首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
  总被引:3,自引:0,他引:3  
We compiled salt marsh monitoring datasets from 36 complete or imminent restoration projects in the Gulf of Maine to assess regional monitoring and restoration practices. Data were organized by functional indicators and restoration project types (culvert replacement, excavation works, or ditch plugging) then pooled to generate mean values for indicators before restoration, after restoration, and at reference sites. Monitoring data were checked against the regional standards of a voluntary protocol for the Gulf of Maine. Data inventories showed that vegetation and salinity indicators were most frequently collected (89 and 78% of sites, respectively), whereas nekton, bird, and hydrologic measures were collected at only about half of the sites. Reference conditions were monitored at 72% of sites. Indicators were analyzed to see if project sites were degraded relative to reference areas and to detect ecological responses to restoration activities. Results showed that compared to reference areas, prerestoration sites had smaller tidal ranges, reduced salinity levels, greater cover of brackish plants species, and lower cover of halophyte plants. Following restoration, physical factors rebounded rapidly with increased flood and salinity levels after about one year, especially for culvert projects. Biological responses were less definitive and occurred over longer time frames. Plant communities trended toward recovered halophytes and reduced brackish species at 3+ years following restoration. Nekton and avian indicators were indistinguishable among reference, impacted, and restored areas. The protocol was successful in demonstrating restoration response for the region, but results were limited by regional inconsistencies in field practices and relatively few multiyear datasets. To improve future assessment capabilities, we encourage greater adherence to the standard protocol throughout the Gulf of Maine salt marsh restoration community.  相似文献   

2.
  总被引:1,自引:0,他引:1  
Intertidal restoration through realignment of flood defenses has become an important component of the U.K. coastal and estuarine management strategy. Although experimentation with recent deliberate breaches is in progress, the long‐term prognosis for salt marsh restoration can be investigated at a number of sites around Essex, southeast England where salt marshes have been reactivated (unmanaged restoration) by storm events over past centuries. These historically reactivated marshes possess higher creek densities than their natural marsh counterparts. Both geomorphology and sedimentology determine the hydrology of natural and restored salt marshes. Elevation relative to the tidal frame is known to be the primary determinant of vegetation colonization and succession. Yet vegetation surveys and geotechnical analysis at a natural marsh, where areas with good drainage exist in close proximity to areas of locally hindered drainage at the same elevation, revealed a significant inverse relationship between water saturation in the root zone and the abundance of Atriplex portulacoides, normally the physiognomic dominant on upper salt marsh in the region. Elsewhere in Essex natural and restored marshes are typified by very high sediment water contents, and this is reflected in low abundance of A. portulacoides. After a century of reestablishment no significant difference could be discerned between the vegetation composition of the storm‐reactivated marshes and their natural marsh counterparts. We conclude that vegetation composition may be restored within a century of dike breaching, but this vegetation does not provide a reliable indicator of ecological functions related to creek structure.  相似文献   

3.
Restoration of reclaimed marshes in the United Kingdom, referred to as managed realignment, is both a scientific and a political issue. A cross‐party House of Commons report to Government stressed that provision of long‐term sustainable coastal defenses must start with the premise that “coasts need space” and that government must work to increase public awareness, scientific knowledge, and political will to facilitate such a retreat from the almost sacrosanct existing shoreline. Government, in turn, has agreed with the basis of the report but is aware of conflicting interests, not least the European legislation, which has designated large areas of reclaimed marshes as Special Areas of Conservation that cannot legally be restored to their former tidal processes. Against this background, it is essential that scientific research provides convincing arguments for the necessity for managed realignment, the location, extent, and type of marshlands that need to be restored to provide sustainable flood defenses, maintain and enhance conservation status, and ensure a healthy functioning estuarine system. We examine the political and scientific issues involved, discuss model predictions and field experiments into realignment techniques, and outline the preliminary results of such experiments showing the evolution of restored intertidal wetlands in the United Kingdom.  相似文献   

