首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Abstract. Through an experiment in three prairie vegetation types in western Oregon, USA the effect of prescribed fire on the timing and rates of seedling emergence and mortality was examined. Seeds of common exotic and native prairie species were sown into burned and unburned plots in late September, 1995. Emerged seedlings were censussed the following winter, early spring and late spring. Results indicated that spring population levels could not be forecast by fall seedling flushes, as winter survival was important in seedling establishment. The bulk of emergence for all grass and annual forb species occurred in the fall, followed by low to severe winter mortality. Perennial forbs were more variable in emergence times but, once emerged, perennial forb seedlings were likely to become established. Burning caused a statistically significant increase in seedling accumulation through emergence and survival in 11 of 23 cases. Burning improved seedling winter survival for most grass and short‐lived forb species and increased emergence of perennial forb species. These patterns were most conspicuous on the two sites dominated by exotic species, where burning significantly improved the accumulation of seedlings from most native species tested. Thus, prescribed burning might be a useful restoration tool in these communities. In contrast, two of the three species increased by burning in the native bunchgrass site were exotic pest plants, suggesting that fire should be prescribed with caution.  相似文献   

2.
Question. Can strategic burning, targeting differing ecological characteristics of native and exotic species, facilitate restoration of native understorey in weed‐invaded temperate grassy eucalypt woodlands? Location. Gippsland Plains, eastern Victoria, Australia. Methods. In a replicated, 5‐year experimental trial, the effects of repeated spring or autumn burning were evaluated for native and exotic plants in a representative, degraded Eucalyptus tereticornis grassy woodland. Treatments aimed to reduce seed banks and modify establishment conditions of exotic annual grasses, and to exhaust vegetative reserves of exotic perennial grasses. Treatments were applied to three grassland patch types, dominated by the native grass Austrodanthonia caespitosa, ubiquitous exotic annuals, or the common exotic perennial grass Paspalum dilatatum. Results. The dominant native grass Austrodanthonia caespitosa and native forbs were resilient to repeated fires, and target exotic annuals and perennials were suppressed differentially by autumn and spring fires. Exotic annuals were also suppressed by drought, reducing the overall treatment effects but indicating important opportunities for restoration. The initially sparse exotic geophyte Romulea rosea increased in cover with fire and the impact of this species on native forbs requires further investigation. There was minimal increase in diversity of subsidiary natives with fire, probably owing to lack of propagules. Conclusions. While fire is often considered to increase ecosystem invasibility, our study showed that strategic use of fire, informed by the relative responses of available native and exotic taxa, is potentially an effective step towards restoration of weed‐invaded temperate eucalypt woodlands.  相似文献   

3.
There is currently much interest in restoration ecology in identifying native vegetation that can decrease the invasibility by exotic species of environments undergoing restoration. However, uncertainty remains about restoration's ability to limit exotic species, particularly in deserts where facilitative interactions between plants are prevalent. Using candidate native species for restoration in the Mojave Desert of the southwestern U.S.A., we experimentally assembled a range of plant communities from early successional forbs to late‐successional shrubs and assessed which vegetation types reduced the establishment of the priority invasive annuals Bromus rubens (red brome) and Schismus spp. (Mediterranean grass) in control and N‐enriched soils. Compared to early successional grass and shrub and late‐successional shrub communities, an early forb community best resisted invasion, reducing exotic species biomass by 88% (N added) and 97% (no N added) relative to controls (no native plants). In native species monocultures, Sphaeralcea ambigua (desert globemallow), an early successional forb, was the least invasible, reducing exotic biomass by 91%. However, the least‐invaded vegetation types did not reduce soil N or P relative to other vegetation types nor was native plant cover linked to invasibility, suggesting that other traits influenced native‐exotic species interactions. This study provides experimental field evidence that native vegetation types exist that may reduce exotic grass establishment in the Mojave Desert, and that these candidates for restoration are not necessarily late‐successional communities. More generally, results indicate the importance of careful native species selection when exotic species invasions must be constrained for restoration to be successful.  相似文献   

