首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Pacinian corpuscle (PC) is the cutaneous mechanoreceptor responsible for sensation of high-frequency (20–1000 Hz) vibrations. PCs lie deep within the skin, often in multicorpuscle clusters with overlapping receptive fields. We developed a finite-element mechanical model of one or two PCs embedded within human skin, coupled to a multiphysics PC model to simulate action potentials elicited by each PC. A vibration was applied to the skin surface, and the resulting mechanical signal was analyzed using two metrics: the deformation amplitude ratio (\({\rho }_{\mathrm{1S}} \), \({\rho }_{\mathrm{2S}} )\) and the phase shift of the vibration (\({\delta }_{\mathrm{S}1}^{\mathrm{mech}} \), \({\delta }_{\mathrm{S}2}^{\mathrm{mech}} )\) between the stimulus and the PC. Our results showed that the amplitude attenuation and phase shift at a PC increased with distance from the stimulus to the PC. Differences in amplitude (\(\rho _{12} )\) and phase shift (\({\delta }_{12}^{\mathrm{mech}} )\) between the two PCs in simulated clusters directly affected the interspike interval between the action potentials elicited by each PC (\({\delta }_{12}^{\mathrm{spike}} )\). While \({\delta }_{12}^{\mathrm{mech}} \) had a linear relationship with \({\delta }_{12}^{\mathrm{spike}} \), \(\rho _{12} \)’s effect on \({\delta }_{12}^{\mathrm{spike}} \) was greater for lower values of \(\rho _{12} \). In our simulations, the separation between PCs and the distance of each PC from the stimulus location resulted in differences in amplitude and phase shift at each PC that caused \({\delta }_{12}^{\mathrm{spike}} \) to vary with PC location. Our results suggest that PCs within a cluster receive different mechanical stimuli which may enhance source localization of vibrotactile stimuli, drawing parallels to sound localization in binaural hearing.  相似文献   

2.
Large amounts of atmospheric N deposition cause negative effects on ecosystems. Effective mitigation strategies require the sources of N deposition to be identified and the contributions from individual sources to be quantified. Determination of the isotopic composition represents a useful approach in source apportionment. In this study, the δ15N-NHx of wet and dry atmospheric deposition and the main NH3 emission sources were analyzed at an urban, a suburban and a rural site in the Taihu Lake region of China. The 2-year average δ15N-\( {\text{NH}}_{4}^{ + } \) of precipitation was ? 3.0 ± 2.3, ? 3.1 ± 2.8 and ? 0.5 ± 2.8‰ for the urban, suburban and rural sites, respectively. These values were much lower than the corresponding values for particulate \( {\text{NH}}_{4}^{ + } \) (15.9, 15.2 and 14.3‰ at the urban, suburban and rural sites, respectively), and much higher than those of gaseous δ15N-NH3 (? 16.7, ? 18.2 and ? 17.4‰ at the urban, suburban and rural sites, respectively). The δ15N-NH3 of NH3 from the main emission sources ranged from ? 30.8 to ? 3.3‰ for volatilized fertilizer, from ? 35.1 to ? 10.5‰ for emissions from a pig farm, and ? 24.7 to ? 11.3‰ for emissions from a dairy farm. Temporal variations of deposition δ15N-NHx indicated that δ15N-NHx values were lower in summer and autumn, but higher in winter and spring for both precipitation \( {\text{NH}}_{4}^{ + } \)-N and gaseous NH3-N. Weather conditions such as temperature and precipitation significantly influenced the spatial and temporal distribution of isotope values of the deposition. Analysis of δ15N-NHx in deposition and emission sources identified volatilized fertilizer and livestock wastes as the origins of both gaseous NH3-N and precipitation \( {\text{NH}}_{4}^{ + } \)-N over the region. A stable isotope mixing model estimated that volatilized fertilizer and animal excreta contributed more than 65% to precipitation \( {\text{NH}}_{4}^{ + } \)-N, more than 60% to particulate \( {\text{NH}}_{4}^{ + } \)-N, and more than 75% to gaseous NH3-N.  相似文献   

