首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We provide here unique data on elephant skeletal ontogeny. We focus on the sequence of cranial and post-cranial ossification events during growth in the African elephant (Loxodonta africana). Previous analyses on ossification sequences in mammals have focused on monotremes, marsupials, boreoeutherian and xenarthran placentals. Here, we add data on ossification sequences in an afrotherian. We use two different methods to quantify sequence heterochrony: the sequence method and event-paring/Parsimov. Compared with other placentals, elephants show late ossifications of the basicranium, manual and pedal phalanges, and early ossifications of the ischium and metacarpals. Moreover, ossification in elephants starts very early and progresses rapidly. Specifically, the elephant exhibits the same percentage of bones showing an ossification centre at the end of the first third of its gestation period as the mouse and hamster have close to birth. Elephants show a number of features of their ossification patterns that differ from those of other placental mammals. The pattern of the initiation of the ossification evident in the African elephant underscores a possible correlation between the timing of ossification onset and gestation time throughout mammals.  相似文献   

2.
Consensus on placental mammal phylogeny is fairly recent compared to that for vertebrates as a whole. A stable phylogenetic hypothesis enables investigation into the possibility that placental clades differ from one another in terms of their development. Here, we focus on the sequence of skeletal ossification as a possible source of developmental distinctiveness in “northern” (Laurasiatheria and Euarchontoglires) versus “southern” (Afrotheria and Xenarthra) placental clades. We contribute data on cranial and postcranial ossification events during growth in Afrotheria, including elephants, hyraxes, golden moles, tenrecs, sengis, and aardvarks. We use three different techniques to quantify sequence heterochrony: continuous method, sequence‐ANOVA (analysis of variance) and event‐paring/Parsimov. We show that afrotherians significantly differ from other placentals by an early ossification of the orbitosphenoid and caudal vertebrae. Our analysis also suggests that both southern placental groups show a greater degree of developmental variability; however, they rarely seem to vary in the same direction, especially regarding the shifts that differ statistically. The latter observation is inconsistent with the Atlantogenata hypothesis in which afrotherians are considered as the sister clade of xenarthrans. Interestingly, ancestral nodes for Laurasiatheria and Euarchontoglires show very similar trends and our results suggest that developmental homogeneity in some ossification sequences may be restricted to northern placental mammals (Boreoeutheria).  相似文献   

3.
Postcranial ossification sequences in 24 therian mammals and three outgroup taxa were obtained using clear staining and computed tomography to test the hypothesis that the marsupial forelimb is developmentally accelerated, and to assess patterns of therian postcranial ossification. Sequence rank variation of individual bones, phylogenetic analysis, and algorithm-based heterochrony optimization using event pairs were employed. Phylogenetic analysis only recovers Marsupialia, Australidelphia, and Eulipotyphla. Little heterochrony is found within marsupials and placentals. However, heterochrony was observed between marsupials and placentals, relating to late ossification in hind limb long bones and early ossification of the anterior axial skeleton. Also, ossification rank position of marsupial forelimb and shoulder girdle elements is more conservative than that of placentals; in placentals the hind limb area is more conservative. The differing ossification patterns in marsupials can be explained with a combination of muscular strain and energy allocation constraints, both resulting from the requirement of active movement of the altricial marsupial neonates toward the teat. Peramelemorphs, which are comparatively passive at birth and include species with relatively derived forelimbs, differ little from other marsupials in ossification sequence. This suggests that ossification heterochrony in marsupials is not directly related to diversity constraints on the marsupial forelimb and shoulder girdle.  相似文献   

4.
Postcranial ossification sequences in 24 therian mammals and three outgroup taxa were obtained using clear staining and computed tomography to test the hypothesis that the marsupial forelimb is developmentally accelerated, and to assess patterns of therian postcranial ossification. Sequence rank variation of individual bones, phylogenetic analysis, and algorithm-based heterochrony optimization using event pairs were employed. Phylogenetic analysis only recovers Marsupialia, Australidelphia, and Eulipotyphla. Little heterochrony is found within marsupials and placentals. However, heterochrony was observed between marsupials and placentals, relating to late ossification in hind limb long bones and early ossification of the anterior axial skeleton. Also, ossification rank position of marsupial forelimb and shoulder girdle elements is more conservative than that of placentals; in placentals the hind limb area is more conservative. The differing ossification patterns in marsupials can be explained with a combination of muscular strain and energy allocation constraints, both resulting from the requirement of active movement of the altricial marsupial neonates toward the teat. Peramelemorphs, which are comparatively passive at birth and include species with relatively derived forelimbs, differ little from other marsupials in ossification sequence. This suggests that ossification heterochrony in marsupials is not directly related to diversity constraints on the marsupial forelimb and shoulder girdle.  相似文献   

