首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two hypotheses address the evolution of polyphenic traits in insects. Under the developmental reprogramming model, individuals exceeding a threshold follow a different developmental pathway from individuals below the threshold. This decoupling is thought to free selection to independently hone alternative morphologies, increasing phenotypic plasticity and morphological diversity. Under the alternative model, extreme positive allometry explains the existence of alternative phenotypes and divergent phenotypes are developmentally coupled by a continuous reaction norm, such that selection on either morph acts on both. We test the hypothesis that continuous reaction norm polyphenisms, evolve through changes in the allometric parameters of even the smallest males with minimal trait expression, whereas threshold polyphenisms evolve independent of the allometric parameters of individuals below the threshold. We compare two polyphenic species; the dung beetle Onthophagus taurus, whose allometry has been modeled both as a threshold polyphenism and a continuous reaction norm and the earwig Forficula auricularia , whose allometry is best modeled with a discontinuous threshold. We find that across populations of both species, variation in forceps or horn allometry in minor males are correlated to the population's threshold. These findings suggest that regardless of developmental mode, alternative morphs do not evolve independently of one another.  相似文献   

2.
Sexual selection has traditionally been divided into competitionover mates and mate choice. Currently, models of sexual selectionpredict that sexual traits are expressed in proportion to thecondition of their bearer. In horned beetles, male contestcompetition is well established, but studies on female preferencesare scarce. Here I present data on male mating success and condition dependence of courtship rate in three species of horn-dimorphicdung beetles, Onthophagus taurus, Onthophagus binodis, andOnthophagus australis. I found that in the absence of malecontest competition, mating success of O. taurus and O. australiswas unrelated to their horn length and body size, whereas inO. binodis horn size had a negative effect but body size hada positive effect on male mating success. Overall, in O. binodismajor morph males had greater mating success than minor morphmales. In all three species male mating success was affectedby courtship rate, and the courtship rate was condition dependent such that when males were manipulated to be in poor conditionthey had lower courtship rates than males that were manipulatedto be in good condition. My findings provide new insight intothe mating systems of horned dung beetles and support an importantassumption in indicator models of sexual selection.  相似文献   

3.
Members of a population often differ significantly in theirparental investment. Such variation is generally believed tohave important consequences for mating system evolution andhas been suggested to play an important role in the evolutionof some secondary sexual traits and displays. Recent studiessuggest that individuals are able to adjust the intensity and kindof parental investment they provide according to the breedingconditions they encounter. As a consequence, between-individualvariation in parental investment may depend more on externalconditions than previously thought for these taxa. This mayhave important implications for current perspectives on therole of differential parental investment in the evolution andmaintenance of certain mating systems and sexual selection regimes.Here I quantify patterns of variation in paternal investmentas a function of social conditions in a species of beetle thatis dimorphic for male horn morphology. I demonstrate that undercertain conditions (namely, the absence of other males), paternalassistance covaries with male morphology, with horned males investingsubstantially more time in assisting females than hornless males.I also show that the magnitude of differences in paternal investmentbetween male morphs varies in response to external conditions.In the presence of other males, paternal assistance was negligiblefor both male morphs, who instead invested substantially andequally in mate-securing behaviors. I use my findings to discussthe significance of variation in paternal assistance for onthophaginemating systems and evaluate ideas proposed to explain the evolutionof alternative morphologies in the genus Onthophagus.  相似文献   

4.
A growing body of experimental and field data shows that selective pressures often differ between males and females. Surprisingly, to date, little attempt has been made to formalize a metric expressing the relative behavior of directional selection in the two sexes. We propose an index that describes the extent to which concordant or antagonistic selection is operating between the sexes for a given trait. This joint index could prove especially useful for the study of intralocus sexual conflict and the evolution of sexual dimorphism, providing a common scale to directly compare different traits within or among taxonomic levels, and allowing an assessment on how common sexually antagonistic selection might be in extant populations.  相似文献   

5.
Abstract In the male dimorphic mite Sancassania berlesei, fighter males kill rivals with a pair of armoured legs whereas scrambler males are benign with unmodified legs. In an adaptive response mediated by colony pheromones, fighter expression increases at low colony density. Under the status‐dependent evolutionarily stable strategy (ESS) model we expected heavier final instar nymphs to become fighters. This was supported in group reared nymphs. In individually reared nymphs fighter expression was experimentally suppressed using two concentrations of colony pheromone. Here, male morph expression again depended on tritonymphal body mass and contact is therefore unnecessary for individuals to judge their status. Fighter suppression was greater in the higher pheromone treatment, but morph determination remained status dependent. The weight and length of fighters was lower than scramblers of same‐weight final instar nymphs, indicating a developmental trade‐off, and a cost not recouped at the adult stage.  相似文献   