4.
Zedler  J.B.  Morzaria-Luna  H.  Ward  K. 《Plant and Soil》2003,253(1):259-273
Hypersaline tidal wetland restoration sites are challenging to vegetate, and the specific factors responsible for transplant mortality are difficult to pinpoint. Two southern California sites (Tidal Linkage and Friendship Marsh), planted as large field experiments, had differential transplant survival (93% for a 1997 planting at the first site, and 10% for a 2000 planting in the second site). Multiple stresses (high salinity, sediment deposition, algal smothering and animal activity) are implicated as the cause of mortality in the experimental plantings. Greater hypersalinity and sedimentation appeared to be a function of site context, with greater sediment inflows and salt concentration over the larger (8-ha) marsh plain at the Friendship Marsh. Species differed in establishment rates among sites and years; the regional dominant, Salicornia virginica, performed best as a transplant and in volunteer seedling recruitment in the Tidal Linkage; hence, it was not planted at the larger site, where it has recruited without assistance. Frankenia salina had high survival in the 2000–2001 plantings; this species is also widespread in the region. Our attempts to restore salt marsh plain vegetation in Southern California led to greater appreciation of the importance of environmental stress and stochastic events and their potential for interaction. Hypersalinity and other factors are extremely difficult to ameliorate, especially in large restoration sites.  相似文献   

5.
  总被引:1,自引:0,他引:1  
We describe the changes in the floral assemblage in a salt marsh after reconnection to estuarine tidal inundation. The Elk River marsh in Grays Harbor, Washington was opened to tidal flushing in 1987 after being diked for approximately 70 years. The freshwater pasture assemblage dominated by Phalarais arundinacea (reed canary grass) converted to low salt marsh vegetation within 5 years, with the major flux in species occurring between years 1 and 4. The system continued to develop through the 11‐year post‐breach monitoring period, although change after year 6 was slower than in previous years. The assemblage resembles a low salt marsh community dominated by Distichlis spicata (salt grass) and Salicornia virginica (pickleweed). Because of subsidence of the system during the period of breaching, the restored system remains substantially different from the Deschamsia cespitosa (tufted hairgrass)‐dominated reference marsh. Use of a similarity index to compare between years and also between reference and restored marshes in the same year revealed that similarity in floral composition between year 0 and subsequent years decreased with time. However, there was a period of dramatic dissimilarity during years 1 to 3 when the system was rapidly changing from a freshwater to estuarine condition. Similarity values between the reference and restored system generally increased with time. Somewhat surprisingly the reference marsh showed considerable between‐year variation in similarity, which indicated substantial year‐to‐year variability in species composition. Based on accretion rate data from previous studies we predict that full recovery of the system would take between 75 and 150 years.  相似文献   

6.
  总被引:1,自引:0,他引:1  
For an estuarine restoration project to be successful it must reverse anthropogenic effects and restore lost ecosystem functions. Restoration projects that aim to rehabilitate endangered species populations make project success even more important, because if misjudged damage to already weakened populations may result. Determining project success depends on our ability to assess the functional state or “performance” and the trajectory of ecosystem development. Mature system structure is often the desired “end point” of restoration and is assumed to provide maximum benefit for target species; however, few studies have measured linkages between structure and function and possible benefits available from early recovery stages. The Salmon River estuary, Oregon, U.S.A., offers a unique opportunity to simultaneously evaluate several estuarine restoration projects and the response of the marsh community while making comparisons with a concurring undiked portion of the estuary. Dikes installed in three locations in the estuary during the early 1960s were removed in 1978, 1987, and 1996, creating a “space‐for‐time substitution” chronosequence. Analysis of the marsh community responses enables us to use the development state of the three recovering marshes to determine a trajectory of estuarine recovery over 23 years and to make comparisons with a reference marsh. We assessed the rate and pattern of juvenile salmon habitat development in terms of fish density, available prey resources, and diet composition of wild juvenile Oncorhynchus tshawytscha (chinook salmon). Results from the outmigration of 1998 and 1999 show differences in fish densities, prey resources, and diet composition among the four sites. Peaks in chinook salmon densities were greatest in the reference site in 1998 and in the youngest (1996) site in 1999. The 1996 marsh had higher densities of chironomids (insects; average 864/m2) and lower densities of amphipods (crustaceans; average 8/m3) when compared with the other sites. Fauna differences were reflected in the diets of juvenile chinook with those occupying the 1978 and 1996 marshes based on insects (especially chironomids), whereas those from the 1987 and reference marshes were based on crustaceans (especially amphipods). Tracking the development of recovering emergent marsh ecosystems in the Salmon River estuary reveals significant fish and invertebrate response in the first 2 to 3 years after marsh restoration. This pulse of productivity in newly restored systems is part of the trajectory of development and indicates some level of early functionality and the efficacy of restoring estuarine marshes for juvenile salmon habitat. However, to truly know the benefits consumers experience in recovering systems requires further analysis that we will present in forthcoming publications.  相似文献   