4.
Natural ecosystems globally are often subject to multiple human disturbances that are difficult to restore. A restoration experiment was done in an urban fragment of native coastal sage scrub vegetation in Riverside, California that has been subject to frequent fire, high anthropogenic nitrogen deposition, and invasion by Mediterranean annual weeds. Hand cultivation and grass‐specific herbicide were both successful in controlling exotic annual grasses and promoting establishment of seeded coastal sage scrub vegetation. There was no native seedbank left at this site after some 30 years of conversion to annual grassland, and the only native plants that germinated were the seeded shrubs, with the exception of one native summer annual. The city green‐waste mulch used in this study (C:N of 39:1) caused short‐term N immobilization but did not result in decreased grass density or increased native shrub establishment. Seeding native shrubs was successful in a wet year in this Mediterranean‐type climate but was unsuccessful in a dry year. An accidental spring fire did not burn first‐year shrubs, although adjacent plots dominated by annual grass did burn. The shrubs continued to exclude exotic grasses into the second growing season, suggesting that successful shrub establishment may reduce the frequency of the fire return interval.  相似文献   

5.
Grasslands dominated by exotic annual grasses have replaced native perennial vegetation types in vast areas of California. Prescribed spring fires can cause a temporary replacement of exotic annual grasses by native and non‐native forbs, but generally do not lead to recovery of native perennials, especially where these have been entirely displaced for many years. Successful reintroduction of perennial species after fire depends on establishment in the postfire environment. We studied the effects of vegetation changes after an April fire on competition for soil moisture, a key factor in exotic annual grass dominance. As an alternative to fire, solarization effectively kills seeds of most plant species but with a high labor investment per area. We compared the burn to solarization in a study of establishment and growth of seeds and transplants of the native perennial grass Purple needlegrass (Nassella pulchra) and coastal sage species California sagebrush (Artemisia californica). After the fire, initial seed bank and seedling densities and regular percent cover and soil moisture (0–20 cm) data were collected in burned and unburned areas. Burned areas had 96% fewer viable seeds of the dominant annual grass, Ripgut brome (Bromus diandrus), leading to replacement by forbs from the seed bank, especially non‐native Black mustard (Brassica nigra). In the early growing season, B. diandrus dominating unburned areas consistently depleted soil moisture to a greater extent between rains than forbs in burned areas. However, B. diandrus senesced early, leaving more moisture available in unburned areas after late‐season rains. Nassella pulchra and A. californica established better on plots treated with fire and/or solarization than on untreated plots. We conclude that both spring burns and solarization can produce conditions where native perennials can establish in annual grasslands. However, the relative contribution of these treatments to restoration appears to depend on the native species being reintroduced, and the long‐term success of these initial restoration experiments remains to be determined.  相似文献   

6.
Reestablishment of perennial vegetation is often needed after wildfires to limit exotic species and restore ecosystem services. However, there is a growing body of evidence that questions if seeding after wildfires increases perennial vegetation and reduces exotic plants. The concern that seeding may not meet restoration goals is even more prevalent when native perennial vegetation is seeded after fire. We evaluated vegetation cover and density responses to broadcast seeding native perennial grasses and mountain big sagebrush (Artemisia tridentata Nutt. spp. vaseyana [Rydb.] Beetle) after wildfires in the western United States in six juniper (Juniperus occidentalis ssp. occidentalis Hook)‐dominated mountain big sagebrush communities for 3 years postfire. Seeding native perennial species compared to not seeding increased perennial grass and sagebrush cover and density. Perennial grass cover was 4.3 times greater in seeded compared to nonseeded areas. Sagebrush cover averaged 24 and less than 0.1% in seeded and nonseeded areas at the conclusion of the study, respectively. Seeding perennial species reduced exotic annual grass and annual forb cover and density. Exotic annual grass cover was 8.6 times greater in nonseeded compared to seeded areas 3 years postfire. Exotic annual grass cover increased over time in nonseeded areas but decreased in seeded areas by the third‐year postfire. Seeded areas were perennial‐dominated and nonseeded areas were annual‐dominated at the end of the study. Establishing perennial vegetation may be critical after wildfires in juniper‐dominated sagebrush steppe to prevent the development of annual‐dominated communities. Postwildfire seeding increased perennial vegetation and reduced exotic plants and justifies its use.  相似文献   

