support tool to help pinpoint the potential root causes of sub‐optimal short‐term facility fit issues in biopharmaceutical facilities. This was achieved by creating a tool that integrated stochastic simulation with advanced multivariate statistical analysis. Process fluctuations in product titers in cell culture, step yields, and chromatography eluate volumes were mimicked using Monte Carlo simulation data derived using a stochastic discrete‐event simulation model. The resulting stochastic datasets, with the computed consequences on key metrics such as product mass loss and cost of goods, were examined using advanced multivariate statistical techniques. Principal component analysis combined with clustering algorithms was used to analyze the complex datasets from complete industrial batch processes for biopharmaceuticals. The challenge of visualizing the multidimensional nature of the dataset was addressed using hierarchical and k‐means clustering as well as stacked parallel co‐ordinate plots to help identify process fingerprints and characteristics of clusters leading to sub‐optimal facility fit issues. Industrially‐relevant case studies are presented that focus on technology transfer challenges for therapeutic antibodies moving from early phase to late phase clinical trials. The case study details how sub‐optimal facility fit can be alleviated by allocating alternative product pool tanks. The impact of this operational change is then assessed by reviewing an updated process fingerprint. © 2013 American Institute of Chemical Engineers Biotechnol. Prog., 29: 368–377, 2013  相似文献   

20.
Symbiotic linkages in industry clusters in the form of interconnected materials, energy and information flows, and close proximity provide unique opportunities to develop efficient environmental strategies. The purpose of our study is to examine the practical potential of applying a life cycle approach in strategy evaluations, as the environmental impact caused by industrial symbiosis systems outside the company gates has been scarcely addressed. This is done by evaluating two strategies for an industry cluster in Sweden: (1) to replace a share of the fossil feedstock used in the industry cluster with forest‐based feedstock and (2) to improve energy efficiency through thermal energy integration. The environmental impact reduction potential of the strategies is evaluated using life cycle assessment. The ratio between investment cost and reduced global warming potential is used as an indicator to evaluate the cost‐effectiveness of the strategies. Results demonstrate the importance of applying a life cycle perspective as the assessment outcome depends heavily on whether only on‐site consequences are assessed or if upstream and downstream processes are also included. 20% of the greenhouse gas emission reduction of the energy integration strategy occurs off‐site, whereas the forest strategy has the largest reduction potential off‐site, >80%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号