首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Life history trade-offs among clonal growth, storage, and sexual reproduction were investigated in the perennial grass Amphibromus scabrivalvis in relation to soil nutrients. This species exhibits clonal growth by producing rhizomes and stores reserves in the form of basal corms; seeds are matured in cleistogamous spikelets on panicles enclosed within the leaf sheaths along each culm. Ten seed-derived genotypes (clones) were separated into 72 ramets and planted in the greenhouse. Control ramets received only water while the remainder received fertilizer applied every 2 wk. Twenty-four ramets were harvested per clone at 11, 20, and 26 wk. The dry mass of corms, rhizomes, roots, shoots, and seeds were recorded. Biomass partitioning to rhizomes provided a measure of carbon allocation to clonal growth, partitioning to corms provided a measure of allocation to storage, and partitioning to seeds provided a measure of allocation to sexual reproduction. Allocation to most organs was significantly influenced by clone identity; fertilizer significantly increased allocation to corms and seeds at 20 wk, but never affected rhizome allocation at any age. Corm allocation increased from 2% at 11 wk to 27% at 26 wk; rhizome allocation decreased from 10% at 11 wk to 3% at 26 wk. Significant negative relationships were detected for rhizome vs. seed and corm vs. rhizome allocation in fertilized clones at 20 wk. This suggests an age-dependent physiological life history trade-off between clonality and sexual reproduction and between clonality and storage. In contrast, a significant positive relationship was consistently noted for corm vs. seed allocation in fertilized and unfertilized clones at 20 and 26 wk. The absence of a trade-off between storage and sexual reproduction may indicate that these two processes are not necessarily mutually exclusive components of life history.  相似文献   

2.
3.
Laboratory studies were used to examine how variation in the density of spore settlement influences gametophyte growth, reproduction, and subsequent sporophyte production in the kelps Pterygophora californica Ruprecht and Macrocystis pyrifera (L.) C. Ag. In still (non-aerated) cultures, egg maturation in both species was delayed when spores were seeded at densities 300 · mm?2. Although the density at which this inhibition was first observed was similar for both species, the age at which their eggs matured was not. P. californica females reached sexual maturity an average of 4 days (or ~ 30%) sooner than did M, pyrifera. As observed previously in field experiments, per capita sporophyte production was negatively density dependent for both species when seeded at spore densities of 10 · mm?2. Total sporophyte production (i.e. number · cm?2) for both species, however, was greatest at intermediate densities of spore settlement (~ 50 spores · mm?2). In contrast, total sporophyte production by P. californica steadily increased with increasing spore density in aerated cultures; highest sporophyte density was observed on slides seeded at a density of 1000 spores · mm?2. Preliminary experiments with P. californica involving manipulation of aeration and nutrients indicate that inhibition of gametophyte growth and reproduction at higher densities of spore settlement in non-aerated cultures was probably caused by nutrient limitation.  相似文献   

4.
Improved cultivation technology for the kelp Undaria pinnatifida is greatly needed to increase production to meet increasing commercial demand. A previous cultivation trial indicated that the crop yield of U. pinnatifida sporophytes could be increased greatly by thallus excision in late February due to compensatory growth of the remaining tissues. To develop this potential new cultivation technology, it is essential to identify the time period during which this kelp can compensate and its physiological responses to thallus excision. In this study, U. pinnatifida sporophytes were excised at about 30 cm above the meristem at the beginning of January, February, March, and April, respectively. Morphological features, photosynthesis, nutrient uptake, and carbon and nitrogen contents of excised kelps were measured and compared with these parameters in control kelps grown without excision. Both experimental and control kelps were farmed together in Matsushima Bay, northern Japan. The kelps excised in January and February showed significant increases in the lengths and dry weights of the blade, photosynthetic rates, nutrient uptake rates, and carbon and nitrogen contents compared with the control kelps, and the growth phase was prolonged for at least 1 month. No significant increases were found in dry weights and carbon and nitrogen contents of sporophylls until early April, which indicated that the maturation period was delayed. At the end of this experiment, the nitrogen contents of sporophyll tissues formed after excisions were significantly lower than those of tissues formed before excisions. In contrast, the kelps excised in March and April showed no significant increases in morphological and physiological parameters compared with control kelps. These results suggest that U. pinnatifida sporophytes exhibited great compensation when excisions were conducted during the growing phase in January and February but not in March and April when the maturation phase had started. The regulation of resource allocation to growth and maturation after thallus excisions in January and February likely results in prolongation of the growth phase and maturation phase in excised kelps.  相似文献   