6.
7.
I examined patterns of covariation of three morphometric blossom characters [gland area (GA), gland–stigma distance (GSD), and bract length (BL)] within genets, among genets, and among populations of the tropical vine, Dalechampia scandens (Euphorbiaceae). Covariance between BL and GA was evenly distributed among the three levels. This observation, coupled with developmental information, indicates that the two characters change size similarly during development, that there is probably genetic covariance between them (apparently caused by pleiotropy), and that the genetic covariance may have constrained (at least proximally) the course of population differentiation with respect to these characters. Most covariance between GSD and GA occurred at the among-population level. This observation, coupled with developmental information, indicates that there is negligible ontogenetic covariance and that within populations there is probably little or no genetic covariance between the two characters. Among-population covariance has probably been caused by natural selection operating in a correlated fashion on characters that functionally interact in pollination.  相似文献   

8.
Developmental pathways may evolve to optimize alternative phenotypes across environments. However, the maintenance of such adaptive plasticity under relaxed selection has received little study. We compare the expression of life-history traits across two developmental pathways in two populations of the butterfly Pararge aegeria where both populations express a diapause pathway but one never expresses direct development in nature. In the population with ongoing selection on both pathways, the difference between pathways in development time and growth rate was larger, whereas the difference in body size was smaller compared with the population experiencing relaxed selection on one pathway. This indicates that relaxed selection on the direct pathway has allowed life-history traits to drift towards values associated with lower fitness when following this pathway. Relaxed selection on direct development was also associated with a higher degree of genetic variation for protandry expressed as within-family sexual dimorphism in growth rate. Genetic correlations for larval growth rate across sexes and pathways were generally positive, with the notable exception of correlation estimates that involved directly developing males of the population that experienced relaxed selection on this pathway. We conclude that relaxed selection on one developmental pathway appears to have partly disrupted the developmental regulation of life-history trait expression. This in turn suggests that ongoing selection may be responsible for maintaining adaptive developmental regulation along alternative developmental pathways in these populations.  相似文献   

9.
The evolution of sexual dichromatism in tanagers (family Thraupidae) was studied from a phylogenetic perspective using a molecular-based phylogeny. Mapping patterns of sexual dimorphism in plumage onto the phylogeny reveals that changes in female plumage occur more frequently than changes in male plumage. Possible explanations for this pattern include sexual selection acting on female plumage and natural selection for background matching. The results of this study and other recent phylogenetic and comparative studies suggest that factors affecting female plumage are important in shaping patterns of sexual dimorphism.  相似文献   

10.
Males of sexually dimorphic species often appear more divergent among taxa than do females, so it is often assumed that evolutionary changes have occurred primarily in males. Yet, sexual dimorphisms can result from historical changes in either or both of the sexes, and few previous studies have investigated such patterns using phylogenetic methods. Here, we describe the evolution of male and female plumage colors in the grackles and allies (Icteridae), a songbird clade with a broad range in levels of sexual dichromatism. Using a model of avian perceptual color space, we calculated color distances within and among taxa on a molecular phylogeny. Our results show that female plumage colors have changed more dramatically than male colors in the evolutionary past, yet male colors are significantly more divergent among species today. Historical increases in dichromatism have involved changes in both sexes, whereas decreases in dichromatism have nearly always involved females evolving rapidly to look like males. Dichromatism is also associated with mating system in this group, with monogamous taxa tending to exhibit relatively low levels of sexual dichromatism. Our findings suggest that, despite appearances, female plumage evolution plays a more prominent role in sexual dichromatism than is generally assumed.  相似文献   

11.
Field cricket species are ideal model organisms for the study of sexual selection because cricket calling songs, used to attract mating partners, are pronouncedly sexually dimorphic. However, few studies have focused on other sexually dimorphic traits of field crickets. The horn‐headed cricket, Loxoblemmus doenitzi, exhibits exaggerated sexual dimorphism in head shape: males have flat heads with triangular horns, while females lack horns. This study examines the relationship between horn length, male calling efforts and diet quality. Horn length was not found to be significantly correlated with calling efforts. When diet was manipulated for late‐stage nymphs, calling efforts in the group with poor‐quality diet treatment was significantly lower than that of crickets in the group with high‐quality diet treatment. However, horn length was not affected by diet quality. The implication of these results in the context of the evolution of multiple signals and sexual dimorphism is discussed.  相似文献   

12.
Despite the directional selection acting on life‐history traits, substantial amounts of standing variation for these traits have frequently been found. This variation may result from balancing selection (e.g., through genetic trade‐offs) or from mutation‐selection balance. These mechanisms affect allele frequencies in different ways: Under balancing selection alleles are maintained at intermediate frequencies, whereas under mutation‐selection balance variation is generated by deleterious mutations and removed by directional selection, which leads to asymmetry in the distribution of allele frequencies. To investigate the importance of these two mechanisms in maintaining heritable variation in oviposition rate of the two‐spotted spider mite, we analyzed the response to artificial selection. In three replicate experiments, we selected for higher and lower oviposition rate, compared to control lines. A response to selection only occurred in the downward direction. Selection for lower oviposition rate did not lead to an increase in any other component of fitness, but led to a decline in female juvenile survival. The results suggest standing variation for oviposition rate in this population consists largely of deleterious alleles, as in a mutation‐selection balance. Consequently, the standing variation for this trait does not appear to be indicative of its adaptive potential.  相似文献   