7.
Davies KW 《Oecologia》2011,167(2):481-491
Exotic plants are generally considered a serious problem in wildlands around the globe. However, some argue that the impacts of exotic plants have been exaggerated and that biodiversity and other important plant community characteristics are commonly improved with invasion. Thus, disagreement exists among ecologists as to the relationship of exotic plants with biodiversity and native plant communities. A better understanding of the relationships between exotic plants and native plant communities is needed to improve funding allocation and legislation regarding exotic plants, and justify and prioritize invasion management. To evaluate these relationships, 65 shrub–bunchgrass plant communities with varying densities of an exotic annual grass, Taeniatherum caput-medusae (L.) Nevski (medusahead), were sampled across 160,000 ha in southeastern Oregon, United States. Environmental factors were generally not correlated with plant community characteristics when exotic annual grass density was included in models. Plant diversity and species richness were negatively correlated with exotic annual grass density. Exotic annual grass density explained 62% of the variation in plant diversity. All native plant functional groups, except annual forbs, exhibited a negative relationship with T. caput-medusae. The results of this study suggest that T. caput-medusae invasions probably have substantial negative impacts on biodiversity and native plant communities. The strength of the relationships between plant community characteristics and T. caput-medusae density suggests that some exotic plants are a major force of change in plant communities and subsequently threaten ecosystem functions and processes. However, experimental studies are needed to fully substantiate that annual grass invasion is the cause of these observed correlations.  相似文献   

8.
Grasslands can be diverse assemblages of grasses and forbs but not much is known how perennial grass species management affects native plant diversity except in a few instances. We studied the use of late-spring prescribed burns over a span of 11 years where the perennial grass Poa secunda was the foundation species, with four additional years of measurements after the final burn. We evaluated burn effects on P. secunda, the rare native annual forb Amsinckia grandiflora and local native and exotic species. Annual burning maintained P. secunda number, resulted in significant expansion, the lowest thatch and exotic grass cover, the highest percentage of bare ground, but also the lowest native forb and highest exotic forb cover. Burning approximately every 3 years maintained a lower number of P. secunda plants, allowed for expansion, and resulted in the highest native forb cover with a low exotic grass cover. Burning approximately every 5 years and the control (burned once from a wildfire) resulted in a decline in P. secunda number, the highest exotic grass and thatch cover and the lowest percentage of bare ground. P. secunda numbers were maintained up to 4 years after the final burn. While local native forbs benefited from burning approximately every 3 years, planted A. grandiflora performed best in the control treatment. A. grandiflora did not occur naturally at the site; therefore, no seed bank was present to provide across-year protection from the effects of the burns. Thus, perennial grass species management must also consider other native species life history and phenology to enhance native flora diversity.  相似文献   

9.
Exotic annual grasses are a major challenge to successful restoration in temperate and Mediterranean climates. Experiments to restore abandoned agricultural fields from exotic grassland to coastal sage scrub habitat were conducted over two years in southern California, U.S.A. Grass control methods were tested in 5 m2 plots using soil and vegetation treatments seeded with a mix of natives. The treatments compared grass‐specific herbicide, mowing, and black plastic winter solarization with disking and a control. In year two, herbicide and mowing treatments were repeated on the first‐year plots, plus new control and solarization plots were added. Treatments were evaluated using percent cover, richness and biomass of native and exotic plants. Disking alone reduced exotic grasses, but solarization was the most effective control in both years even without soil sterilization, and produced the highest cover of natives. Native richness was greatest in solarization and herbicide plots. Herbicide application reduced exotics and increased natives more than disking or mowing, but produced higher exotic forb biomass than solarization in the second year. Mowing reduced grass biomass and cover in both years, but did not improve native establishment more than disking. Solarization was the most effective restoration method, but grass‐specific herbicide may be a valuable addition or alternative. Solarization using black plastic could improve restoration in regions with cool, wet summers or winter growing seasons by managing exotic seedbanks prior to seeding. While solarization may be impractical at very large scales, it will be useful for rapid establishment of annual assemblages on small scales.  相似文献   

10.
Ecological restoration often relies on disturbance as a tool for establishing target plant communities, but disturbance can be a double-edged sword, at times initiating invasion and unintended outcomes. Here we test how fire disturbance, designed to enhance restoration seeding success, combines with climate and initial vegetation conditions to shift perennial versus annual grass dominance and overall community diversity in Pacific Northwest grasslands. We seeded both native and introduced perennial grasses and native forbs in paired, replicated burned-unburned plots in three sites along a latitudinal climate gradient from southern Oregon to central-western Washington. Past restoration and climate manipulations at each site had increased the variation of starting conditions between plots. Burning promoted the expansion of extant forbs and perennial grasses across all sites. Burning also enhanced the seeding success of native perennial grass and native forbs at the northern and central site, and the success of introduced perennial grasses across all three sites. Annual grass dominance was driven more by latitude than burning, with annuals maintaining their dominance in the south and perennials in the north. At the same time, unrestored grasslands surrounding all sites remained dominated by perennial grasses, suggesting that initial plot clearing may have allowed for annual grass invasion in the southern site. When paired with disturbance, further warming may increase the risk of annual grass dominance, a potentially persistent state.  相似文献   