7.
大规模湿地生态恢复是一项耗资巨大、复杂的系统工程,需要以整个区域湿地结构和功能恢复作为基本目标,将时间和空间上分散的研究成果进行系统梳理,形成对区域湿地生态变化及其驱动因素的规律性认识。本研究以盐城盐沼湿地为案例,以1987年作为未干扰或干扰较少的状态,从结构-过程-功能耦合作用角度,确定区域湿地恢复的关键生态特征,包括:健康与动态潮间带湿地系统、碱蓬生态系统生产力与弹性、复杂景观镶嵌与相互作用、潮间带底栖动物丰富与鸟类觅食基地,以及濒危与关键水鸟种群保护。在此基础上,将围垦与土地利用、水管理、全球变化与海平面上升作为驱动区域湿地生态变化的三大外部因素;海岸侵蚀与沉积、区域水格局变化、地形地貌变化、湿地空间变化与连通性丧失,以及互花米草入侵等是影响湿地生态系统变化的内在压力因子;基于这些压力因子与湿地生态系统变化之间复杂作用关系分析,形成了外部驱动力-内在压力源-生态影响-生态特征之间联合作用下的区域湿地恢复概念生态模型。此模型以复杂因果关系研究为基础,直观展示了湿地恢复需要去除或减缓各种压力因子的一般路径,有利于指导大规模盐沼湿地恢复规划与实践。  相似文献   

8.
李雅 《生物信息学》2020,27(1):115-120
潮洪灾害、海平面上升已促使沿海城市由“抵御”向“适应”转变。通过修复盐沼提高海岸防护的韧性,已被认可是一种有效的适应对策。选取旧金山湾为案例,基于文献和实地调研,探究城市盐沼修复的实践路径和设计方法。研究表明,适应性管理是旧金山湾三代修复实践得以不断优化、发展的关键,帮助制定、调整目标和方法,弹性应对不确定性;旧金山湾通过发展修复设计导则,加速盐沼修复,促进形成更自然的盐沼;并修复过渡区,提供盐沼向内陆迁移的空间,缓解海岸挤迫。最后,提出中国河口海岸城市实施盐沼修复的可借鉴之处,推进海岸防护措施向基于自然的途径转变。  相似文献   

9.
    
During coastal wetland restoration, foundation plant species are critical in creating habitat, modulating ecosystem functions, and supporting ecological communities. Following initial hydrologic restoration, foundation plant species can help stabilize sediments and jump‐start ecosystem development. Different foundation species, however, have different traits and environmental tolerances. To understand how these traits and tolerances impact restoration trajectories, there is a need for comparative studies among foundation species. In subtropical and tropical climates, coastal wetland restoration practitioners can sometimes choose between salt marsh and/or mangrove foundation species. Here, we compared the early life history traits and environmental tolerances of two foundation species: (1) a salt marsh grass (Spartina alterniflora) and (2) a mangrove tree (Avicennia germinans). In an 18‐month study of a recently restored coastal wetland in southeastern Louisiana (USA), we examined growth and survival along an elevation gradient and compared expansion and recruitment rates. We found that the rapid growth, expansion, and recruitment rates of the salt marsh grass make it a better species for quickly establishing ecological structure at suitable elevations. The slower growth, limited expansion, and lower recruitment of the mangrove species show its restricted capacity for immediate structural restoration, especially in areas where it co‐occurs with perennial salt marsh species. Our findings suggest that the structural attributes needed in recently restored areas can be achieved sooner using fast‐growing foundation species. Following salt marsh grass establishment, mangroves can then be used to further assist ecosystem development. This work highlights how appropriate foundation species can help jump‐start ecosystem development to meet restoration objectives.  相似文献   