3.
In this work we studied the structural and electronic properties of the metal–Schiff base complexes Ni\( {\mathrm{L}}_2^2 \) (1), Pd\( {\mathrm{L}}_2^1 \) (2), Zn\( {\mathrm{L}}_2^2 \) (3), and Ni\( {\mathrm{L}}_2^1 \)(4), where L1 and L2 are Schiff bases synthesized from salicylaldehyde and 2-hydroxy-5-methylbenzaldehyde, respectively. Natural bond analysis showed that in complexes 1 and 2, the metal ion coordinates to the ligands through electron donation from lone pairs on ligand nitrogen and oxygen atoms to s and d orbitals on the metal ion. In complex 3, metal–N and metal–O bonds are formed through charge transfer from the lone pairs on nitrogen and oxygen atoms to an s orbital of Zn. Dimethylation of the phenolate rings in the ligands decreases the energy gap and redshifts the spectrum of the nickel complex. The main absorptions observed were assigned on the basis of singlet-state transitions. The simulated spectra of the two complexes 1 and 2 are characterized by excited states with ligand-to-ligand charge-transfer (LLCT), metal-to-ligand charge-transfer (MLCT), ligand-to-metal charge-transfer (LMCT), and metal-centered (MC) character.
Graphical abstract Geometric structure of the palladium complex.
  相似文献   

4.
Tryptophan fluorescence lifetimes were analyzed for three proteins: human serum albumin, bovine serum albumin, and bacterial luciferase, which contain one, two, and seven tryptophan residues, respectively. For all of the proteins, the fluorescence decays were fitted by three lifetimes: τ1 = 6–7 ns, τ2 = 2.0–2.3 ns, and τ3 ≤ 0.1 ns (the native state), and τ1 = 4.4–4.6 ns, τ2 = 1.7–1.8 ns, and τ3 ≤ 0.1 ns (the denatured state). Corresponding decay-associated spectra had similar peak wavelengths and spectrum half-widths both in the native state (\(\lambda _{\max }^{{\tau _1}} = 324nm\), \(\lambda _{\max }^{{\tau _2}} = 328nm\), and \(\lambda _{\max }^{{\tau _3}} = 315nm\)), and in the denatured state (\(\lambda _{\max }^{{\tau _1}} = 350nm\), \(\lambda _{\max }^{{\tau _2}} = 343nm\), and \(\lambda _{\max }^{{\tau _3}} = 317nm\)). The differences in the steady-state spectra of the studied proteins were accounted for the individual ratio of the lifetime component contributions. The lifetime components were compared with a classification of tryptophan residues in the structure of these proteins within the discrete states model.  相似文献   

5.
Several decades of research in alpine ecosystems have demonstrated links among the critical zone, hydrologic response, and the fate of elevated atmospheric nitrogen (N) deposition. Less research has occurred in mid-elevation forests, which may be important for retaining atmospheric N deposition. To explore the fate of N in the montane zone, we conducted plot-scale experimental rainfall events across a north–south transect within a catchment of the Boulder Creek Critical Zone Observatory. Rainfall events mimicked relatively common storms (20–50% annual exceedance probability) and were labeled with 15N-nitrate (\( {\text{NO}}_{3}^{ - } \)) and lithium bromide tracers. For 4 weeks, we measured soil–water and leachate concentrations of Br?, \( {}^{15}{\text{NO}}_{3}^{ - } , \) and \( {\text{NO}}_{3}^{ - } \) daily, followed by recoveries of 15N species in bulk soils and microbial biomass. Tracers moved immediately into the subsurface of north-facing slope plots, exhibiting breakthrough at 10 and 30 cm over 22 days. Conversely, little transport of Br? or \( {}^{15}{\text{NO}}_{3}^{ - } \) occurred in south-facing slope plots; tracers remained in soil or were lost via pathways not measured. Hillslope position was a significant determinant of soil 15N-\( {\text{NO}}_{3}^{ - } \) recoveries, while soil depth and time were significant determinants of 15N recovery in microbial biomass. Overall, 15N recovery in microbial biomass and leachate was greater in upper north-facing slope plots than lower north-facing (toeslope) and both south-facing slope plots in August; by October, 15N recovery in microbial N biomass within south-facing slope plots had increased substantially. Our results point to the importance of soil properties in controlling the fate of N in mid-elevation forests during the summer season.  相似文献   