11.
Native plant individuals often persist within communities dominated by exotics but the influence of this exposure on native populations is poorly understood. Selection for traits contributing to competitive ability may lead to native plant populations that are more tolerant of the presence of exotic invaders. In this way, long‐term coexistence with an exotic may confer competitive advantages to remnant (experienced) native populations and be potentially beneficial to restoration. In past studies we have documented genetic differentiation within native grass populations exposed to the exotic invader Russian knapweed (Acroptilon repens). Here, we examine populations of a cool‐season grass, needle‐and‐thread (Hesperostipa comata [Trin. & Rupr.]) and a warm season, alkali sacaton (Sporobolus airoides [Torr.]) collected from Russian knapweed‐invaded sites and adjacent noninvaded sites to assess their relative competitive ability against a novel exotic neighbor, Canada thistle (Cirsium arvense). Experienced S. airoides (from within A. repens invasions) appear to better tolerate (accumulate biomass, leaf nitrogen content, and to initiate new tillers) the presence of a novel competitor (C. arvense). Experienced and inexperienced H. comata genets differ in their response to the presence of C. arvense. Relative neighbor effects of native grasses on C. arvense were generally greater from experienced grasses. The ability to compete with novel neighbors may be driven by general competitive traits rather than species‐specific coevolutionary trajectories. Irrespective of competitive mechanisms, the conservation of native species populations within weed invasions may provide an important restoration tool by retaining unique components of native gene pools selected by competitive interactions with exotics.  相似文献   

12.
To assess the potential for enhancing an existing stand of native perennial grasses on a California Coast Range Grassland site, we experimentally manipulated the seasonal timing and presence of grazing for 3 years (1994 through 1996) and of autumn burning for 2 years (1994 and 1995) and measured species cover for 6 years (1993 through 1998). We subjected the species matrix to classification (TWINSPAN) and ordination (CCA) and tested the ordination site scores as well as diversity indices with linear mixed effects models. Four distinct plant community groups emerged from the classification. Two of these were dominated by annual grasses and two by perennial grasses. No treatment effects were observed on diversity. For composition, temporal and spatial random effects were important mixed effects model parameters, as was the fixed effect covariate, pre‐treatment CCA site score, indicating the importance of random environmental variation and initial starting conditions. Incorporation of these random effects and initial condition terms made for more powerful tests of the fixed effects, grazing season, and burning. We found no significant burning effects. Grazing removal imparted a shift in plant community from more annual‐dominated toward more perennial‐dominated vegetation. Individual perennial grass species responded differently according to genus and species. Nassella spp. increased gradually over time regardless of grazing treatment. Nassella pulchra (purple needlegrass) increase was greatest under spring grazing and N. lepida (foothill needlegrass) was greatest with grazing removal. Danthonia californica (California oatgrass) had little response over time under seasonal grazing treatments, but increased with grazing removal. Under relatively mesic weather conditions it appears that grazing removal from Coast Range Grasslands with existing native perennial grass populations can increase their cover. However if N. pulchra is the sole existing population, spring season‐restricted grazing should be equally effective at enhancing cover of the native grass species.  相似文献   

13.
Changes in structural and compositional attributes of shinnery oak (Quercus havardii Rydb.) plant communities have occurred in the twentieth century. These changes may in part relate to altered fire regimes. Our objective was to document effects of prescribed fire in fall (October), winter (February), and spring (April) on plant composition. Three study sites were located in western Oklahoma; each contained 12, 60 × 30‐m plots that were designated, within site, to be seasonally burned, annually burned, or left unburned. Growing season canopy cover for herbaceous and woody species was estimated in 1997–1998 (post‐treatment). At one year post‐fire, burning in any season reduced shrub cover, and spring burns reduced cover most. Winter and annual fires increased cover of rhizomatous tallgrasses, whereas burning in any season decreased little bluestem cover. Perennial forbs increased with fall and winter fire. Shrub stem density increased with fire in any season. Communities returned rapidly to pre‐burn composition with increasing time since fire. Fire effects on herbaceous vegetation appear to be manifested through increases in bare ground and reduction of overstory shrub dominance. Prescribed fire can be used as a tool in restoration efforts to increase or maintain within and between community plant diversity. Our data suggest that some plant species may require or benefit from fire in specific seasons. Additional research is needed to determine the long‐term effects of repeated fire over time.  相似文献   