5.
Most anurans have a biphasic life cycle, which includes metamorphosis from a tadpole stage to an adult frog. This process involves extensive transformations of the cranial skeleton, which have been of long‐standing interest with respect to anuran skeletal evolution and taxonomy. In this study, large‐scale patterns of anuran skeletal ossification are assessed by collecting the most comprehensive data set on anuran cranial ossification to date from the literature, including data for 45 anuran and one caudate outgroup species. Ossification sequences were translated into event‐pair matrices for explorative phylogenetic analysis and phylogenetically informed parsimony search for heterochrony using the Parsimov algorithm. Rank variability of single bones across species was also analysed. Little phylogenetic signal was retrieved from a parsimony‐based phylogenetic analysis of event‐pairs, and only a few species that are generally agreed to be closely related are placed close to each other (e.g. some Pipidae and Costata). Parsimov analysis revealed some clade‐specific heterochrony in anuran clades of varying inclusiveness. Our results show that relating heterochronic changes in anuran cranial ontogeny to parameters such as direct development or miniaturization is problematic because of the high evolvability of cranial ossification sequences. Rank variation analysis suggests that anuran cranial bones are highly variable in their sequence positioning, possibly because tadpole and adult cranial morphology do not co‐evolve. Elements which are lost in some species ossify at the end of the sequence, providing evidence for the notion that failure of anuran cranial elements to ossify is due to processes of paedomorphosis.  相似文献   

6.
Patterns of vertebral variation across mammals have seldom been quantified, making it difficult to test hypotheses of covariation within the axial skeleton and mechanisms behind the high level of vertebral conservatism among mammals. We examined variation in vertebral counts within 42 species of mammals, representing monotremes, marsupials and major clades of placentals. These data show that xenarthrans and afrotherians have, on average, a high proportion of individuals with meristic deviations from species' median series counts. Monotremes, xenarthrans, afrotherians and primates show relatively high variation in thoracolumbar vertebral count. Among the clades sampled in our dataset, rodents are the least variable, with several species not showing any deviations from median vertebral counts, or vertebral anomalies such as asymmetric ribs or transitional vertebrae. Most mammals show significant correlations between sacral position and length of the rib cage; only a few show a correlation between sacral position and number of sternebrae. The former result is consistent with the hypothesis that adult axial skeletal structures patterned by distinct mesodermal tissues are modular and covary; the latter is not. Variable levels of correlation among these structures may indicate that the boundaries of prim/abaxial mesodermal precursors of the axial skeleton are not uniform across species. We do not find evidence for a higher frequency of vertebral anomalies in our sample of embryos or neonates than in post-natal individuals of any species, contrary to the hypothesis that stabilizing selection plays a major role in vertebral patterning.  相似文献   

7.
Genise, J.F. & Farina, J.L. 2011: Ants and xenarthrans involved in a Quaternary food web from Argentina as reflected by their fossil nests and palaeocaves. Lethaia, Vol. 45, pp. 411–422. Quaternary (Ensenadan stage‐age) deposits of the Miramar Formation from the Buenos Aires sea coast near Mar del Plata (Argentina) are well known for bearing long horizontal tunnels produced by xenarthrans, either ground sloths or armadillos. Little known is that, in some cases, these palaeocaves cross‐cut social insect nests. Nests of two studied palaeocaves can be attributed to ants based on the presence of abundant ant remains, filling of chambers and organic‐rich linings. Insect remains show part of a food web composed of army ants (Neivamyrmex) preying on leaf‐cutting ants (Acromyrmex), Pheidole and other soil invertebrates. The other main component of this web is represented by the xenarthrans feeding on these ants. The facultative foraging function of xenarthran palaeocaves is supported by the common record of these extended horizontal tunnel systems similar to other subterranean foraging mammals, the presence of insect nests cross‐cut by them and the extended myrmecophagy among xenarthrans. Xenarthran foraging burrows, despite their high‐energy cost, would have been favoured by abundance of underground ant nests during Quaternary times and harsh climate. This climate would have produced the scarcity of insects on surface and longest periods of underground activity by xenarthrans, involving the extension of shelter burrows for adult and possibly juvenile feeding. □Ant fossil nests, Argentina, Buenos Aires, food web, Quaternary, xenarthran palaeocaves.  相似文献   