6.
To facilitate the development of new materials for use in batteries, it is necessary to develop ab initio full-electron computational techniques for modeling potential new battery materials. Here, we tested density functional theory procedures that are accurate enough to obtain the energetics of a zinc/copper voltaic cell. We found the magnitude of the zero-point energy correction to be 0.01–0.2 kcal/mol per atom or molecule and the magnitude of the dispersion correction to be 0.1–0.6 kcal/mol per atom or molecule for Zn n , (H2O) n , \( \mathrm{Zn}{\left({\mathrm{H}}_2\mathrm{O}\right)}_n^{2+} \), \( \mathrm{Cu}{\left({\mathrm{H}}_2\mathrm{O}\right)}_n^{2+} \), and Cu n . Counterpoise correction significantly affected the values of ?\( {E}_n^{\mathrm{abs}} \), ?\( {E}_n^{\mathrm{coh}} \), and ?Esolv by 1.0–3.1 kcal/mol per atom or molecule at the B3PW91/6-31G(d) level of theory, but by only 0.04–0.4 kcal/mol per atom or molecule at the B3PW91/cc-pVTZ level of theory. The application of B3PW91/6-31G(d) yielded results that differed from macroscopic experimental values by 0.1–7.1 kcal/mol per atom or molecule, whereas applying B3PW91/cc-pVTZ produced results that differed from macroscopic experimental values by 0.1–4.8 kcal/mol per atom or molecule, with the smallest differences occurring for reactions with a small macroscopic experimental ?E and the largest differences occurring for reactions with a large macroscopic experimental ?E, implying size consistency.  相似文献   

7.
Amphibians are globally threatened by habitat loss and fragmentation; species within the order Ambystoma are not the exception, as there are 18 species of mole salamanders in México, of which 16 are endemic and all species are under some national or international status of protection. The mole salamander, Ambystoma altamirani is a microendemic species, which is distributed in central México, within the trans-Mexican volcanic belt, and is one of the most threatened species due to habitat destruction and the introduction of exotic species. Nine microsatellite markers were used to determine the genetic structure, genetic variability, effective population size, presence of bottlenecks and inbreeding coefficient of one population of A. altamirani to generate information which might help to protect and conserve this threatened species. We found two genetic subpopulations with significant level of genetic structure (\(F_{\mathrm{ST}}= 0.005\)) and high levels of genetic variability (\(H_{\mathrm{o}}= 0.883\); \(H_{\mathrm{e}}= 0.621\)); we also found a small population size (\(N_{\mathrm{e}} = 8.8\)), the presence of historical (\(M =\) 0.486) and recent bottlenecks under IAM and TPM models, with a low, but significant coefficient of inbreeding (\(F_{\mathrm{IS}} = -\)0.451). This information will help us to raise conservation strategies of this microendemic mole salamander species.  相似文献   

8.
Aberrant NSD2 methyltransferase activity is implicated as the oncogenic driver in multiple myeloma, suggesting opportunities for novel therapeutic intervention. The methyltransferase activity of NSD2 resides in its catalytic SET domain, which is conserved among most lysine methyltransferases. Here we report the backbone \(\hbox {H}^{\mathrm{N}}\), N, C\(^{\prime }\), \(\hbox {C}^\alpha\) and side-chain \(\hbox {C}^\beta\) assignments of a 25 kDa NSD2 SET domain construct, spanning residues 991–1203. A chemical shift analysis of C\(^{\prime }\), \(\hbox {C}^\alpha\) and \(\hbox {C}^\beta\) resonances predicts a secondary structural pattern that is in agreement with homology models.  相似文献   

