首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Under the European Union (EU) Waste Electrical and Electronics Equipment (WEEE) Directive, producers are responsible for financing the recycling of their products at end of life. A key intention of such extended producer responsibility (EPR) legislation is to provide economic incentives for producers to develop products that are easier to treat and recycle at end of life. Recent research has shown, however, that the implementation of EPR for WEEE has so far failed in this respect. Current WEEE systems calculate their prices according to simple mass‐based allocation of costs to producers, based on broad collection categories containing a mixture of different product types and brands. This article outlines two alternative approaches, which instead calculate charges for products sold by producers by classifying them according to their eventual end‐of‐life treatment requirements and cost. Worked examples indicate that these methods provide both effective and efficient frameworks for financing WEEE, potentially delivering financial incentives to producers substantial enough to affect their potential profitability and, as a likely consequence, the decisions relating to the design of their products. In particular they fulfill three important criteria required by the WEEE Directive: they can financially reward improved design, allocate costs of historic waste proportionately (on the basis of tonnes of new products sold), and provide sufficient financial guarantees against future waste costs and liabilities. They are also relatively practical for implementation because they are based solely on cost allocation and financing. Further research and investigation would be worthwhile to test and verify this approach using real‐world data and under various scenarios.  相似文献   

2.
Collection and treatment of waste from electrical and electronic equipment (WEEE) is regulated in the European Union by the WEEE Directive. Producers are responsible for take‐back and recycling of discarded equipment. Valuable materials are, however, at risk of “getting lost” in current processes. Thus, strategies to minimize losses are sought after. The material hygiene (MH) concept was introduced to address this issue. Structural features, which are important for the outcome of reuse, recovery, and recycling, were investigated in an earlier field study of discarded dishwashers. It was proposed that a prestep, manual removal of copper prior to shredding could increase the purity of recovered material fractions. This article builds on the field study and theoretical reasoning underlying the MH concept. Dishwashers are assumed to be designed for disassembly when the prestep is introduced. A limited life cycle assessment was performed to determine whether the proposed prestep may be environmentally beneficial in a life cycle perspective. Two alternatives were analyzed: Case 1: the current shredding process. Case 2: prestep removal of copper before shredding. Targeted disassembly prior to shredding may reduce the abiotic depletion and global warming potential in a life cycle perspective. The prestep results in increased copper recovery, but, more important, copper contamination of the recovered steel fractions is reduced. The results also highlight the importance of minimizing energy consumption in all process stages.  相似文献   

3.
Abstract: Various toxic, useful, and/or scarce metals in waste electric and electronic equipment (WEEE) have rarely been assessed due to low data availability, except for the four metals regulated by the European Union's Directive on the Restriction of Hazardous Substances (RoHS). This article describes the results of screening 36 metals in WEEE using simple assessment methods for cases where the decision makers do not know for which substances in a product countermeasures should be taken and where data cannot be easily obtained. First, this study examines the decision-making process and prerequisites for screening, classifies existing assessment methods, and presents three simple indices for screening (resource consumption, water pollution affecting human health, and aquatic biota conservation) so that screening can be readily started for many (20–36) metals. Following this, a case study is conducted for waste TV sets, revealing which metal in which product module or component should be targeted by environmental countermeasures. Finally, the screening results are compared with those of six other methods using diagrams devised to indicate the superiority of screening methods, and several screening techniques are discussed. The conclusions are that the EU RoHS Directive does not necessarily cover all of the toxic metals that could be of concern and the screening methods presented could help identify such metals; the selection of methods is critical; and a more detailed method does not necessarily provide more accurate results.  相似文献   

4.
In January 2003, the European Union (EU) issued a directive on e‐waste (waste from electrical and electronic equipment; WEEE) to deal with increasing quantities and the included hazardous components. The WEEE Directive is based on the principle of extended producer responsibility, which shifts the responsibility for end of life of products away from municipalities toward producers. This led some researchers to state that, in theory, the costs of waste treatment are passed on to consumers in terms of higher prices. This work addresses two fundamental questions: (1) Did the introduction of the WEEE Directive increase consumer prices of electrical and electronic equipment (EEE)? and (2) how much is this price increase? We carry out, for the first time in the literature, a quantitative research on price variation of the vast majority of EEE sold in the EU after the introduction of producers’ financial responsibility. The panel data include 972 price level indices, namely, six categories of EEE for 27 member states for six years. The main result is that the average variation of the prices for each category of EEE investigated actually increased and the variation was between 0.71% and 3.88%, depending on the specific category of EEE. The average increase of 2.19% is in line with the previous studies that estimated the impact of the WEEE Directive up to a 3% increase of the product price. The t‐test performed on the data shows a good statistical significance, which strengthens the relevance of the results. Finally, future directions for research are included.  相似文献   