8.
We analyzed a comprehensive data set of ossification sequences including seven marsupial, 13 placental and seven sauropsid species. Data are provided for the first time for two major mammalian clades, Chiroptera and Soricidae, and for two rodent species; the published sequences of three species were improved with additional sampling. The relative timing of the onset of ossification in 17 cranial elements was recorded, resulting in 136 event pairs, which were treated as characters for each species. Half of these characters are constant across all taxa, 30% are variable but phylogenetically uninformative, and 19% potentially deliver diagnostic features for clades of two or more taxa. Using the conservative estimate of heterochronic changes provided by the program Parsimov, only a few heterochronies were found to diagnose mammals, marsupials, or placentals. A later onset of ossification of the pterygoid with respect to six other cranial bones characterizes therian mammals. This result may relate to the relatively small size of this bone in this clade. One change in relative onset of ossification is hypothesized as a potential human autapomorphy in the context of the sampling made: the earlier onset of the ossification of the periotic with respect to the lacrimal and to three basicranial bones. Using the standard error of scaled ranks across all species as a measure of each element's lability in developmental timing, we found that ossification of early, middle, and late events are similarly labile, with basicranial traits the most labile in timing of onset of ossification. Despite marsupials and placental mammals diverging at least 130 Ma, few heterochronic shifts in cranial ossification diagnose these clades.  相似文献   

9.
Extant xenarthrans (armadillos, anteaters and sloths) are among the most derived placental mammals ever evolved. South America was the cradle of their evolutionary history. During the Tertiary, xenarthrans experienced an extraordinary radiation, whereas South America remained isolated from other continents. The 13 living genera are relics of this earlier diversification and represent one of the four major clades of placental mammals. Sequences of the three independent protein-coding nuclear markers alpha2B adrenergic receptor (ADRA2B), breast cancer susceptibility (BRCA1), and von Willebrand Factor (VWF) were determined for 12 of the 13 living xenarthran genera. Comparative evolutionary dynamics of these nuclear exons using a likelihood framework revealed contrasting patterns of molecular evolution. All codon positions of BRCA1 were shown to evolve in a strikingly similar manner, and third codon positions appeared less saturated within placentals than those of ADRA2B and VWF. Maximum likelihood and Bayesian phylogenetic analyses of a 47 placental taxa data set rooted by three marsupial outgroups resolved the phylogeny of Xenarthra with some evidence for two radiation events in armadillos and provided a strongly supported picture of placental interordinal relationships. This topology was fully compatible with recent studies, dividing placentals into the Southern Hemisphere clades Afrotheria and Xenarthra and a monophyletic Northern Hemisphere clade (Boreoeutheria) composed of Laurasiatheria and Euarchontoglires. Partitioned likelihood statistical tests of the position of the root, under different character partition schemes, identified three almost equally likely hypotheses for early placental divergences: a basal Afrotheria, an Afrotheria + Xenarthra clade, or a basal Xenarthra (Epitheria hypothesis). We took advantage of the extensive sampling realized within Xenarthra to assess its impact on the location of the root on the placental tree. By resampling taxa within Xenarthra, the conservative Shimodaira-Hasegawa likelihood-based test of alternative topologies was shown to be sensitive to both character and taxon sampling.  相似文献   

10.
Xenarthrans stand out among mammals for various reasons, one of them being their musculoskeletal postcranial specializations. Extant armadillos, anteaters, and sloths feature archetypical adaptations to digging and/or diverse arboreal lifestyles. Numerous extinct xenarthrans dramatically depart in size and morphology from their extant relatives, which has sparked functional interpretations since the end of the eighteenth century. Here, we review the diverse methodological approaches that have been used to investigate functional aspects of the postcranial musculoskeletal system in extant and extinct xenarthrans. Specifically, we address qualitative and quantitative bone morphology (including geometric morphometrics), body size and allometry, bone inner structure, myology, as well as in vivo, ex vivo, and in silico experimentation. Finally, a short account is given on those analyses that included xenarthrans to gain insight into primate anatomy. This review helped to identify potential future directions for the functional analysis of the xenarthran anatomy, a tradition over two centuries old.  相似文献   