9.
We investigated the interaction (hyper)polarizability of neon–dihydrogen pairs by performing high-level ab initio calculations with atom/molecule-specific, purpose-oriented Gaussian basis sets. We obtained interaction-induced electric properties at the SCF, MP2, and CCSD levels of theory. At the CCSD level, for the T-shaped configuration, around the respective potential minimum of 6.437 a0, the interaction-induced mean first hyperpolarizability varies for 5?<? R/a0?<?10 as
$$ \left[{\overline{\beta}}_{\mathrm{int}}(R)\hbox{-} {\overline{\beta}}_{\mathrm{int}}\left({R}_{\mathrm{e}}\right)\right]/{e}^3{a_0}^3{E_{\mathrm{h}}}^{-2}=-0.91\left(R\hbox{-} {R}_{\mathrm{e}}\right)+0.50{\left(R\hbox{-} {R}_{\mathrm{e}}\right)}^2\hbox{--} 0.13{\left(R\hbox{-} {R}_{\mathrm{e}}\right)}^3+0.01{\left(R\hbox{-} {R}_{\mathrm{e}}\right)}^4. $$
Again, at the CCSD level, but for the L-shaped configuration around the respective potential minimum of 6.572 a0, this property varies for 5?<? R/a0?<?10 as
$$ \left[{\overline{\beta}}_{\mathrm{int}}(R)\hbox{-} {\overline{\beta}}_{\mathrm{int}}\left({R}_{\mathrm{e}}\right)\right]/{e}^3{a_0}^3{E_{\mathrm{h}}}^{-2}=-1.33\left(R\hbox{-} {R}_{\mathrm{e}}\right)+0.75{\left(R\hbox{-} {R}_{\mathrm{e}}\right)}^2-0.20{\left(R\hbox{-} {R}_{\mathrm{e}}\right)}^3+0.02{\left(R\hbox{-} {R}_{\mathrm{e}}\right)}^4. $$
Graphical Abstract Interaction-induced mean dipole polarizability (\( \overline{a} \)) for the T-shaped configuration of H2–Ne calculated at the SCF, MP2, and CCSD levels of theory
  相似文献   

10.

Introduction

The Elongator complex, comprising six subunits (Elp1p-Elp6p), is required for formation of 5-carbamoylmethyl (ncm5) and 5-methoxycarbonylmethyl (mcm5) side chains on wobble uridines in 11 out of 42 tRNA species in Saccharomyces cerevisiae. Loss of these side chains reduces the efficiency of tRNA decoding during translation, resulting in pleiotropic phenotypes. Overexpression of hypomodified \( {\text {tRNA}_{{\rm s^{2} {\rm UUU}}}^{{\rm Lys}} , {\rm tRNA}_{{\rm s^{2} {\rm UUG}}}^{{\rm Gln }} \;{\rm and}\;{\rm tRNA}_{{\rm s^{2} {\rm UUC}}}^{{\rm Glu}}} \), which in wild-type strains are modified with mcm5s2U, partially suppress phenotypes of an elp3Δ strain.

Objectives

To identify metabolic alterations in an elp3Δ strain and elucidate whether these metabolic alterations are suppressed by overexpression of hypomodified \( {\text {tRNA}_{{\rm s^{2} {\rm UUU}}}^{{\rm Lys}} , {\rm tRNA}_{{\rm s^{2} {\rm UUG}}}^{{\rm Gln }} \;{\rm and}\;{\rm tRNA}_{{\rm s^{2} {\rm UUC}}}^{{\rm Glu}}} \).

Method

Metabolic profiles were obtained using untargeted GC-TOF-MS of a temperature-sensitive elp3Δ strain carrying either an empty low-copy vector, an empty high-copy vector, a low-copy vector harboring the wild-type ELP3 gene, or a high-copy vector overexpressing \( {\text {tRNA}_{{\rm s^{2} {\rm UUU}}}^{{\rm Lys}} , {\rm tRNA}_{{\rm s^{2} {\rm UUG}}}^{{\rm Gln }} \;{\rm and}\;{\rm tRNA}_{{\rm s^{2} {\rm UUC}}}^{{\rm Glu}}} \). The temperature sensitive elp3Δ strain derivatives were cultivated at permissive (30 °C) or semi-permissive (34 °C) growth conditions.

Results

Culturing an elp3Δ strain at 30 or 34 °C resulted in altered metabolism of 36 and 46 %, respectively, of all metabolites detected when compared to an elp3Δ strain carrying the wild-type ELP3 gene. Overexpression of hypomodified \( {\text {tRNA}_{{\rm s^{2} {\rm UUU}}}^{{\rm Lys}} , {\rm tRNA}_{{\rm s^{2} {\rm UUG}}}^{{\rm Gln }} \;{\rm and}\;{\rm tRNA}_{{\rm s^{2} {\rm UUC}}}^{{\rm Glu}}} \) suppressed a subset of the metabolic alterations observed in the elp3Δ strain.