10.
    
Carex rugulosa Kük. forms large meadows in moist zones along estuarine riversides. These meadows are usually maintained by rhizomatous ramet production (clonal growth), and the appearance of seedlings is uncommon. We studied the conditions required for seedling establishment. In areas in which clonal ramets were dense (906–1050/m2), and the relative light intensity at ground level was low (0.8–3.8%), seed germination was entirely suppressed. In contrast, many seedlings (288–513/m2) were observed in areas in which clonal ramets had been considerably reduced (13–269/m2) by continuous inundation in the previous year. In these areas, the relative light intensity had increased (20.5–79.3%). It was inferred that seeds resisted the prolonged inundation that killed the ramets, and that germination was induced under these open conditions. These results suggest that the main functions of sexual reproduction in C. rugulosa are recovery after severe damage to vegetation using seeds from the seed bank and the dispersal of seeds to areas without dense vegetation. Most seedlings died when the marshy meadow was temporarily inundated by heavy rain. However, transplanted seedlings survived better at artificially elevated sites that were not submerged. This shows that inundation during the seedling stage impedes seedling survival. Therefore, seeds can contribute to recovery after ramet decline or colonization to open area when (i) the rainfall is not heavy to cause seedling submergence or (ii) seeds are dispersed to higher area which is not inundated.  相似文献   

11.
滨海盐沼湿地有机碳的沉积与埋藏研究进展   总被引:1,自引:0,他引:1  
滨海盐沼湿地有着较高的碳沉积速率和固碳能力,在缓解全球变暖方面发挥着重要作用,而盐渍土壤是滨海盐沼湿地碳收支研究中最大的有机碳库,研究其碳沉积与埋藏对于理解滨海湿地碳收支有着重要的意义.本文从滨海盐沼湿地土壤有机碳的来源、土壤有机碳库与沉积速率、盐沼湿地有机碳的埋藏机制、全球变化与滨海盐沼湿地碳封存等几方面对滨海盐沼湿地有机碳沉积与埋藏的相关研究进行综述.今后研究应侧重:1)加强对控制滨海盐沼湿地碳储存变异的基本因素的迸一步研究;2)对测量滨海盐沼湿地沉积物碳储量和沉积碳埋藏速率的方法进行标准化;3)对潮汐影响下滨海盐沼湿地碳与邻近生态系统之间的横向交换通量进行量化;4)探明全球变暖的影响和生产力的提高是否可以抵消因呼吸增强而造成的有机碳降解速率的升高.确定固碳速率变化驱动因子,理解气候变化和人类活动对碳埋藏的影响机制,有助于提升我国滨海盐沼湿地的固碳能力.  相似文献   