5.
Regulatory measures that hold producers accountable for their products at end of life are increasingly common. Some of these measures aim at generating incentives for producers to design products that will be easier and cheaper to recover at the postconsumer stage. However, the allocation of recovery costs to individual producers, which can facilitate realization of the goals of these policies, is hindered by the practical barrier of identification and/or sorting of the products in the waste stream. Technologies such as radio frequency identification (RFID) can be used for brand or model recognition in order to overcome this obstacle. This article assesses the read rate of RFID technology (i.e., the number of successful retrievals of RFID tag data [“reads”] in a given sample of tagged products) and the potential role of RFID tags in the management of waste electrical and electronic equipment (WEEE) at current levels of technical development. We present the results of RFID trials conducted at a civic amenity site in the city of Limerick, Ireland. The experiment was performed for fixed distances up to 2 meters on different material substrates. In the case of white goods (i.e., large household appliances), a 100% read rate was achieved using an RFID handheld reader. High read rates were also achieved for mixed WEEE. For a handheld scan of a steel cage containing mixed WEEE, read rates varied from 50% to 73% depending on the ultrahigh frequency (UHF) metal mount tag employed and the relative positioning of the tags within the cage. These results confirm that from a technical standpoint, RFID can achieve much greater brand or model identification than has been considered feasible up to now, and thus has a role to play in creating a system that allocates recovery costs to individual producers.  相似文献   

6.
Closing loops by intercompany recycling of by‐products is a core theme of industrial ecology (IE). This article considers whether industrial recycling networks or industrial symbiosis projects can be used as a starting point for much broader intercompany cooperation for sustainable development. Evidence presented is based on the results of an empirical investigation of the recycling network Styria in Austria, the recycling network Oldenburger Münsterland in Germany, and the manufacturing sector in Austria. Statistical analysis shows that the percentage of by‐products that are passed on to other companies for recycling purposes is not higher in member companies of the recycling networks than in the other companies of the manufacturing sector in Austria. In terms of cooperation, the relationships with the respective recycling partners are found to be very similar to regular customer relations. Furthermore, the companies of the recycling networks remain unaware of the network to which they belong. Instead, one of the main findings of this study is that intercompany recycling activities are regarded by the company representatives as bilateral market transactions, not as collaborative network activities. This has potentially significant implications for the use of industrial symbiosis networks as starting points for sustainability networks with broader cooperation toward sustainability. The findings raise interesting questions as to whether such broader cooperation might result from a conscious planning process or might emerge largely spontaneously as part of normal market coordination. In any case, intercompany recycling is clearly considered to be a very important field of collaborative action for sustainability in industry.  相似文献   

7.
Electronic textiles are a vanguard of an emerging generation of smart products. They consist of small electronic devices that are seamlessly embedded into clothing and technical textiles. E‐textiles provide enhanced functions in a variety of unobtrusive and convenient ways. Like many high‐tech products, e‐textiles may evolve to become a mass market in the future. In this case, large amounts of difficult‐to‐recycle products will be discarded. That can result in new waste problems. This article examines the possible end‐of‐life implications of textile‐integrated electronic waste. As a basis for assessment, the innovation trends of e‐textiles are reviewed, and an overview of their material composition is provided. Next, scenarios are developed to estimate the magnitude of future e‐textile waste streams. On that base, established disposal and recycling routes for e‐waste and old textiles are assessed in regard to their capabilities to process a blended feedstock of electronic and textile materials. The results suggest that recycling old e‐textiles will be difficult because valuable materials are dispersed in large amounts of heterogeneous textile waste. Moreover, the electronic components can act as contaminants in the recycling of textile materials. We recommend scrutinizing the innovation trend of technological convergence from the life cycle perspective. Technology developers and product designers should implement waste preventative measures at the early phases in the development process of the emerging technology.  相似文献   

8.
In this article, we analyze the Minnesota Electronics Recycling Act to explore the benefits and potential drawbacks of a market‐based extended producer responsibility (EPR) legislation implementation with operational flexibility for manufacturers. Based on publicly available reports and stakeholder interviews, we find that the Minnesota Act attains two key goals of market‐based EPR (i.e., higher cost efficiencies and substantial landfill diversion); however, this may come at the expense of selective collection and recycling, an increased burden on local governments, and a loss of balance in contractual power between stakeholders. We observe that these concerns arise because of specific flexibility provisions afforded to manufacturers that allow them to operationalize their EPR compliance with a cost‐efficiency focus. Thus, we conclude that EPR goals must be carefully translated into operating rules in order to achieve goals while avoiding unintended consequences.  相似文献   