Conclusion

Our results suggest that the presence of ncm5- and mcm5-side chains on wobble uridines in tRNA are important for metabolic homeostasis.
  相似文献   

11.
The ground and excited states, charge injection/transport, and phosphorescence properties of five N?heterocyclic carbine-functionalized PtII complexes were investigated by using the DFT method. By analyzing the nonradiative (k nr) rate constant and energies at \( {\mathrm{S}}_0^{\mathrm{opt}} \) and \( {\mathrm{T}}_1^{\mathrm{opt}} \) states, it is possible to forecast that BC5 with the pyrrole ligand has a higher phosphorescence quantum yield than any of the other four complexes. Thus, we consider that BC5 will be an efficient phosphorescent material that has balanced electron/hole-transport performance as well as high phosphorescence quantum yield. The calculated results indicate that, for the studied complexes, the nature of the ligand strongly affected the energy of the emissive state and was able to tune the emission color. We hope that our study will aid better understanding of the structure–property relationship of phosphorescent Pt (II) complexes and provide constructive information for designing novel and highly efficient OLED materials in the future.  相似文献   

12.
Climate change is predicted to have widespread impacts on freshwater lake and reservoir nutrient budgets by altering both hypolimnetic hypoxia and runoff, which will in turn alter the magnitude of internal and external nutrient loads. To examine the effects of these potential climate scenarios on nitrogen (N) and phosphorus (P) budgets, we conducted a whole-catchment manipulation of hypolimnetic oxygen conditions and external loads to Falling Creek Reservoir (FCR), an old, eutrophic reservoir in a reforested catchment with a history of agricultural land use. Throughout 2 years of monitoring, internal N and P loading during hypoxic conditions dominated the hypolimnetic mass of nutrients in FCR, regardless of changes in external loading. FCR commonly functioned as a net sink of N and P, except during hypoxic conditions, when the reservoir was a net source of ammonium (\( {\text{NH}}_{4}^{ + } \)) to downstream. We observed extremely high nitrate–nitrite (\( {\text{NO}}_{3}^{ - } {-}{\text{NO}}_{2}^{ - } \)), soluble reactive P (SRP), total nitrogen (TN), and total phosphorus (TP) retention rates, indicating that the reservoir served as a sink for greater than 70% of \( {\text{NO}}_{3}^{ - } {-}{\text{NO}}_{2}^{ - } \) inputs and greater than 30% of SRP, TN, and TP inputs, on average. Our study is notable in the length of time since reforestation (>80 years) that a reservoir is still exhibiting high N and P internal loading during hypoxia, potentially as a result of the considerable store of accumulated nutrients in its sediment from historical agricultural runoff. Our whole-catchment manipulations highlight the importance of understanding how multiple aspects of global change, waterbody and catchment characteristics, and land use history will interact to alter nutrient budgets in the future.  相似文献   