13.
The G‐matrix occupies an important position in evolutionary biology both as a summary of the inheritance of quantitative traits and as an ingredient in predicting how those traits will respond to selection and drift. Consequently, the stability of G has an important bearing on the accuracy of predicted evolutionary trajectories. Furthermore, G should evolve in response to stable features of the adaptive landscape and their trajectories through time. Although the stability and evolution of G might be predicted from knowledge of selection in natural populations, most empirical comparisons of G‐matrices have been made in the absence of such a priori predictions. We present a theoretical argument that within‐sex G‐matrices should be more stable than between‐sex B‐matrices because they are more powerfully exposed to multivariate stabilizing selection. We tested this conjecture by comparing estimates of B‐ and within‐sex G‐matrices among three populations of the garter snake Thamnophis elegans. Matrix comparisons using Flury's hierarchical approach revealed that within‐sex G‐matrices had four principal components in common (full CPC), whereas B‐matrices had only a single principal component in common and eigenvalues that were more variable among populations. These results suggest that within‐sex G is more stable than B , as predicted by our theoretical argument.  相似文献   

14.
Recent work on birds suggests that certain morphological differences between the sexes may have evolved as an indirect consequence of sexual selection because they offset the cost of bearing extravagant ornaments used for fighting or mate attraction. For example, long-tailed male sunbirds and widowbirds also have longer wings than females, perhaps to compensate for the aerodynamic costs of tail elaboration. We used comparative data from 57 species to investigate whether this link between sexual dimorphism in wing and tail length is widespread among long-tailed birds. We found that within long-tailed families, variation in the extent of tail dimorphism was associated with corresponding variation in wing dimorphism. One nonfunctional explanation of this result is simply that the growth of wings and tails is controlled by a common developmental mechanism, such that long-tailed individuals inevitably grow long wings as well. However, this hypothesis cannot account for a second pattern in our data set: as predicted by aerodynamic theory, we found that, comparing across long-tailed families, sexual dimorphism in wing length varied with tail shape as well as with sex differences in tail length. Thus, wing dimorphism was generally greater in species with aerodynamically costly graduated tails than in birds with cheaper, streamer-shaped tails. This result was not caused by confounding phylogenetic effects, because it persisted when phylogeny was controlled for, using an independent comparisons method. Our findings therefore confirm that certain aspects of sexual dimorphism may sometimes have evolved through selection for traits that reduce the costs of elaborate sexually selected characters. We suggest that future work aimed at understanding sexual selection by investigating patterns of sexual dimorphism should attempt to differentiate between the direct and indirect consequences of sexual selection.  相似文献   

15.
Species within the coreid clade (Hemiptera: Coreidae) can often be observed competing in intrasexual competitions over access to mates and territories. Coreids that partake in these competitions typically possess sexually dimorphic hind legs that are used to strike and squeeze their rivals. In addition to their weaponized legs, some coreid species also possess sexually dimorphic abdominal tubercles, which are assumed to be sexually selected weapons. Still, much remains unknown about the morphology of these structures. Here, using the species Mictis longicornis Westwood, we investigate the frequency distribution and static allometry of abdominal thickness, a measure that includes tubercle length. Furthermore, we also investigate the morphological relationship between abdominal tubercles and weaponized hind legs. We find that male abdominal thickness is best explained by a bimodal distribution, thereby describing the first observed male polymorphism in the coreid clade; a phenomenon typically associated with alternative reproductive tactics. Additionally, we find that major males are characterized primarily by having large weaponized legs and abdominal tubercles, which further suggests that abdominal tubercles are used in male–male competition.  相似文献   

16.
Sex‐biased genes—genes that are differentially expressed within males and females—are nonrandomly distributed across animal genomes, with sex chromosomes and autosomes often carrying markedly different concentrations of male‐ and female‐biased genes. These linkage patterns are often gene‐ and lineage‐dependent, differing between functional genetic categories and between species. Although sex‐specific selection is often hypothesized to shape the evolution of sex‐linked and autosomal gene content, population genetics theory has yet to account for many of the gene‐ and lineage‐specific idiosyncrasies emerging from the empirical literature. With the goal of improving the connection between evolutionary theory and a rapidly growing body of genome‐wide empirical studies, we extend previous population genetics theory of sex‐specific selection by developing and analyzing a biologically informed model that incorporates sex linkage, pleiotropy, recombination, and epistasis, factors that are likely to vary between genes and between species. Our results demonstrate that sex‐specific selection and sex‐specific recombination rates can generate, and are compatible with, the gene‐ and species‐specific linkage patterns reported in the genomics literature. The theory suggests that sexual selection may strongly influence the architectures of animal genomes, as well as the chromosomal distribution of fixed substitutions underlying sexually dimorphic traits.  相似文献   