12.
The objective of the present work was to study the effect of plants common in temperate latitudes (Zostera noltii, Spartina maritima and Scirpus maritimus) on sediment nutrient profiles, and to compare it to sand- and mud-flats without vegetation. The study focused on the organic matter contents, the concentration of dissolved inorganic nutrients (PO4–P, NH3–N, NO3–N), an on the estimation of the total amount of these nutrients during day and night conditions and their potential net-fluxes. It was also hypothesised that in an estuarine system, different plants may have specific effects, and consequently different contributions to the system nutrient dynamics as a whole. Sediment profiles of loss on ignition (LOI) showed an increase of the organic matter contents from sand-flat, to Zostera, Spartina, mud-flat and Scirpus. Statistically, there were significant differences between sediment profiles of phosphate, ammonia and nitrate (Mann-Whitney test, p<0.05), during day and night periods. These results suggest that there is an intense mobility of nutrients in the sediment, showing a day-night variation of nutrient concentrations in the pore-water. In the plants’ rhizosphere, the day-night variation of nutrients seemed dependent on plant biomass and penetration of the roots. Additionally, coupling between plant and sediment seems to be a species-specific process. In spring, Scirpus salt marsh reaches the maximum density and biomass, and despite the higher organic matter contents in the plant covered sediment, Scirpus acts as a sink of nutrients. In contrast, the top 10 cm of the sediment in the Spartina salt marsh and in the Zostera beds may contribute to the efflux of nutrients during the night period, especially phosphate.  相似文献   

13.
    
The hydrological regime is the dominant factor associated with the degradation and restoration of inland salt marshes in Northeast China. This study investigates whether alternate flooding–drought conditions could be used to actively restore degraded inland salt marshes with the native plant Phragmites australis. Pot experiments were designed to examine changes in the growth and physiology of P. australis, as well as the saline–alkaline soil characteristics, in response to different hydrological regimes, alternate flooding–drought treatments, and single treatments of moisture, flooding, and drought. After 4 months of treatments, the P. australis population that grew in alternate flooding–drought conditions exhibited substantially more biomass accumulation and less Na+ absorption compared with the single treatments of moisture, flooding, and drought. Photosynthesis physiology served as regulating and adaptive responses to different water regimes, with increased values after the short‐term flooding, long‐term drought, and flooding–drought cycles. In addition, the saline–alkaline soil properties changed in response to the flooding–drought cycles. The flooding–drought cycles increased organic matter and total nitrogen contents, but decreased pH, electrical conductivity, and saline ion levels. Plant growth and saline–alkaline soil were improved by flooding–drought cycles (not drought–flooding cycles), which suggests that this may be an effective approach for restoration inland salt marshes.  相似文献   

14.
We used the Braun-Blanquet method to study the vegetation of coastal wetlands in South Korea. Three habitat types were found, i.e., salt marshes, salt swamps, and sand dunes. These plant communities were classified as: 1) two groups (five associations each) in the salt marshes that comprised either annual herbaceous halophytes (ClassThero-Salicornietea), or biennial/perennial herbaceous species (ClassAsteretea tripolii); 2) one group in the salt swamps consisting of five hydrophilous halo-tolerant associations (ClassPhragmitetea); and 3) three groups in the sand dunes, including one association of annual herbaceous halophytes (ClassSalsoletea komarovii), seven associations of herbaceous perennial halophytes (ClassGlehnietea littoralis), and one association of shrub perennial halophytes (ClassVrticetea rotundifoliae). These three habitat types accounted for the majority of the six main classifications of coastal vegetation distributed in South Korea.  相似文献   

15.
One of the world's largest tidal wetland restorationprojects was conceived to offset the loss of nekton toonce-through cooling at a power plant on Delaware Bay,USA. An aggregated food chain model was employed toestimate the area of tidal salt marsh required toreplace these losses. The 5040 ha was comprised of twodegraded marsh types – Phragmites- dominatedmarshes and diked salt hay farms – at elevenlocations in oligo-mesohaline and polyhaline reachesof the estuary. At a series of summits convened withnoted experts in the field, it was decided to apply anecological engineering approach (i.e., self design,and minimal intrusion) in a landscape ecologyframework to the restoration designs while at the sametime monitoring long-term success of the project inthe context of a bound of expectation. The latterencompassed a range of reference marsh planforms andacceptable end-points established interactively withtwo advisory committees, numerous resource agencies,the permitting agency and multiple-stakeholder groups.In addition to the technical recommendations providedby the project's advisors, public health and safety,property protection and public access to the restoredsites were a constant part of the dialogue between theutility, its consulting scientists and theresource/permitting agencies. Adaptive management wasused to maintain the restoration trajectories, ensurethat success criteria were met in a timely fashion,and to protect the public against potential effects ofsalt intrusion into wells and septic systems, andagainst upland flooding. Herbicide spray, followed byprescribed burns and altered microtopography were usedat Phragmites-dominated sites, and excavation ofhigher order channels and dike breaching were themethods used to initiate the restorations at the dikedsalt hay farms. Monitoring consisted of evaluating therate of re-vegetation and redevelopment of naturaldrainage networks, nekton response to therestorations, and focused research on nutrient flux,nekton movements, condition factors, trophic linkages,and other specific topics. Because of its size anduniqueness, the Estuary Enhancement Program as thisproject is known, has become an important case studyfor scientists engaged in restoration ecology and theapplication of ecological engineering principles. Thehistory of this project, and ultimately theRestoration Principles that emerged from it, are thesubjects of this paper. By documenting the pathways tosuccess, it is hoped that other restoration ecologistsand practitioners will benefit from the experiences wehave gained.  相似文献   