5.
The purpose of this article was to study the trade-offs among vegetative growth, clonal, and sexual reproduction in an aquatic invasive weed Spartina alterniflora that experienced different inundation depths and clonal integration. Here, the rhizome connections between mother and daughter ramets were either severed or left intact. Subsequently, these clones were flooded with water levels of 0, 9, and 18 cm above the soil surface. Severing rhizomes decreased growth and clonal reproduction of daughter ramets, and increased those of mother ramets grown in shallow and deep water. The daughter ramets disconnected from mother ramets did not flower, while sexual reproduction of mother ramets was not affected by severing. Clonal integration only benefited the total rhizome length, rhizome biomass, and number of rhizomes of the whole clones in non-inundation conditions. Furthermore, growth and clonal reproduction of mother, daughter ramets, and the whole clone decreased with inundation depth, whereas sexual reproduction of mother ramets and the whole clones increased. We concluded that the trade-offs among growth, clonal, and sexual reproduction of S. alterniflora would be affected by inundation depth, but not by clonal integration.  相似文献   

6.
Decomposition of aboveground and belowground organs of the emergent macrophyte Z.latifolia was investigated using a litterbag technique for a period of 359 days in a freshwater marsh in Japan. Aboveground parts were classified into: leaves, sheaths and stems. Belowground parts were classified into: horizontal rhizomes (new rhizome, hard rhizome, soft rhizome) and vertical rhizome (stembase). The decay rate (k) was 0.0036 day−1, 0.0033 day−1 and 0.0021 day−1 for leaves, sheaths and stems, respectively. For belowground parts, the decay rate varied considerably from 0.0018 day−1 to 0.0079 day−1, according to differences in the initial chemical compositions of rhizomes. After 359 days of decay, new rhizomes lost 94% of their original dry mass, compared with a loss of 48–84% for the other rhizomes. There was a significant positive relationship between litter quality and decay rate for horizontal rhizomes. For the new rhizomes, which had an internal nitrogen content of 24.2 mg N g−1 dry mass, the mass loss was 40% higher than that of soft rhizomes, which had an internal N content of 9.8 mg N g−1 dry mass. Over the period of 359 days, the nitrogen concentration in all rhizome types decreased to levels lower than initial values, but the phosphorus concentration remained constant after an initial leaching loss. Most nitrogen and phosphorus were lost during the first 45 days of decay. Changes in carbon to nitrogen (C:N) and carbon to phosphorus (C:P) ratios basically followed inversed trends of the nitrogen and phosphorus concentrations.  相似文献   

7.
The change in dried rhizome samples that were left to decompose was investigated to elucidate the effects of rhizome age on the decomposition rate of Phragmites australis. Rhizomes were classified into five age categories and placed 30 cm below the soil surface of a reed stand. After 369 days of decay, new (i.e., aged less than one year) rhizomes had lost 84% of their original dry mass, compared with a loss of 41–62% for that of older rhizomes. The exponential decay rates of older rhizomes were nearly identical to that of aboveground biomass. The nitrogen (N) concentration increased to two times its original values, but the phosphorus (P) concentration remained constant after an initial loss by leaching. The carbon to nitrogen (C:N) and carbon to phosphorus ratios (C:P) leveled out at 22:1 to 38:1 and 828:1 to 1431:1, respectively, regardless of rhizome age. The results are important to understand the nutrient cycles of reed-dominant marsh ecosystems.  相似文献   