17.
Mate choice often depends on the properties of both sexes, such as the preference and responsiveness of the female and the sexual display traits of the male. Quantitative genetic studies, however, traditionally explore the outcome of an interaction between males and females based solely on the genotype of one sex, treating the other sex as a source of environmental variance. Here, we use a half‐sib breeding design in the field cricket, Teleogryllus commodus, to estimate the additive genetic contribution of both partners to three steps of the mate choice process: the time taken to mate; the duration of spermatophore attachment; and the intensity of mate guarding. Rather than each sex contributing equally to the interactions, we found that genetic variation for latency to mate and spermatophore attachment was sex‐specific, and in the case of mate‐guarding intensity, largely absent. For a given interaction, genetic variation in one sex also appears to be largely independent of the other, and is also uncorrelated with the other traits. We discuss how pre‐ and postcopulatory interactions have the potential to evolve as an interacting phenotype, but that any coevolution between these traits, due to sexual selection or sexual conflict, may be limited.  相似文献   

18.
Regression analyses are central to characterization of the form and strength of natural selection in nature. Two common analyses that are currently used to characterize selection are (1) least squares–based approximation of the individual relative fitness surface for the purpose of obtaining quantitatively useful selection gradients, and (2) spline‐based estimation of (absolute) fitness functions to obtain flexible inference of the shape of functions by which fitness and phenotype are related. These two sets of methodologies are often implemented in parallel to provide complementary inferences of the form of natural selection. We unify these two analyses, providing a method whereby selection gradients can be obtained for a given observed distribution of phenotype and characterization of a function relating phenotype to fitness. The method allows quantitatively useful selection gradients to be obtained from analyses of selection that adequately model nonnormal distributions of fitness, and provides unification of the two previously separate regression‐based fitness analyses. We demonstrate the method by calculating directional and quadratic selection gradients associated with a smooth regression‐based generalized additive model of the relationship between neonatal survival and the phenotypic traits of gestation length and birth mass in humans.  相似文献   

19.
Although sexual size dimorphism (SSD) is common among mammals, there is no clear explanation for its maintenance in nature. Bats are one of the few groups of mammals where reverse SSD appears. In this group, the size of individuals may have very important ecological consequences related with flight. In this study, we examine sexual dimorphism in the wing measurements of 195 adult individuals (141 males and 54 females) of the greater mouse‐eared bat Myotis myotis in the south‐east of the Iberian Peninsula. We also investigated size differences between paired and single males in a swarming roost. The results indicate that there are significant differences in the wing measurements between sexes, females being bigger than males in this respect. While no significant differences in the wing measurements of paired and single males were observed, significant differences were found in their relative weight and fitness, single males being significantly heavier and having a better physical condition. We discuss the implications of SSD for the female of M. myotis in terms of reproductive advantages, trophic niche segregation and a greater ability to move, which may favour gene flow between populations.  相似文献   

20.
The evolution of exaggerated male traits is frequently driven by competition between males to control resources critical for female survival and/or reproductive success. For flightless arthropods specializing on patchy habitats, dispersal agents may represent one such critical resource. The Neotropical pseudoscorpion, Semeiochernes armiger, disperses to new habitats by attaching to the giant timber fly, Pantophthalmus tabaninus, as it ecloses from pupal boreholes within decaying Ficus trees. In a study that combined field observations of mating with experimental removal of individuals from a large, pre‐dispersal population, our morphometric analyses revealed that S. armiger is among the most highly sexually dimorphic pseudoscorpions known, with males possessing unusual, triangular‐shaped pedipalpal chelae (hands) and a male‐specific, dimorphic chela peg that exhibits threshold trait expression. Several lines of evidence indicate that extreme sexual dimorphism in S. armiger results from male competition to monopolize pantophthalmid bores as strategic sites for inseminating females on the verge of dispersal. Sexually dimorphic pedipalpal characters were significantly larger in males located in and around pantophthalmid boreholes, compared with males collected at the periphery of the pantophthalmid emergence zone. Removal of pseudoscorpions resulted in a significant decline in pedipalpal size of males associated with pantophthalmid bores, followed by a rebound in size after collected individuals were returned to the tree. Most significantly, field observations of mating indicate that this competition translates into intense selection for exaggerated male traits, with all traits of the sexually dimorphic chelae exhibiting highly significant sexual selection differentials in males. © 2013 The Linnean Society of London  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号