11.
Armadillos, anteaters, and sloths (Order Xenarthra) comprise 1 of the 4 major clades of placental mammals. Isolated in South America from the other continental landmasses, xenarthrans diverged over a period of about 65 Myr, leaving more than 200 extinct genera and only 31 living species. The presence of both ancestral and highly derived anatomical features has made morphoanatomical analyses of the xenarthran evolutionary history difficult, and previous molecular analyses failed to resolve the relationships within armadillo subfamilies. We investigated the presence/absence patterns of retroposons from approximately 7,400 genomic loci, identifying 35 phylogenetically informative elements and an additional 39 informative rare genomic changes (RGCs). DAS-short interspersed elements (SINEs), previously described only in the Dasypus novemcinctus genome, were found in all living armadillo genera, including the previously unsampled Chlamyphorus, but were noticeably absent in sloths. The presence/absence patterns of the phylogenetically informative retroposed elements and other RGCs were then compared with data from the DNA sequences of the more than 12-kb flanking regions of these retroposons. Together, these data provide the first fully resolved genus tree of xenarthrans. Interestingly, multiple evidence supports the grouping of Chaetophractus and Zaedyus as a sister group to Euphractus within Euphractinae, an association that was not previously demonstrated. Also, flanking sequence analyses favor a close phylogenetic relationship between Cabassous and Tolypeutes within Tolypeutinae. Finally, the phylogenetic position of the subfamily Chlamyphorinae is resolved by the noncoding sequence data set as the sister group of Tolypeutinae. The data provide a stable phylogenetic framework for further evolutionary investigations of xenarthrans and important information for defining conservation priorities to save the diversity of one of the most curious groups of mammals.  相似文献   

12.
The mammalian order Xenarthra (armadillos, anteaters and sloths) is one of the four major clades of placentals, but it remains poorly studied from the molecular phylogenetics perspective. We present here a study encompassing most of the order's diversity in order to establish xenarthrans' intra-ordinal relationships, discuss the evolution of their morphological characters, search for their extant sister group and specify the timing of their radiation with special emphasis on the status of the controversial fossil Eurotamandua. Sequences of three genes (nuclear exon 28 of the Von Willebrand factor and mitochondrial 12S and 16S rRNAs) are compared for eight of the 13 living genera. Phylogenetic analyses confirm the order's monophyly and that of its three major lineages: armadillos (Cingulata), anteaters (Vermilingua) and sloths ('Tardigrada', renamed in 'Folivora'), and our results strongly support the grouping of hairy xenarthrans (anteaters and sloths) into Pilosa. Within placentals, Afrotheria might be the first lineage to branch off, followed by Xenarthra. The morphological adaptative convergence between New World xenarthrans and Old World pangolins is confirmed. Molecular datings place the early emergence of armadillos around the Cretaceous/Tertiary boundary, followed by the divergence between anteaters and sloths in the Early Eocene era. These Tertiary dates contradict the concept of a very ancient origin of modern xenarthran lineages. They also question the placement of the purported fossil anteater (Eurotamandua) from the Middle Eocene period of Europe with the Vermilingua and instead suggest the independent and convergent evolution of this enigmatic taxon.  相似文献   

13.
A striking difference between xenarthrans and other mammals is the complete loss of tooth enamel in all members but the earliest armadillos. However, sloth and armadillo teeth show structured wear facets, which in all other mammals are formed by tooth enamel. How is that possible? Here, I report about an analysis of fossil and recent xenarthran dental hard tissue microstructure. It shows that osteodentine is not exclusive to fossil Cingulata, but also occurs in some recent taxa. Furthermore, I found profound modifications of orthodentine architecture in comparison to other mammals. Remarkable features are (a) a larger proportion of the highly mineralized, collagen‐free peritubular dentine, and (b) a modified architecture of the odontoblastic process with frequent interconnections between the extensions and unusually intensive branching of the extensions forming a complex meshwork, penetrating the intertubular dentine matrix. The orthodentine microstructural build‐up is unique in Folivora and Cingulata. J. Morphol., 2011. © 2011 Wiley‐Liss, Inc.  相似文献   