8.
Recent work suggests that the ability to delay reproduction as resistant haploid gametophytes may be important for seaweeds that experience unpredictable disturbances or seasonal periods of poor conditions that result in adult sporophyte absence. Further, delayed gametophytes of some kelp species (order Laminariales) may produce sporophytes more rapidly than if they had never experienced a delay, conferring a competitive advantage when conditions improve or after disturbance events. Here, it was determined that the gametophytes of the canopy‐forming kelp Macrocystis pyrifera (L.) C. Agardh could delay reproduction in a one‐ to two‐cell state (<50 μm) for at least 7 months when grown under nutrient‐limiting conditions. These stages retained reproductive viability and produced sporophytes within 5 d once nutrients were increased. This finding suggests that gametophytes could potentially promote recovery of M. pyrifera populations after extended periods of sporophyte absence. In addition, the time required for sporophyte production between gametophytes of the four most conspicuous kelp species in Southern California that had delayed reproduction and gametophytes that had not was compared. For these four kelp species, a delay of at least 30 d conferred a 40%–76% reduction in the time required for sporophyte production once nutrients were received. Fecundity did not decrease with delay duration, suggesting there is no apparent cost of delayed development for kelps as has been observed in other organisms. Thus, delayed development may be a viable strategy for surviving and initially dominating in environments with variable quality.  相似文献   

9.
A population of Laminaria longicruris de la Pylaie was followed for a year at Bic Island, Quebec, Canada where nutrient levels in the seawater were elevated throughout the year. Tagged kelp were measured each month for growth and analyzed for alginic acid, laminaran, mannitol, carbon, nitrogen, and nitrate. Maximum growth (3.5 cm · d?1) was observed in June, and minimal growth (0.18 cm · d?1) from December to February, when ice cover limited light levels. No reserves of carbon or nitrate were formed. Laminaran levels remained below 2.7% dry weight while tissue nitrate did not exceed 0.75 μmol · g?1 dry weight. Total carbon produced per plant was 40 g C · yr?1. Nutrient availability enables the kelp to take advantage of summer light and temperature conditions to grow rapidly.  相似文献   

10.
The manner in which the density of Leymus chinensis increases from a single plant to a dominant population can be understood by tracing the development of a population from early to late stages. Parent shoot density, above‐ground dry weight, spike density, heading rate and spike dry weight, density of spreading shoots (buds/daughter shoots in apical/axillary rhizomes) and clumping shoots (buds/daughter shoots in axillary parent shoots), and young rhizome length and weight were investigated in the same quadrats for a low density/early stage (LE) population and a high density/late stage (HL) population. Clonal growth (buds/daughter shoots formation) and sexual reproduction (spikes formation) increased while rhizome storage (young rhizome weight) decreased during the transition from LE to HL. In a LE population an outward occupation strategy was employed, with a high proportion of spreading shoots. As the population density gradually increased until HL, an inward consolidation strategy increasing shoot amount in previously occupied areas, was adopted. This was characterized by a high proportion of clumping shoots. Interestingly, the trade‐off between spreading and clumping shoots can be adjusted by the duration of young rhizome elongation during a growth season. In other words, compared with a HL population, a LE population shortened the duration of young rhizome elongation during the growth season, which resulted in more time for the production of axillary spreading shoots along the rhizomes, and high amounts and proportions of total spreading shoots. The special growth patterns, that is, trade‐offs among growth forms, allow L. chinensis to establish dominant populations throughout the eastern Eurasian Steppe.  相似文献   

11.
We tested the ability of sporophytes of a small kelp, Ecklonia radiata (C. Agardh) J. Agardh, to adjust their photosynthesis, respiration, and cellular processes to increasingly warm ocean climates along a latitudinal gradient in ocean temperature (~4°C). Tissue concentrations of pigment and nutrients decreased with increasing ocean temperature. Concurrently, a number of gradual changes in the metabolic balance of E. radiata took place along the latitudinal gradient. Warm‐acclimatized kelps had 50% lower photosynthetic rates and 90% lower respiration rates at the optimum temperature than did cool‐acclimatized kelps. A reduction in temperature sensitivity was also observed as a reduction in Q10‐values from cool‐ to warm‐acclimatized kelps for gross photosynthesis (Q10: 3.35 to 1.45) and respiration (Q10: 3.82 to 1.65). Respiration rates were more sensitive to increasing experimental temperatures (10% higher Q10‐values) than photosynthesis and had a higher optimum temperature, irrespective of sampling location. To maintain a positive carbon balance, E. radiata increased the critical light demand (Ec) exponentially with increasing experimental temperature. The temperature dependency of Ec was, however, weakened with increasing ocean temperature, such that the critical light demand was relaxed in kelp acclimated to higher ocean temperatures. Nevertheless, calculations of critical depth limits suggested that direct effects of future temperature increases are unlikely to be as strong as effects of reduced water clarity, another globally increasing problem in coastal areas.  相似文献   