9.
The recycling of metals is widely viewed as a fruitful sustainability strategy, but little information is available on the degree to which recycling is actually taking place. This article provides an overview on the current knowledge of recycling rates for 60 metals. We propose various recycling metrics, discuss relevant aspects of recycling processes, and present current estimates on global end‐of‐life recycling rates (EOL‐RR; i.e., the percentage of a metal in discards that is actually recycled), recycled content (RC), and old scrap ratios (OSRs; i.e., the share of old scrap in the total scrap flow). Because of increases in metal use over time and long metal in‐use lifetimes, many RC values are low and will remain so for the foreseeable future. Because of relatively low efficiencies in the collection and processing of most discarded products, inherent limitations in recycling processes, and the fact that primary material is often relatively abundant and low‐cost (which thereby keeps down the price of scrap), many EOL‐RRs are very low: Only for 18 metals (silver, aluminum, gold, cobalt, chromium, copper, iron, manganese, niobium, nickel, lead, palladium, platinum, rhenium, rhodium, tin, titanium, and zinc) is the EOL‐RR above 50% at present. Only for niobium, lead, and ruthenium is the RC above 50%, although 16 metals are in the 25% to 50% range. Thirteen metals have an OSR greater than 50%. These estimates may be used in considerations of whether recycling efficiencies can be improved; which metric could best encourage improved effectiveness in recycling; and an improved understanding of the dependence of recycling on economics, technology, and other factors.  相似文献   

10.
Innovative waste recycling through industrial processes such as industrial and urban symbiosis has long been practiced and recently received much attention in the field of industrial ecology, with researchers making efforts to identify key contributing factors to successful industrial symbiosis. By analyzing 88 sample recycling projects in 23 eco‐towns in Japan, this article focuses on the factors of project scale, recycling boundary, and types of waste in relationship to environmental benefits and operational performance. The results showed that larger eco‐towns achieved more savings of virgin materials and higher stability in operation. Large‐scale projects tended to locate closer to the users of recycled products than did small‐scale projects. For treating similar types of waste, projects producing recycled products for special users (e.g., feedstock to a blast furnace for iron production) tended to locate closer to the users than those not producing for special users. The type of waste had a strong effect on the savings of virgin materials and recycling boundaries, while local factors had significant impacts on operational performance. The results also showed that agglomeration did not significantly contribute to the environmental benefits or operational performance of eco‐town projects. Another finding was that national agencies were helpful for facilitating cross‐prefecture transportation and long‐distance transaction of wastes. Implications of the findings are also discussed.  相似文献   

11.
With increased understanding of the effects of human activities on the environment and added awareness of the increasing societal value of natural resources, researchers have begun to focus on the characterization of elemental cycles. Indium has captured significant attention due to the potential for supply shortages and nonexistent recycling at end of life. Such a combination of potentially critical features is magnified for countries that depend on imports of indium, notably many European countries. With the aims of analyzing the dynamics of material flows and of estimating the magnitude of secondary indium sources available for recycling, the anthropogenic indium cycle in Europe has been investigated by material flow analysis. The results showed that the region is a major consumer of finished goods containing indium, and the cumulative addition of indium in urban mines was estimated at about 500 tonnes of indium. We discuss these results from the perspective of closing the metal cycle in the region. Securing access to critical raw materials is a priority for Europe, but the preference for recycling metal urban mines risks to remain only theoretical for indium unless innovations in waste collection and processing unlock the development of technologies that are economically feasible and environmentally sustainable.  相似文献   

12.
Business‐to‐business (B2B) electronics account for a significant volume of the electrical and electronic equipment (EEE) put on the market. Very little B2B waste electrical and electronic equipment (WEEE) is reported as collected in the European Union (EU) in compliance with the WEEE Directive, which uses the policy principle of extended producer responsibility (EPR) to ensure that WEEE is managed correctly. This presents a barrier to parties looking for access to the waste. Company practice dictates the channels into which B2B WEEE flows following primary use. This article presents a study that engaged with company actors directly to get a better understanding of business information technology (IT) EEE asset management. Data were collected to determine the barriers current practice could present to the collection of B2B IT EEE at end of life and the implications of these for the development of policies and strategies for EPR. A questionnaire was developed and data were gathered from organizations in three EU countries—the United Kingdom, Germany, and France—stratified by size. Some notable findings were that there are several routes by which end‐of‐life B2B WEEE can flow. The recycling and refurbishment of B2B IT units at end of use was shown to be commonplace, but it is likely that these units enter streams where they are not reported. The actors disposing of their units did not have information on the management or disposition of these streams. It is concluded that to achieve the goals of EPR for B2B IT WEEE, the networks and the operational practices of these streams need to be better understood when developing strategies and policies.  相似文献   