14.
Control of exotic annuals is often a priority when restoring degraded grasslands or shrublands. This study evaluated combinations of nutrient‐depleting (carbon addition) and seed bank‐depleting approaches for controlling exotic annuals, and compared the seed bank depletion technique of spring burning with the more easily applied technique of pulse grazing. Treatments were applied in two Box Gum woodlands over 4 years. Consistent with earlier studies, carbon addition dramatically reduced exotic annuals and available nutrients in all 3 years at both sites. Exotic annual grass abundance was significantly reduced in burnt plots following the first year and in grazed plots following the second year of application. Spring burning or grazing did not reduce available nutrients or exotic annual broadleaf abundance at either site. The effect of carbon addition on exotic annuals and available nutrients was so powerful that no additional benefit of the combination treatments was found, although at one site burning and grazing slightly reduced the effectiveness of carbon addition in suppressing broadleaf exotic annuals. We conclude that nutrient‐depleting approaches are most effective because they control both exotic annual grasses and broadleaf exotics annuals, but given their expense seed bank‐depleting approaches may be more practical where exotic annual grasses dominate. In particular, pulse grazing is readily applied across large areas, offering a relatively simple tool that if appropriately implemented could enhance outcomes of restoration investments in vegetation communities invaded by exotic annual grasses.  相似文献   

15.
Exotic plant invasions alter ecosystem properties and threaten ecosystem functions globally. Interannual climate variability (ICV) influences both plant community composition (PCC) and soil properties, and interactions between ICV and PCC may influence nitrogen (N) and carbon (C) pools. We asked how ICV and non-native annual grass invasion covary to influence soil and plant N and C in a semiarid shrubland undergoing widespread ecosystem transformation due to invasions and altered fire regimes. We sampled four progressive stages of annual grass invasion at 20 sites across a large (25,000 km2) landscape for plant community composition, plant tissue N and C, and soil total N and C in 2013 and 2016, which followed 2 years of dry and wet conditions, respectively. Multivariate analyses and ANOVAs showed that in invasion stages where native shrub and perennial grass and forb communities were replaced by annual grass-dominated communities, the ecosystem lost more soil N and C in wet years. Path analysis showed that high water availability led to higher herbaceous cover in all invasion stages. In stages with native shrubs and perennial grasses, higher perennial grass cover was associated with increased soil C and N, while in annual-dominated stages, higher annual grass cover was associated with losses of soil C and N. Also, soil total C and C:N ratios were more homogeneous in annual-dominated invasion stages as indicated by within-site standard deviations. Loss of native shrubs and perennial grasses and forbs coupled with annual grass invasion may lead to long-term declines in soil N and C and hamper restoration efforts. Restoration strategies that use innovative techniques and novel species to address increasing temperatures and ICV and emphasize maintaining plant community structure—shrubs, grasses, and forbs—will allow sagebrush ecosystems to maintain C sequestration, soil fertility, and soil heterogeneity.  相似文献   

16.
Many herbaceous meadows are dominated by competitive non‐native grasses and subject to ungulate herbivory, ecological processes that shift the proportional biomass of plant groups in the community. Predicting the outcome of restoration is complicated because herbivory and competition can interact. We examined the relationship between herbivory by native black‐tailed deer and domestic sheep and dominance of non‐native grasses in Garry oak meadows, one of North America's most endangered habitat types. A 3‐year factorial experiment tested the effects of mowing and fencing on plant community biomass, categorized into eight groups by geographic origin (native/non‐native), growth form (annual/perennial), and plant type (forb/grass). To test if the rarity of native plant groups was related to herbivory, we estimated ungulate foraging preferences for each plant group. Mowing and fencing treatments interacted for annual and perennial non‐native grasses. Dominance was shifted from non‐native to native grasses only when both mowing and fencing were applied. Fencing increased the total biomass, whereas mowing had no overall effect; however, fencing alone did not affect any individual plant group. Mowing shifted dominance from grasses to forbs, although both native and non‐native forbs benefited from the increased light availability. We also noted that herbivore fecal pellet densities were greatest in the spring, which coincided with the peak season of their preferred plant group, native perennial forbs. Overall, applying both mowing and fencing was the most effective restoration treatment to increase native plant groups and biomass.  相似文献   