12.
王沫竹  董必成  李红丽  于飞海 《生态学报》2016,36(24):8091-8101
自然界中光照和养分因子常存在时空变化,对植物造成选择压力。克隆植物可通过克隆生长和生物量分配的可塑性来适应环境变化。尽管一些研究关注了克隆植物对光照和养分因子的生长响应,但尚未深入全面了解克隆植物对光照和养分资源投资的分配策略。以根茎型草本克隆植物扁秆荆三棱(Bolboschoenus planiculmis)为研究对象,在温室实验中,将其独立分株种植于由2种光照强度(光照和遮阴)和4种养分水平(对照、低养分、中养分和高养分)交叉组成的8种处理组合中,研究了光照和养分对其生长繁殖及资源贮存策略的影响。结果表明,扁秆荆三棱的生长、无性繁殖及资源贮存性状均受到光照强度的显著影响,在遮阴条件下各生长繁殖性状指标被抑制。且构件的数目、长度等特征对养分差异的可塑性响应先于其生物量积累特征。在光照条件下,高养分处理的总生物量、叶片数、总根茎分株数、长根茎分株数、总根茎长、芽长度、芽数量等指标大于其他养分处理,而在遮阴条件下,其在不同养分处理间无显著差异,表明光照条件可影响养分对扁秆荆三棱可塑性的作用,且高营养水平不能补偿由于光照不足而导致的生长能力下降。光照强度显著影响了总根茎、总球茎及大、中、小球茎的生物量分配,遮阴条件下,总生物量减少了对地下部分根茎和球茎的分配,并将有限的生物量优先分配给小球茎。总根茎的生物量分配未对养分发生可塑性反应,而随着养分增加,总球茎分配下降,说明在养分受限的环境中球茎的贮存功能可缓冲资源缺乏对植物生长的影响。在相同条件下,根茎生物量对长根茎的分配显著大于短根茎,以保持较高的繁殖能力;而总球茎对有分株球茎的生物量分配小于无分株球茎,表明扁秆荆三棱总球茎对贮存功能的分配优先于繁殖功能。研究为进一步理解根茎型克隆植物对光强及基质养分环境变化的生态适应提供了依据。  相似文献   

13.
 羊柴(Hedysarum laeve)是豆科多年生半灌木,在自然条件下可以同时进行有性繁殖和克隆繁殖。该文在野外条件下研究了不同水平的水分和养 分处理对羊柴种群的繁殖权衡的影响。结果表明,与对照相比,增加一定量的水分处理显著减少了花和荚果的生物量;显著增加了克隆分株枝 的生物量,显著减少了分株根茎的生物量, 但没有影响其它部分的生物量。增加一定量的水分会抑制有性繁殖,改变生物量对克隆繁殖分株各 部分的分配比例。与对照相比,增加一定量的养分能够促进有性繁殖,抑制克隆繁殖。  相似文献   

14.
Regeneration from rhizome fragments of Agropyron repens   总被引:1,自引:0,他引:1  
Experiments were done with rhizome fragments of Agropyron repens with or without ‘late spring dormancy’. Increasing concentrations of KN03 from 1 to 210 ppm successively increased the percentage of buds released from dormancy, but the restriction of shoot extension was significantly lessened only when concentrations of nitrogen were 50 ppm or more. Solutions of sodium nitrite, ammonium chloride and glutamic acid with equal nitrogen contents were equally effective in releasing buds from dormancy. Larger amounts of nitrogen were required to stimulate growth in basal buds, than in apical buds. GA3, and chilling at – 2 oC slightly increased the percentage of buds growing but did not significantly affect the amount of extension growth, while ethephon (2-chloroethylphosphonic acid) had no effect. The restoration of regenerative capacity was associated with increased utilization of rhizome sugars. In single-node rhizome fragments with ‘late spring dormancy’, chilling for 2 wk slightly increased the regenerative capacity but chilling for longer periods decreased it, possibly because respiration during the protracted period of chilling depleted rhizome reserves. Chilling also increased the utilization of rhizome carbohydrates during subsequent growth. Node position affected regenerative capacity: buds from the apical end of the rhizomes were found to have the highest regenerative capacity, this being associated with their greater nitrogen content. Because the name ‘late spring dormancy’ seems to be inappropriate for this phenomena, the term ‘Restricted Regenerative Capacity’ is proposed.  相似文献   