14.
We investigated the development of the whole skeleton of the soft‐shelled turtle Pelodiscus sinensis, with particular emphasis on the pattern and sequence of ossification. Ossification starts at late Tokita‐Kuratani stage (TK) 18 with the maxilla, followed by the dentary and prefrontal. The quadrate is the first endoskeletal ossification and appears at TK stage 22. All adult skull elements have started ossification by TK stage 25. Plastral bones are the first postcranial bones to ossify, whereas the nuchal is the first carapacial bone to ossify, appearing as two unstained anlagen. Extensive examination of ossification sequences among autopodial elements reveals much intraspecific variation. Patterns of ossification of cranial dermal elements are more variable than those of endochondral elements, and dermal elements ossify before endochondral ones. Differences in ossification sequences with Apalone spinifera include: in Pelodiscus sinensis the jugal develops relatively early and before the frontal, whereas it appears later in A. spinifera; the frontal appears shortly before the parietal in A. spinifera whereas in P. sinensis the parietal appears several stages before the frontal. Chelydrids exhibit an early development of the postorbital bone and the palatal elements as compared to trionychids. Integration of the onset of ossification data into an analysis of the sequence of skeletal ossification in cryptodirans using the event‐pairing and Parsimov methods reveals heterochronies, some of which reflect the hypothesized phylogeny considered taxa. A functional interpretation of heterochronies is speculative. In the chondrocranium there is no contact between the nasal capsules and planum supraseptale via the sphenethmoid commissurae. The pattern of chondrification of forelimb and hind limb elements is consistent with a primary axis and digital arch. There is no evidence of anterior condensations distal to the radius and tibia. A pattern of quasi‐ simultaneity is seen in the chondrogenesis of the forelimb and the hind limb. J. Morphol. 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

15.
Identifying when homoplasy is due to convergence requires confidencein trees and precise analysis of potentially convergent characters.Some features of mammals that eat mostly ants and termites areused as examples of convergence; the most speciose assemblagesof these mammals are in the orders Xenarthra and Pholidota.My studies on cranial muscles in xenarthrans and pholidotansaim to 1) precisely describe the anatomy in ant-eating and non-ant-eatinglineages, 2) assess variation among ant-eating lineages, and3) compare the most derived conditions (in xenarthran anteatersand pholidotan pangolins). These data clarify the nature ofmorphological adaptation in ant-eating mammals, and when combinedwith accumulating phylogenetic studies, allow us to distinguishfeatures that have evolved convergently from those that arevariable but not correlated with diet. Interpreting the extremesimilarity in anteaters and pangolins remains problematic dueto lingering disagreement among phylogenetic hypotheses. Prevailingopinion favors interpretation of these similarities as convergent.  相似文献   

16.
An intramembranous ossification at the anterior end of the cartilaginous nasal capsule is described for the first time in prenatal specimens of the anteaterTamandua and the slothCholoepus and redescribed in prenatal specimens of the armadillosDasypus andZaedyus. From comparisons of this bone with the septomaxilla of monotremes and various Mesozoic mammals, it is concluded that (1) the bone inTamandua andCholoepus is homologous with the central part (processus ascendens) of the bone inDasypus, Zaedyus, and other armadillos and (2) the xenarthran processus ascendens, in turn, is homologous with the central part of the septomaxilla of monotremes and various Mesozoic mammals. Therefore, the bone in question in xenarthrans is a true septomaxilla. It is further concluded that the armadillo septomaxilla has two neomorphic components: a lamina palatina beneath the cartilaginous nasal floor and a processus intrafenestralis extending rostrally into the nasal fossa.  相似文献   

17.
The developmental differences between marsupials, placentals, and monotremes are thought to be reflected in differing patterns of postcranial development and diversity. However, developmental polarities remain obscured by the rarity of monotreme data. Here, I present the first postcranial ossification sequences of the monotreme echidna and platypus, and compare these with published data from other mammals and amniotes. Strikingly, monotreme stylopodia (humerus, femur) ossify after the more distal zeugopodia (radius/ulna, tibia/fibula), resembling only the European mole among all amniotes assessed. European moles also share extreme humeral adaptations to rotation digging and/or swimming with monotremes, suggesting a causal relationship between adaptation and ossification heterochrony. Late femoral ossification with respect to tibia/fibula in monotremes and moles points toward developmental integration of the serially homologous fore- and hindlimb bones. Monotreme cervical ribs and coracoids ossify later than in most amniotes but are similarly timed as homologous ossifications in therians, where they are lost as independent bones. This loss may have been facilitated by a developmental delay of coracoids and cervical ribs at the base of mammals. The monotreme sequence, although highly derived, resembles placentals more than marsupials. Thus, marsupial postcranial development, and potentially related diversity constraints, may not represent the ancestral mammalian condition.  相似文献   

