首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Using density functional theory (DFT) and molecular dynamics (MD), we studied the interaction of a titanium atom with a half of a C60 fullerene (i.e., C30), formed from the corannulene structure with a pentagonal base. We considered atmospheric pressure and 300 K. We found that the most stable adsorption of the titanium atom on C30 occurs in the concave surface of the molecule. Afterward, we investigated the interaction of the system C30-titanium with carbon monoxide and carbon dioxide molecules, respectively. We found that each of these molecules is chemisorbed, with no dissociation. The value of the adsorption energy for the carbon monoxide molecule varies from ?0.897 to ?1.673 eV, and for the carbon dioxide molecule, it is between ?1.065 and ?1.274 eV. These values depend on the initial orientation of these molecules with respect to TiC30.
Graphical Abstract The TiC30 system chemisorbs CO or CO2?with no dissociation at atmospheric pressure and 300K
  相似文献   

2.
Natural bond orbital (NBO) analyses and dissected nucleus-independent chemical shifts (NICS π z z ) were computed to evaluate the bonding (bond type, electron occupation, hybridization) and aromatic character of the three lowest-lying Si2CH2 (1-Si, 2-Si, 3-Si) and Ge2CH2 (1-Ge, 2-Ge, 3-Ge) isomers. While their carbon C3H2 analogs favor classical alkene, allene, and alkyne type bonding, these Si and Ge derivatives are more polarizable and can favor “highly electron delocalized”? and “non-classical”? structures. The lowest energy Si 2CH2 and Ge 2CH2 isomers, 1-Si and 1-Ge, exhibit two sets of 3–center 2–electron (3c-2e) bonding; a π-3c-2e bond involving the heavy atoms (C–Si–Si and C–Ge–Ge), and a σ-3c-2e bond (Si–H–Si, Ge–H–Ge). Both 3-Si and 3-Ge exhibit π and σ-3c-2e bonding involving a planar tetracoordinated carbon (ptC) center. Despite their highly electron delocalized nature, all of the Si2CH2 and Ge2CH2 isomers considered display only modest two π electron aromatic character (NICS(0) π z z =--6.2 to –8.9 ppm, computed at the heavy atom ring center) compared to the cyclic-C 3H2 (–13.3 ppm).
Graphical Abstract The three lowest Si2CH2 and Ge2CH2 isomers.
  相似文献   

3.
The C2 fragmentation energies of the most stable isolated-pentagon-rule (IPR) isomers of the C80 and C82 fullerenes were evaluated with second-order Møller-Plesset (MP2) theory, density-functional theory (DFT) and the semiempirical self-consistent charge density-functional tight-binding (SCC-DFTB) method. Zero-point energy, ionization energy and empirical C2 corrections were included in the calculation of fragmentation energies for comparison with experimental C2 fragmentation energies of the fullerene cations. In the case of the most probable Stone-Wales pathway of C2 fragmentation of C80, the calculated \(D_{0} {\left( {{\text{C}}_{{{\text{80}}}} ^{ + } } \right)}\) agree well with experimental data, whereas in the case of C82 fragmentation, the calculated \(D_{0} {\left( {{\text{C}}_{{{\text{82}}}} ^{ + } } \right)}\) exceed by up to 1.2 eV the experimental ones, which suggests that other IPR isomers may be present in sufficient amounts in experimental samples. Computer-intensive MP2 calculations and DFT calculations with larger basis sets do not yield much improved C2 fragmentation energies, compared to those reported earlier with B3LYP/3-21G. On the other hand, semiempirical approaches such as SCC-DFTB, which are orders of magnitude less intensive, yield satisfactory fragmentation energies for higher fullerenes and may become a method of choice for routine calculations of fullerenes and carbon nanotubes.
Figure C2 fragmentation energies of C80 and C82 fullerenes have been calculated with B3LYP/6-31G* model chemistry, with semiempirical self-consistent-charge density-functional tight-binding (SCC-DFTB) method and with the more rigorous MP2 method. The influence of basis set extension and level of theory on the resulting fragmentation energies is discussed
  相似文献   