15.
The technical and economical feasibility of farmingLaminaria saccharina for a food base product near a salmon sea cage farm was evaluated. Suitability of kelp for nutrient removal was also analyzed. A computer model of a conceptualized system was developed in order to make the assessments. Kelp growth was modelled as a linear function of temperature and background dissolved inorganic nitrogen concentration, and it was partially experimentally validated. Based on model simulations, aLaminaria farm containing 10,60 m ropes on each end of a salmon sea cage farm is fertilized by the salmon farm and yields annually 1600 kg of dried kelp. The payback period for the initial investment of $61 × 103 is 6 years after which an annual net profit of 20 × 103 Canadian dollars ($16.68 × 103 US) can be achieved. The net present worth of the kelp farm was positive for a rate of return up to 25%. Kelp production on multiple salmon farms or at a higher kelp density could increase the overall revenue.The kelp farm does not appreciably affect background nutrient or oxygen levels. With a few modifications in the model,Nereocystis andMacrocystis farming can be substituted and evaluated for feasibility and nutrient removal efficiency.  相似文献   

16.
Leymus chinensis (Trin.) Tzvel is a rhizomatous grass species in the Eastern Eurasian steppe zone that is often limited by low soil nitrogen availability. Although a previous study showed that the rhizomes of L. chinensis have the capacity to take up nitrogen, the importance of such uptake for nitrogen nutrition is unclear. Moreover, little is known regarding the inorganic nitrogen uptake kinetics of roots and rhizomes in response to nitrogen status. Here, we first found that ammonium is preferred over nitrate and glycine for L. chinensis growth. Using the 15N-labelling method, we found that the rate of ion influx into roots was approximately five-fold higher than into rhizomes under the same nitrogen content, and the ion influxes into roots and rhizomes under 0.05 mM N were greater than in the presence of 3 mM N, especially in the form of NH4+. Using a non-invasive micro-test technique, we characterised the patterns of NH4+ and NO3 fluxes in the root mature zone, root tip, rhizome mature zone, and rhizome tip following incubation in the solution with different N compounds and different N concentrations. These results suggest a dynamic balance between the uptake, utilisation, and excretion of nitrogen in L. chinensis.  相似文献   

17.
Halimeda is a potential carbon sink species and an important player in the global carbonate budget. The objectives of this study were to: (i) examine the CaCO3 and sediment productions of H. macroloba by measuring the density, growth rate, and recruitment; (ii) quantify the numbers of aragonite crystals; (iii) document reproductive events; and (iv) determine the life‐span. This study was carried out at Lidee Lek Island, Satun, Thailand during July 2015 to April 2016. The density was measured using quadrats (0.25 m2) and three 50 m line transects. Alizarin Red‐S marking technique was used for the growth rate and CaCO3 accumulation rate assessments. The recruitment, reproduction and life‐span were measured by tagging 500 individuals. Tagged individuals and new plants were counted. In this study, mean and the highest density of Halimeda were 44.42 ± 13.95 and 138.22 ± 11.68 thalli m?2, respectively, and Halimeda produced 1–2 new segments.thallus?1 day?1 or 0.021 ± 0.001 g dry weight.thallus?1.day?1. The annual biomass production was 1910–5950 g m?2 year.?1. There was a low rate of occurrence of sexual reproduction, observed in late July to September, ranging from 0.17% to 1.92%. For the mortality and recruitment rates, approximately 70–80% of individuals were lost during July to September 2015, probably from sexual reproduction and the recruitment rate varied from 5.36 ± 0.79% to 21.03 ± 2.33%. The highest density of new recruits was found in September 2015 right after the sexual reproductive event occurred. New recruits have been found up to April 2016 without any reproductive events, suggesting that both sexual and asexual reproduction helped maintain the population. The life span of Halimeda was 8–12 months. In addition, Halimeda accumulated CaCO3 at approximately 0.018 g CaCO3 thallus?1 day?1 and produced CaCO3 at approximately 291.94–908.11 g m?2 year?1, indicating that Halimeda contributes to CaCO3 and helps to sink carbon through calcification. The results in terms of the density, growth rate, and CaCO3 accumulation rate can be used to calculate the mass of carbonate sediment contributed by Halimeda.  相似文献   