13.
As an efficient and cost-effective nitrogen removal process, anaerobic ammonium oxidation (ANAMMOX) could be well operated at suitable pH condition. However, pH shock occurred in different kinds of wastewater and affected ANANNOX process greatly. The present research aimed at studying the performance and kinetics of ANAMMOX granular sludge with pH shock. When influent pH was below 7.5, effluent \({\text{NH}}_{4}^{ + }\)–N and \({\text{NO}}_{2}^{ - }\)–N increased with decreasing pH. At Ph 6.0, effluent \({\text{NO}}_{2}^{ - }\)–N approached 100 mg/L, and the ratios of \(\Delta {\text{NO}}_{2}^{ - } - {\text{N}}:\Delta {\text{NH}}_{4}^{ + } - {\text{N and }}\Delta {\text{NO}}_{3}^{ - } - {\text{N}}:\Delta {\text{NH}}_{4}^{ + } - {\text{N}}\) approached 2.2 and 1.3, respectively. Both greatly deviated from theoretical values. When influent pH was above 7.5, effluent \({\text{NH}}_{4}^{ + }\)–N and \({\text{NO}}_{2}^{ - }\)–N increased with increasing pH. At pH 9.0, ammonium removal rate (ARR) and nitrite removal rate (NRR) decreased to 0.011 ± 0.004 and 0.035 ± 0.004 kg/(m3·d), respectively. Besides, \(\Delta {\text{NO}}_{2}^{ - }\)–N:\(\Delta {\text{NH}}_{4}^{ + }\)–N deviated from theoretical value. Longer recovery time from pH 9.0 than from pH 6.0 indicated that alkaline surroundings inhibited anaerobic ammonium oxidizing bacteria (AAOB) greater. The sludge settling velocity was 2.15 cm/s at pH 7.5. However, it decreased to 2.02 cm/s when pH was 9.0. Acidic pH had little effect on sludge size, but disintegration of ANAMMOX granule was achieved with pH of 9.0. The Bell-shaped (A) model and the Ratkowsky model were more applicable to simulate the effect resulting from pH shock on ANAMMOX activity (R2 > 0.95), and both could describe ANAMMOX activity well with pH shock. They indicated that qmax was 0.37 kg \(\Delta {\text{NH}}_{4}^{ + }\)–N/(kgMLSS·d) at the optimum pH value (7.47) in present study. The minimum pH during which ANAMMOX occurred was 5.68 while the maximum pH for ANAMMOX reaction was 9.26. Based on nitrogen removal performance with different pH, strongly acidic (pH ≤ 6.5) or alkaline (pH ≥ 8.5) inhibited ANAMMOX process. Besides, ANAMMOX appeared to be more susceptible to alkaline wastewater. Compared to extremely acidic condition (low pH), extremely alkaline condition (high pH) affected ANAMMOX granules much more.  相似文献   

14.
15.
Ascorbate is one of the key participants of the antioxidant defense in plants. In this work, we have investigated the interaction of ascorbate with the chloroplast electron transport chain and isolated photosystem I (PSI), using the EPR method for monitoring the oxidized centers \( {\text{P}}_{700}^{ + } \) and ascorbate free radicals. Inhibitor analysis of the light-induced redox transients of P700 in spinach thylakoids has demonstrated that ascorbate efficiently donates electrons to \( {\text{P}}_{ 7 0 0}^{ + } \) via plastocyanin. Inhibitors (DCMU and stigmatellin), which block electron transport between photosystem II and Pc, did not disturb the ascorbate capacity for electron donation to \( {\text{P}}_{700}^{ + } \) . Otherwise, inactivation of Pc with CN? ions inhibited electron flow from ascorbate to \( {\text{P}}_{700}^{ + } \) . This proves that the main route of electron flow from ascorbate to \( {\text{P}}_{700}^{ + } \) runs through Pc, bypassing the plastoquinone (PQ) pool and the cytochrome b 6 f complex. In contrast to Pc-mediated pathway, direct donation of electrons from ascorbate to \( {\text{P}}_{700}^{ + } \) is a rather slow process. Oxidized ascorbate species act as alternative oxidants for PSI, which intercept electrons directly from the terminal electron acceptors of PSI, thereby stimulating photooxidation of P700. We investigated the interaction of ascorbate with PSI complexes isolated from the wild type cells and the MenB deletion strain of cyanobacterium Synechocystis sp. PCC 6803. In the MenB mutant, PSI contains PQ in the quinone-binding A1-site, which can be substituted by high-potential electron carrier 2,3-dichloro-1,4-naphthoquinone (Cl2NQ). In PSI from the MenB mutant with Cl2NQ in the A1-site, the outflow of electrons from PSI is impeded due to the uphill electron transfer from A1 to the iron-sulfur cluster FX and further to the terminal clusters FA/FB, which manifests itself as a decrease in a steady-state level of \( {\text{P}}_{700}^{ + } \) . The addition of ascorbate promoted photooxidation of P700 due to stimulation of electron outflow from PSI to oxidized ascorbate species. Thus, accepting electrons from PSI and donating them to \( {\text{P}}_{700}^{ + } \) , ascorbate can mediate cyclic electron transport around PSI. The physiological significance of ascorbate-mediated electron transport is discussed.  相似文献   