13.
China produces and consumes a large amount of batteries annually, which leads to many waste batteries needing to be recycled. The collection and recycling system of primary, alkaline secondary, and lithium‐ion secondary batteries in China is particularly poor, and waste battery recycling enterprises generally sustain economic losses if they solely use waste batteries as raw materials. Increasing the profits of waste battery recycling systems is a key problem that needs to be considered. This article quantitatively analyzes waste battery generation in China by using annual sales data and probable lifetime distribution of various batteries. The results show that the rapid growth of battery usage has led to an increased generation of waste batteries and the percentage of different types of waste batteries is changing over time. In 2013, the total quantity of all waste batteries in the medium lifetime scenario reached 570 kilotons, of which primary, alkaline secondary, and lithium‐ion secondary waste batteries accounted for approximately 36%, 28%, and 35%, respectively. Based on a real‐world case study of a typical domestic waste battery recycling enterprise in China, material flow analysis and cost‐benefit analysis were conducted to study the development of the recycling process of comingled waste batteries. Through scenario analysis, we conclude that increasing the use of waste batteries as raw materials and the recycling of other materials that are less valuable reduces the profits of the waste battery recycling enterprise. Higher profits can be achieved by adding the production of high value‐added downstream products and government support. At the same time, the essential role of the government in developing a waste battery recycling system was identified. Finally, relevant suggestions are made for improvements in both the government and enterprise sectors.  相似文献   

14.
We conducted a decomposition analysis of material flows in a dynamic system, focusing on factors in the generation of waste consumer durables. A methodology for the analysis of consumer durables was developed and applied to three common consumer durables: cathode ray tube TVs, refrigerators, and passenger cars. The methodology decomposed changes in the numbers of waste products into three factors: changes in lifespan distribution, past trends in replacement sales, and past trends in sales for additional purchases. The decomposed equation clearly showed that the number of waste products would not necessarily be reduced by lifespan extension alone. This is because the number of waste products generated is affected not only by current lifespan distribution but also by past trends in sales for replacement and in additional purchases. The results show that changes in past replacement sales influence the current generation of waste, even if current replacement sales are declining. To reduce the generation of waste products on a short‐term basis, lifespan must be extended until the waste‐reducing effect of lifespan extension exceeds the waste‐increasing effect of the other two factors. From a long‐term perspective, controlling current replacement and additional purchases can be used to prevent future waste product generation.  相似文献   

15.
This article presents the results of an experimental activity aimed at investigating the technical feasibility and the environmental performance of using municipal solid waste incineration bottom ash to produce glass frit for ceramic glaze (glaze frit). The process includes an industrial pretreatment of bottom ash that renders the material suitable for use in glaze frit production and allows recovery of aluminum and iron. The environmental performance of this treatment option is assessed with the life cycle assessment (LCA) methodology. The goal of the LCA study is to assess and compare the environmental impacts of two scenarios of end of life of bottom ash from municipal solid waste incineration (MSWI): landfill disposal (conventional scenario) and bottom ash recovery for glaze frit production (innovative scenario). The main results of the laboratory tests, industrial simulations, and LCA study are presented and discussed, and the environmental advantages of recycling versus landfill disposal are highlighted.  相似文献   

16.
Concentrations of pollutants vary in wastes from different sources. However, existing waste input‐output (WIO) models do not take these differing concentrations into account. This article proposes a new category of model, which we are calling a waste input‐output model at the substance level (WIOS model). The WIOS model considers variations in waste composition. These variations potentially affect the life cycle inventory of the waste treatment stage. The proposed model is expected to produce more accurate results than existing WIO models that do not consider variations in the composition of wastes. In addition, the proposed model provides a method to trace substances undergoing waste treatment. In this article, use of the WIOS model is illustrated by simulating the overall environmental loads of total organic carbon from wastewater treatment at a facility in Germany. The results show that variations in the composition of wastes entering treatment significantly affect the modeled estimates of total environmental loads caused by wastewater treatment. In addition, the results of the proposed model are different from results given by existing hybrid input‐output WIO models that do not consider variations in the composition of wastewater as it undergoes treatment.  相似文献   