18.
Epipactis helleborine (L.) Crantz (Orchidaceae, Neottieae) can spread by sexual or vegetative propagation. The choice of strategy likely depends on the environmental conditions. The rhizome is the organ of vegetative reproduction; hence, it is crucial to understand its development. Unfortunately, it is hardly possible to investigate rhizome morphology directly, since E. helleborine is a protected species in most European countries. The goal of our investigation was to infer the growth patterns of underground parts of an orchid population from long-term annual observations of its aboveground shoots. We implemented the Minimum Spanning Tree method to determine a likely set of underground connections between shoots and to simulate the annual growth of new rhizomes. Furthermore, we modelled the spatial distribution of shoots with a density kernel estimator to compare the density gradients with the direction of growth of the rhizomes. Observed shoot numbers fluctuated between 72 and 183 from year to year. Our results suggest that (1) vegetative reproduction prevails in the studied population, (2) the population consists of about a dozen clones with a diameter of up to 6 m, (3) rhizomes produce up to five new shoots at one branch end per year, (4) rhizomes develop in the direction of decreasing population density, and (5) nodes of rhizomes may produce new offshoots after up to 7 years of dormancy.  相似文献   

19.
Resource partitioning between shoot growth, storage and reproduction is poorly understood in many clonal plant species. This study documents seasonal patterns of growth, 14C-labelled photoassimilate distribution and remobilization in the invasive rhizomatous species Fallopia japonica (Japanese knotweed). Biomass accumulation above- and below-ground in F. japonica was rapid. By September, rhizome biomass had increased 18-fold from the initial harvest in May (representing 48% of total plant biomass) and this was maintained over winter. Patterns of 14C allocation from F. japonica shoots labelled at different times of year show that as the season progressed, the rhizomes became an increasingly important sink for current assimilate (the percentage of 14C recovered from rhizomes was 35% in August and 67% in September) and the corresponding retention of assimilate by established shoots declined. The percentage of 14C exported to roots was greatest in August. Relatively little photoassimilate was exported to other shoots on the plant, or to flowers. Recycling of photoassimilate was fairly tight in this species and 14C fixed by shoots in early May 1999 or September 1999 was remobilized to the rhizome prior to shoot senescence and death. Some of this 14C was then remobilized to new shoots early the following spring. These characteristics may contribute to the success of F. japonica in colonizing a variety of contrasting habitats, often with serious management implications.  相似文献   

20.
Derner  J.D.  Briske  D.D. 《Plant and Soil》2001,237(1):117-127
An experiment was conducted to compare below-ground soil organic carbon and total nitrogen accumulation between caespitose and rhizomatous perennial grasses in long-term (<25 yrs) grazed and ungrazed sites in semi-arid and mesic communities in the North American Great Plains. Development of greater nutrient pools beneath than between clones occurred at minimal clone basal areas (<60 cm2) for both caespitose species. Caespitose grasses accumulated substantially greater pools of carbon (20–200 fold) and nitrogen (50–500 fold) in soils to a depth of 10 cm beneath clones than rhizomatous grasses accumulated in rhizomes in both communities. Carbon and nitrogen pools in soils beneath caespitose clones exceeded combined (soil + rhizome) pools for rhizomatous grasses for a majority of the clone basal areas (>90 cm2) in the mesic community. In contrast, both pool sizes were smaller beneath the caespitose grass at all clone basal areas than the combined pools for the rhizomatous grass in the semi-arid community. The occurrence of larger soil nutrient pools beneath the rhizomatous species in the semi-arid community was largely a consequence of niche separation for microsites characterized by soils with higher nutrient concentrations, rather than plant-induced increases in nutrient concentrations. Although nutrient islands do not occur beneath rhizomatous grasses, their distribution in the semi-arid community was restricted to microsites characterized by soils with higher SOC and N concentrations. A greater efficiency of nutrient accumulation per unit rhizome mass and the maintenance of rhizome nutrient pools of similar magnitude to those of the rhizomatous grass in the mesic community may also contribute to the distribution of rhizomatous grasses in semi-arid communities. The existence of nutrient islands beneath a wide range of clone sizes in both mesic and semi-arid communities provides circumstantial evidence to suggest that nutrient islands beneath caespitose grasses may contribute to clone fitness in this growth form.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号