16.
Below-ground biomass in healthy and impaired salt marshes   总被引:1,自引:0,他引:1  
Twelve salt marshes in south Louisiana (USA) were classified as either impaired or healthy before a summer sample collection of above- and below-ground biomass and determination of sediment accretion rates. The above-ground biomass of plant tissues was the same at both impaired and healthy salt marshes and was not a good predictor of marsh health. However, below-ground root biomass in the upper 30cm was much lower in the impaired marshes compared to the healthy marshes. Compromises to root production apparently occur before there is an obvious consequence to the above-ground biomass, which may quickly collapse before remedial action can be taken. The subsequent change in vertical position of the marsh surface may be equivalent to many years of accretion, and be irreversible within decades without considerable effort. These results are consistent with the hypothesis that it is the plants below-ground accumulation of organic matter, not inorganic matter that governs the maintenance of salt marsh ecosystem in the vertical plane. Reversing the precursor conditions leading to marsh stress before the collapse of the above-ground biomass occurs is therefore a prudent management objective and could be easier than restoration.  相似文献   

17.
  总被引:4,自引:0,他引:4  
In 1980 the State of Connecticut began a tidal marsh restoration program targeting systems degraded by tidal restrictions and impoundments. Such marshes become dominated by common reed grass (Phragmites australis) and cattail (Typha angustifolia and T. latifolia), with little ecological connection to Long Island Sound. The management and scientific hypothesis was that returning tidal action, reconnecting marshes to Long Island Sound, would set these systems on a recovery trajectory. Specific restoration targets (i.e., pre‐disturbance conditions or particular reference marshes) were considered unrealistic. However, it was expected that with time restored tides would return ecological functions and attributes characteristic of fully functioning tidal salt marshes. Here we report results of this program at nine separate sites within six marsh systems along 110 km of Long Island Sound shoreline, with restoration times of 5 to 21 years. Biotic parameters assessed include vegetation, macroinvertebrates, and use by fish and birds. Abiotic factors studied were soil salinity, elevation and tidal flooding, and soil water table depth. Sites fell into two categories of vegetation recovery: slow, ca. 0.5%, or fast, more than 5% of total area per year. Although total cover and frequency of salt marsh angiosperms was positively related to soil salinity, and reed grass stand parameters negatively so, fast versus slow recovery rates could not be attributed to salinity. Instead, rates appear to reflect differences in tidal flooding. Rapid recovery was characterized by lower elevations, greater hydroperiods, and higher soil water tables. Recovery of other biotic attributes and functions does not necessarily parallel those for vegetation. At the longest studied system (rapid vegetation recovery) the high marsh snail Melampus bidentatus took two decades to reach densities comparable with a nearby reference marsh, whereas the amphipod Orchestia grillus was well established on a slow‐recovery marsh, reed grass dominated after 9 years. Typical fish species assemblages were found in restoration site creeks and ditches within 5 years. Gut contents of fish in ditches and on the high marsh suggest that use of restored marsh as foraging areas may require up to 15 years to reach equivalence with reference sites. Bird species that specialize in salt marshes require appropriate vegetation; on the oldest restoration site, breeding populations comparable with reference marshland had become established after 15 years. Use of restoration sites by birds considered marsh generalists was initially high and was still nearly twice that of reference areas even after 20 years. Herons, egrets, and migratory shorebirds used restoration areas extensively. These results support our prediction that returning tides will set degraded marshes on trajectories that can bring essentially full restoration of ecological functions. This can occur within two decades, although reduced tidal action can delay restoration of some functions. With this success, Connecticut's Department of Environmental Protection established a dedicated Wetland Restoration Unit. As of 1999 tides have been restored at 57 separate sites along the Connecticut coast.  相似文献   