17.
We quantified the effects of exotic annual grass invasion on the ground-layer structure of grassy eucalypt woodlands, with the aim of determining if weed invasion decreased gap size and plant basal area leading to reduced spatial heterogeneity. We measured plant density, distance between plants and basal plant area in woodland sites which ranged from zero to 100% exotic plant cover in the ground-layer. The ground-layer in uninvaded woodlands was heterogeneous, with a large variation in basal plant area and distance between plants. Exotic annual grass density was positively correlated with total plant density, whereas native plant density was negatively correlated. Total plant basal area decreased as total plant density increased, with a lower total plant area in exotic dominated transects compared to native dominated. Variation in basal plant area decreased with increasing plant density. Exotic annual grasses were more closely spaced together (smaller gap size) and had a smaller basal area than the native grasses and rushes. There was also less variation in basal area and gap size with individual exotic annual grasses compared to the native grasses. Inter-plant distance was greater for both the native and exotic grasses when they had native grasses neighbouring them instead of exotic grasses. These findings show that woodlands invaded by exotic annual grasses have relatively less spatial heterogeneity in the ground-layer. These results have implications for other aspects of perennial grassy ecosystems invaded by annual grasses, including plant recruitment and restoration strategies.  相似文献   

18.
Question: Can vegetation changes that occur following cessation of cultivation for cereal crop production in semi‐arid native grasslands be described using a conceptual model that explains plant community dynamics following disturbance? Location: Eighteen native grasslands with varying time‐since‐last cultivation across northern Victoria, Australia. Methods: We examined recovery of native grasslands after cessation of cultivation along a space for‐ time chronosequence. By documenting floristic composition and soil properties of grasslands with known cultivation histories, we established a conceptual model of the vegetation states that occur following cessation of cultivation and inferred transition pathways for community recovery. Results: Succession from an exotic‐dominated grassland to native grassland followed a linear trajectory. These changes represent an increase in richness and cover of native forbs, a decrease in cover of exotic annual species and little change in native perennial graminoids and exotic perennial forbs. Using a state‐and‐transition model, two distinct vegetation states were evident: (1) an unstable, recently cultivated state, dominated by exotic annuals, and (2) a more diverse, stable state. The last‐mentioned state can be divided into two further states based on species composition: (1) a never‐cultivated state dominated by native perennial shrubs and grasses, and (2) a long‐uncultivated state dominated by a small number of native perennial and native and exotic annual species that is best described as a subset of the never‐cultivated state. Transitions between these states are hypothesized to be dependent upon landscape context, seed availability and soil recovery. Conclusions: Legacies of past land use on soils and vegetation of semi‐arid grasslands are not as persistent as in other Australian communities. Recovery appears to follow a linear, directional model of post‐disturbance regeneration which may be advanced by overcoming dispersal barriers hypothesised to restrict recovery.  相似文献   

19.
The restoration of disturbed ecosystems is challenging and often unsuccessful, particularly when non‐native plants are abundant. Ecosystem restoration may be hindered by the effects of non‐native plants on soil biogeochemical characteristics and microbial communities that persist even after plants are removed. To examine the importance of soil legacy effects, we used experimental restorations of Florida shrubland habitat that had been degraded by the introduction of non‐native grasses coupled with either mechanical disturbance or pasture conversion. We removed non‐native grasses and inoculated soils with native microbial communities at each degraded site, then examined how habitat structure, soil nitrogen, soil microbial abundances, and native seed germination responded over two years compared to undisturbed native sites. Grass removal treatments effectively restored some aspects of native habitat structure, including decreased exotic grass cover, increased bare ground, and reduced litter cover. Soil fungal abundance was also somewhat restored by grass removals, but soil algal abundance was unaffected. In addition, grass removal and microbial inoculation improved seed germination rates in degraded sites, but these remained quite low compared to native sites. High soil nitrogen persisted throughout the experiment regardless of treatment. Many treatment effects were site‐specific, however, with legacies in the more degraded vegetation type tending to be more difficult to overcome. These results support the need for context‐dependent restoration approaches and suggest that the degree of soil legacy effects may be a good indicator of restoration potential.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号