16.
We develop a mathematical model of a salivary gland acinar cell with the objective of investigating the role of two \(\mathrm{Cl}^-/\mathrm{HCO}_3^-\) exchangers from the solute carrier family 4 (Slc4), Ae2 (Slc4a2) and Ae4 (Slc4a9), in fluid secretion. Water transport in this type of cell is predominantly driven by \(\mathrm{Cl}^-\) movement. Here, a basolateral \(\mathrm{Na}^+/ \mathrm{K}^+\) adenosine triphosphatase pump (NaK-ATPase) and a \(\mathrm{Na}^+\)\(\mathrm{K}^+\)\(2 \mathrm{Cl}^-\) cotransporter (Nkcc1) are primarily responsible for concentrating the intracellular space with \(\mathrm{Cl}^-\) well above its equilibrium potential. Gustatory and olfactory stimuli induce the release of \(\mathrm{Ca}^{2+}\) ions from the internal stores of acinar cells, which triggers saliva secretion. \(\mathrm{Ca}^{2+}\)-dependent \(\mathrm{Cl}^-\) and \(\mathrm{K}^+\) channels promote ion secretion into the luminal space, thus creating an osmotic gradient that promotes water movement in the secretory direction. The current model for saliva secretion proposes that \(\mathrm{Cl}^-/ \mathrm{HCO}_3^-\) anion exchangers (Ae), coupled with a basolateral \(\mathrm{Na}^+/\hbox {proton}\) (\(\hbox {H}^+\)) (Nhe1) antiporter, regulate intracellular pH and act as a secondary \(\mathrm{Cl}^-\) uptake mechanism (Nauntofte in Am J Physiol Gastrointest Liver Physiol 263(6):G823–G837, 1992; Melvin et al. in Annu Rev Physiol 67:445–469, 2005.  https://doi.org/10.1146/annurev.physiol.67.041703.084745). Recent studies demonstrated that Ae4 deficient mice exhibit an approximate \(30\%\) decrease in gland salivation (Peña-Münzenmayer et al. in J Biol Chem 290(17):10677–10688, 2015). Surprisingly, the same study revealed that absence of Ae2 does not impair salivation, as previously suggested. These results seem to indicate that the Ae4 may be responsible for the majority of the secondary \(\mathrm{Cl}^-\) uptake and thus a key mechanism for saliva secretion. Here, by using ‘in-silico’ Ae2 and Ae4 knockout simulations, we produced mathematical support for such controversial findings. Our results suggest that the exchanger’s cotransport of monovalent cations is likely to be important in establishing the osmotic gradient necessary for optimal transepithelial fluid movement.  相似文献   

17.
This study presents a framework for a direct comparison of experimental vocal fold dynamics data to a numerical two-mass-model (2MM) by solving the corresponding inverse problem of which parameters lead to similar model behavior. The introduced 2MM features improvements such as a variable stiffness and a modified collision force. A set of physiologically sensible degrees of freedom is presented, and three optimization algorithms are compared on synthetic vocal fold trajectories. Finally, a total of 288 high-speed video recordings of six excised porcine larynges were optimized to validate the proposed framework. Particular focus lay on the subglottal pressure, as the experimental subglottal pressure is directly comparable to the model subglottal pressure. Fundamental frequency, amplitude and objective function values were also investigated. The employed 2MM is able to replicate the behavior of the porcine vocal folds very well. The model trajectories’ fundamental frequency matches the one of the experimental trajectories in \(98.6\%\) of the recordings. The relative error of the model trajectory amplitudes is on average \(9.5\%\). The experiments feature a mean subglottal pressure of 10.16 (SD \(= 2.31\)) \({\text {cmH}}_2{\text {O}}\); in the model, it was on average 7.61 (SD \(= 2.40\)) \({\text {cmH}}_2{\text {O}}\). A tendency of the model to underestimate the subglottal pressure is found, but the model is capable of inferring trends in the subglottal pressure. The average absolute error between the subglottal pressure in the model and the experiment is 2.90 (SD \(= 1.80\)) \({\text {cmH}}_2{\text {O}}\) or \(27.5\%\). A detailed analysis of the factors affecting the accuracy in matching the subglottal pressure is presented.  相似文献   