4.
A density functional theory (DFT) study of cct-As, ccc, and cct-CO isomers of the ruthenium dihydride complex RuH2(CO)2(AsMe2Ph)2 is reported (see Scheme for the labeling isomer 34 structures of RuH2(CO)2(AsMe2Ph)2). Complex geometries and relative energies of different isomers have been calculated with both B3LYP and M06-2X functionals. The results show that the B3LYP calculated Boltzmann populations of cct-As, ccc, and cct-CO isomers are 65.5, 34.2, and 0.3%, respectively. These are in better agreement with the experimental data than those calculated at the M06-2X level. However, the calculations of 1H NMR chemical shifts were found to be better described with M06-2X than with B3LYP or with HF level of theories. In addition, a transition state between the two most stable isomers was determined through DFT/(B3LYP or M06-2X) calculations.
Graphical Abstract Scheme: Labeling structure of RuH2(CO)2(AsMe2Ph)2
  相似文献   

5.
A computational study of metal difluorides (MF2; M = Ca to Zn) and their interactions with carbon dioxide and water molecules was performed. The structural parameter values obtained and the results of AIM analysis and energy decomposition analysis indicated that the Ca–F bond is weaker and less ionic than the bonds in the transition metal difluorides. A deformation density plot revealed the stablizing influence of the Jahn–Teller effect in nonlinear MF2 molecules (e.g., where M= Sc, Ti, Cr). An anaysis of the metal K-edge peaks of the difluorides showed that shifts in the edge energy were due to the combined effects of the ionicity, effective nuclear charge, and the spin state of the metal. The interactions of CO2 with ScF2 (Scc3 geometry) and TiF2 (Tic2 geometry) caused CO2 to shift from its usual linear geometry to a bent geometry (η2(C=O) binding mode), while it retained its linear geometry (η1(O) binding mode) when it interacted with the other metal difluorides. Energy decomposition analysis showed that, among the various geometries considered, the Scc3 and Tic2 geometries possessed the highest interaction energies and orbital interaction energies. Heavier transition metal difluorides showed stronger affinities for H2O, whereas the lighter transition metal (Sc and Ti) difluorides preferred CO2. Overall, the results of this study suggest that fluorides of lighter transition metals with partially filled d orbitals (e.g., Sc and Ti) could be used for CO2 capture under moist conditions.
Graphical abstract Interaction of metal difluorides with carbon dioxide and water
  相似文献   

6.
Density functional theory (B3LYP, B3LYP-D2 and wB97XD functionals) was used in finite models of zigzag carbon nanotubes (CNT), (n,0)×k with n?=?6–9 and k?=?2–4, to systematically investigate the effects of size on their structural and electronic properties. We found that the ratio between the length (L t) and the diameter (d t) of the pristine CNT has to be larger than 2, i.e., L t/d t?>?2, in order to provide the observed experimental trends of C=C bond distances, as well as to maintain the atomic charges nearly constant and zero around the center of the tube. Therefore, the concepts of useful length and volume were developed and tested for the encapsulation process of HCN and C2H2 into CNTs. The energies involved in these processes, as well as the changes in molecular structure and electronic properties of the dopants and the CNTs are discussed and rationalized by the amount of charge transferred between dopant and CNT.
Graphical Abstract Illustration of zigzag CNT length and diameter ratio in order to represent C=C bond experimental trend
  相似文献   