18.
Extant species of Xenarthra represent a severely restricted sample of the total diversity achieved by the group. Given their shared history, the extant representatives of the three major groups of xenarthrans (Cingulata, Folivora, and Vermilingua) provide a valuable basis for paleobiological inference. However, many extinct taxa are morphologically so dissimilar from their extant relatives that they suggest very different ways of life. In these cases, extinct forms do not have modern models within the group and the application of a simplistic and strict approach can produce nonsensical reconstructions. In this contribution, we evaluate the limitations of the use of extant xenarthrans as morphological models for paleobiological reconstructions. A database of linear dimensions of the appendicular skeleton of extant and extinct xenarthrans and other mammals (marsupials, carnivorans, rodents, primates, perissodactyls, artiodactyls, and proboscideans) was constructed. Exploratory analyzes were performed on general morphometric similarity between existing and extinct xenarthrans (PCA) and the accuracy of body mass estimates of extinct xenarthrans based on their close relatives and other mammals (simple and multiple linear regressions) were tested. Extinct xenarthrans occupy similar relative positions in the morphospaces as extant mammals other than their closest relatives. Most allometric equations, particularly those based only on xenarthrans, produced remarkable underestimates. This can be explained by dimensional differences (up to four orders of magnitude) and shape differences between most of the extinct and extant xenarthrans. This does not invalidate actualism and the use of analogues, but suggests the need to apply other approaches, such as mechanics, that address form-function relationships but are not necessarily based on known biological comparators.  相似文献   

19.
Mammals display a broad spectrum of limb specializations coupled with different locomotor strategies and habitat occupation. This anatomical diversity reflects different patterns of development and growth, including the timing of epiphyseal growth plate closure in the long bones of the skeleton. We investigated the sequence of union in 15 growth plates in the limbs of about 400 specimens, representing 58 mammalian species: 34 placentals, 23 marsupials and one monotreme. We found a common general pattern of growth plate closure sequence, but one that is universal neither between species nor in higher‐order taxa. Locomotor habitat has no detectable correlation with the growth plate closure sequence, but observed patterns indicate that growth plate closure sequence is determined more strongly through phylogenetic factors. For example, the girdle elements (acetabulum and coracoid process) always ossify first in marsupials, whereas the distal humerus is fused before the girdle elements in some placentals. We also found that heterochronic shifts (changes in timing) in the growth plate closure sequence of marsupials occur with a higher rate than in placentals. This presents a contrast with the more limited variation in timing and morphospace occupation typical for marsupial development. Moreover, unlike placentals, marsupials maintain many epiphyses separated throughout life. However, as complete union of all epiphyseal growth plates is recorded in monotremes, the marsupial condition might represent the derived state.  相似文献   

20.
Shared insertions or deletions (indels) in protein-coding DNA can be strong indicators of the monophyly of a taxon. A three-amino acid deletion had previously been noted in the eye lens protein alpha A-crystallin of two species of sloths and two species of anteaters, which represent the Pilosa, one of the two infraorders of Xenarthra (Edentata). This deletion has not been observed in 55 species from 16 other eutherian orders, or in 2 species of marsupials, or in 34 nonmammalian vertebrates, from birds to shark. At the genomic level, we have now detected this deletion in two species of armadillos of the second xenarthran infraorder, Cingulata, as well as in an additional species of anteater. Phylogenetic trees were constructed from a 145-bp sequence of the alpha A-crystallin gene of 39 tetrapod species, supporting xenarthran monophyly with values from 76% to 90%. To quantify the additional support for xenarthran monophyly, as given by the three-residue deletion, we computed the probabilities for the occurrence of this deletion per evolutionary time unit for alternative hypothetical tree topologies. In the estimates obtained, the six trees in which the xenarthran subgroups are unresolved or paraphyletic give an increasingly lower likelihood than do the two trees that assume xenarthran monophyly. For the monophyletic trees, the probability that the deletion observed in the xenarthrans is due to a single event is > 0.99. Thus, this deletion in alpha A-crystallin gives strong molecular support for the monophyly of this old and diverse order.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号