17.
This article analyzes the policy choices and programmatic elements of extended producer responsibility (EPR) as implemented in the United States and Canada. The article traces the historical development of EPR in each country and defines common features of EPR in each nation. The U.S. states and the Canadian provinces have assumed the primary role, rather than the federal governments, for enacting producer responsibility requirements in their respective countries. However, the paths taken demonstrate several fundamental differences, including the prevalence of individual versus collective responsibility and the financing mechanisms implemented for EPR. Given the deepening experience with EPR and the breadth of its application to a widening array of products in the United States, the Canadian model for EPR is starting to receive more examination from policy makers in the United States, indicating that the policy and programmatic differences between the two nations may eventually be narrowing. The comparative policy analysis is illustrated through the lens of EPR regulatory efforts for waste electronics, with particular profiles of the programs in the State of Minnesota and Province of Ontario. Both approaches broadly reflect many of the policy considerations and governance and programmatic themes that dominate EPR programs in each country. Finally, the article offers recommendations for collaborative work between the United States and Canada to explore consistency between programs and other complementary strategies to support producer responsibility activities.  相似文献   

18.
The multifunctional character of resource recovery in waste management systems is commonly addressed through system expansion/substitution in life cycle assessment (LCA). Avoided burdens credited based on expected displacement of other product systems can dominate the overall results, making the underlying assumptions particularly important for the interpretation and recommendations. Substitution modeling, however, is often poorly motivated or inadequately described, which limits the utility and comparability of such LCA studies. The aim of this study is therefore to provide a structure for the systematic reporting of information and assumptions expected to contribute to the substitution potential in order to make substitution modeling and the results thereof more transparent and interpretable. We propose a reporting framework that can also support the systematic estimation of substitution potentials related to resource recovery. Key components of the framework include waste‐specific (physical) resource potential, recovery efficiency, and displacement rate. End‐use–specific displacement rates can be derived as the product of the relative functionality (substitutability) of the recovered resources compared to potentially displaced products and the expected change in consumption of competing products. Substitutability can be determined based on technical functionality and can include additional constraints. The case of anaerobic digestion of organic household waste illustrates its application. The proposed framework enables well‐motivated substitution potentials to be accounted for, regardless of the chosen approach, and improves the reproducibility of comparative LCA studies of resource recovery.  相似文献   

19.
Product lifetime is an essential aspect of dynamic material flow analyses and has been modeled using lifetime distribution functions, mostly average lifetimes. Existing data regarding the lifetime of electronic equipment (EE) are based on diverging definitions of lifetime as well as different temporal and regional scopes. After its active use, EE is often not disposed of immediately, but remains in storage for some time. Specific data on the share of EE that is stored and the time they remain in storage are scarce. This article investigates the service lifetime, storage time, and disposal pathways of ten electronic device types, based on data from an online survey complemented by structured interviews. We distinguish between new and secondhand devices and compute histograms, averages, and medians of the different lifetimes and their change over time. The average service lifetime varies from 3.3 years for mobile phones to 10.8 years for large loudspeakers, the average storage time from 0.8 years for flat panel display televisions to 3.6 years for large loudspeakers. Most service lifetime histograms are positively skewed and show substantial differences among device types. The storage time histograms, being more similar to one another, indicate that the storage behavior is similar for most device types. The data on disposal pathways show that a large proportion of devices are stored and reused before they reach the collection scheme.  相似文献   

20.
In February 2003, European Union (EU) policy makers implemented a Directive that will make producers responsible for waste electrical and electronic equipment at end-of-life (known as the "WEEE" Directive). Under this new legislation, producers are required to organize and finance the take-back, treatment, and recycling of WEEE and achieve mass-based recycling and recovery targets. This legislation is part of a growing trend of extended producer responsibility for waste, which has the potential to shift the world's economies toward more circular patterns of resource use and recycling. This study uses life-cycle assessment and costing to investigate the possible environmental effects of the WEEE Directive, based on an example of printer recycling in the United Kingdom.
For a total of four waste management scenarios and nine environmental impact categories investigated in this study, results varied, with no scenario emerging as best or worst overall compared to landfilling. The level of environmental impact depended on the type of material and waste management processes involved. Additionally, under the broad mass-based targets of the WEEE Directive, the pattern of relationships between recycling rates, environmental impacts, and treatment and recycling costs may lead to unplanned and unwanted results. Contrary to original EU assumptions, the use of mass-based targets may not ensure that producers adapt the design of their products as intended under producer responsibility.
It is concluded that the EU should revise the scope of consideration of the WEEE Directive to ensure its life-cycle impacts are addressed. In particular, specific environmental objectives and operating standards for treatment and recycling processes should be investigated as an alternative to mass-based recycling and recovery targets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号