18.
基于比较优势分析法的冬小麦产量差异   总被引:6,自引:0,他引:6  
在农户调查基础上,采用比较优势分析法对曲周县2003—2004年度冬小麦产量差异进行分析.调查数据表明,地块间小麦产量差异较大,产量范围为在4.2~7.9 t·hm-2,变异系数为0.14.通过逐步回归建立的由土壤盐碱度、土壤肥力、是否咸水灌溉、品种选择、返青期追施氮肥类型、播种时间、病虫害防治和返青期是否水分胁迫8个因子构成的产量差模型可以解释63%的产量差异.其中土壤盐碱度、土壤肥力和是否咸水灌溉是冬小麦的主要产量限制因子,其引起的产量差为727 kg·hm-2,占总模拟产量差的52%.小麦品种引起的产量差为202.1 kg·hm-2,占总模拟产量差的14%.播种时间、返青期追施氮肥类型、病虫害防治和返青期是否水分胁迫4个因子引起的产量差分别占总模拟产量差的7%、14%、10%和3%.因此,除土壤和气候状况外,管理措施也是造成产量差异的重要因素,通过优化管理措施可以大大减小产量差异.  相似文献   

19.
滨海盐沼湿地有着较高的碳沉积速率和固碳能力,在缓解全球变暖方面发挥着重要作用,而盐渍土壤是滨海盐沼湿地碳收支研究中最大的有机碳库,研究其碳沉积与埋藏对于理解滨海湿地碳收支有着重要的意义.本文从滨海盐沼湿地土壤有机碳的来源、土壤有机碳库与沉积速率、盐沼湿地有机碳的埋藏机制、全球变化与滨海盐沼湿地碳封存等几方面对滨海盐沼湿地有机碳沉积与埋藏的相关研究进行综述.今后研究应侧重:1)加强对控制滨海盐沼湿地碳储存变异的基本因素的进一步研究;2)对测量滨海盐沼湿地沉积物碳储量和沉积碳埋藏速率的方法进行标准化;3)对潮汐影响下滨海盐沼湿地碳与邻近生态系统之间的横向交换通量进行量化;4)探明全球变暖的影响和生产力的提高是否可以抵消因呼吸增强而造成的有机碳降解速率的升高.确定固碳速率变化驱动因子,理解气候变化和人类活动对碳埋藏的影响机制,有助于提升我国滨海盐沼湿地的固碳能力.  相似文献   

20.
    
The salt marsh grass Distichlis spicata was regenerated from tissue culture and propagated in a greenhouse. Selected regenerants, along with selections from six wild populations, were grown for two years in a common garden flood-irrigated thrice weekly with tidal creek water. Selected wild and regenerated plants were also planted in a created salt marsh. Significant differences among regenerant and wild population selections were found in several functionally important salt marsh plant characteristics, including potential detritus production, belowground organic matter production, canopy structure, and decomposition rate. A combination of characteristics not found in the wild populations was evident in a regenerated line that exhibited both a high detritus production potential and a high decomposition rate. The amount of variation that occurred among regenerants from one parental line via somaclonal variation was similar to that which occurred among the wild population selections. Results of this study suggest that tissue culture may provide a means of producing marsh grasses with specific characteristics for directing the functional development of newly created salt marshes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号