18.
19.
Many microbes responsible for inorganic nutrient uptake and transformation utilize dissolved organic matter (DOM) as a nutrient or energy source, but little is known about whether DOM composition is an important driver of nutrient uptake in streams. Our goal was to determine whether incorporating DOM composition metrics with other more commonly considered biological, physical, and chemical variables improved our ability to explain patterns of ammonium (\({\text{NH}}_{4}^{ + }\)–N) and soluble reactive phosphorus (SRP) uptake across 11 Lake Superior tributaries. Nutrient uptake velocities (Vf) ranged from undetectable to 14.6 mm min?1 for \({\text{NH}}_{4}^{ + }\)–N and undetectable to 7.2 mm min?1 for SRP. Logistic regressions suggested that DOM composition was a useful predictor of where SRP uptake occurred (4/11 sites) and \({\text{NH}}_{4}^{ + }\)–N concentration was a useful predictor of where \({\text{NH}}_{4}^{ + }\)–N uptake occurred (9/11 sites). Multiple regression analysis revealed that the best models included temperature, specific discharge, and canopy cover, and DOM composition as significant predictors of \({\text{NH}}_{4}^{ + }\)–N Vf. Partial least squares revealed fluorescence index (describing the source of aquatic fulvic acids), specific ultraviolet absorbance at 254 nm (an indicator of DOM aromaticity), temperature, and conductivity were highly influential predictors of \({\text{NH}}_{4}^{ + }\)–N Vf. Therefore, streams with higher temperatures, lower solute concentrations, more terrestrial DOM signal and greater aromaticity had greater \({\text{NH}}_{4}^{ + }\)–N Vf. Our results suggest that DOM composition may be an important, yet often overlooked, predictor of \({\text{NH}}_{4}^{ + }\)–N and SRP uptake in deciduous forest streams that should be considered along with commonly measured predictors.  相似文献   

20.
The unusual ??-halogen bond interactions are investigated between $ \left( {\hbox{BNN}} \right)_3^{+} $ and X1X2 (X1, X2?=?F, Cl, Br) employing MP2 at 6-311?+?G(2d) and aug-cc-pVDZ levels according to the ??CP (counterpoise) corrected potential energy surface (PES)?? method. The order of the ??-halogen bond interactions and stabilities of the complexes are obtained to be $ \left( {\hbox{BNN}} \right)_3^{+} \ldots {{\hbox{F}}_2} < \left( {\hbox{BNN}} \right)_3^{+} \ldots {\hbox{ClF < }}\left( {\hbox{BNN}} \right)_3^{+} \ldots {\hbox{C}}{{\hbox{l}}_2} < \left( {\hbox{BNN}} \right)_3^{+} \ldots {\hbox{BrCl}}\quad { < }\quad \left( {\hbox{BNN}} \right)_3^{+} \ldots {\hbox{B}}{{\hbox{r}}_2}\quad { < }\quad \left( {\hbox{BNN}} \right)_3^{+} \ldots {\hbox{BrF}}{.} $ at MP2/aug-cc-pVDZ level. The analyses of the Mulliken charge transfer, natural bond orbital (NBO), atoms in molecules (AIM) theory and electron density shifts reveal that the nature of the ??-halogen bond interaction in the complexes of ClF, BrF and BrCl might partly be charge transfer from the delocalized ??-HOMO orbital of $ \left( {\hbox{BNN}} \right)_3^{+} $ to X1X2. This result suggests that the positive aromatic ring $ \left( {\hbox{BNN}} \right)_3^{+} $ might act as a ??-electron donor to form the ??-halogen bond.
Figure
Shifts of electron density as a result of formation of the complex. The unusual ??-halogen interactions are found between (BNN)3 + and X1X2 (X1, X2=F, Cl, Br) employing MP2 method at 6-311+G(2d) and aug-cc-pVDZ levels according to the ??CP-corrected PES)?? method. The analyses of the Mulliken charge transfer, NBO, AIM and electron density shifts reveal that the nature of the ??-halogen bond interaction in the complexes of ClF, BrF and BrCl might partly be charge transfer from the delocalized ??-HOMO orbital of (BNN)3 + to X1X2. (BNN)3 + might be as ??-electron donor to form the ??-halogen bond.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号