7.
The mechanistic details of N-heterocyclic olefin-catalyzed formation of cyclic carbonate from CO2 and propargylic alcohols were investigated by DFT calculations. Six mechanisms, four for the formation of five-membered cyclic carbonate (M-A, M-B, M-B’ and M-C), and two for six-membered cyclic carbonate (M-D and M-E), were fully investigated. The energy profiles in dichloromethane showed that M-B is the predominant reaction with the lowest barrier of 31.99 kcal mol?1, while M-C and M-D may be kinetically competitive to M-B. The very high activation energy of 45.37 kcal mol-1, 57.07 kcal mol-1 and 59.61 kcal mol?1 for M-A, M-B’ and M-E, respectively, suggest that they are of lesser importance in the overall mechanism.
Graphical abstract Formations of five-membered ring product and six-membered ring product are kinetically competitive, but five-membered ring product is thermodynamically more preferable.
  相似文献   

8.
The adsorption processes of elemental lead on carbonaceous surfaces which adsorbed CO/CO2/NO flue gases were investigated to understand the effects of CO/CO2/NO on elemental lead adsorption on carbonaceous surfaces with density functional theory. All calculations including optimizations, energies, and frequencies were conducted at B3PW91 density functional theory level, utilizing SDD basis set for lead and 6-31G(d) Pople basis set for other atoms. The results indicate that CO, CO2, and NO can promote the adsorption of elemental lead on the carbonaceous surface, but probably compete for adsorption sites with elemental lead. The promotion effects on adsorption can be attributed to active sites on the carbonaceous surface rather than flue gas adsorption on the carbonaceous surface. In addition, the adsorption order of three kinds of flue gas on the carbonaceous surface is CO2?>?NO?>?CO?>?Pb on average. Furthermore, the enhancement order of three kinds of flue gas on the elemental lead adsorption on carbonaceous surfaces is CO-CS?>?CO2-CS?>?NO-CS?>?CS in general. In particular, atomic charge and adsorption energy have good linear relationship in the process of elemental lead adsorption.
Graphical Abstract Competitive adsorption between flue gas and elemental lead on carbonaceous surfaces.
  相似文献   

9.
Large amounts of atmospheric N deposition cause negative effects on ecosystems. Effective mitigation strategies require the sources of N deposition to be identified and the contributions from individual sources to be quantified. Determination of the isotopic composition represents a useful approach in source apportionment. In this study, the δ15N-NHx of wet and dry atmospheric deposition and the main NH3 emission sources were analyzed at an urban, a suburban and a rural site in the Taihu Lake region of China. The 2-year average δ15N-\( {\text{NH}}_{4}^{ + } \) of precipitation was ? 3.0 ± 2.3, ? 3.1 ± 2.8 and ? 0.5 ± 2.8‰ for the urban, suburban and rural sites, respectively. These values were much lower than the corresponding values for particulate \( {\text{NH}}_{4}^{ + } \) (15.9, 15.2 and 14.3‰ at the urban, suburban and rural sites, respectively), and much higher than those of gaseous δ15N-NH3 (? 16.7, ? 18.2 and ? 17.4‰ at the urban, suburban and rural sites, respectively). The δ15N-NH3 of NH3 from the main emission sources ranged from ? 30.8 to ? 3.3‰ for volatilized fertilizer, from ? 35.1 to ? 10.5‰ for emissions from a pig farm, and ? 24.7 to ? 11.3‰ for emissions from a dairy farm. Temporal variations of deposition δ15N-NHx indicated that δ15N-NHx values were lower in summer and autumn, but higher in winter and spring for both precipitation \( {\text{NH}}_{4}^{ + } \)-N and gaseous NH3-N. Weather conditions such as temperature and precipitation significantly influenced the spatial and temporal distribution of isotope values of the deposition. Analysis of δ15N-NHx in deposition and emission sources identified volatilized fertilizer and livestock wastes as the origins of both gaseous NH3-N and precipitation \( {\text{NH}}_{4}^{ + } \)-N over the region. A stable isotope mixing model estimated that volatilized fertilizer and animal excreta contributed more than 65% to precipitation \( {\text{NH}}_{4}^{ + } \)-N, more than 60% to particulate \( {\text{NH}}_{4}^{ + } \)-N, and more than 75% to gaseous NH3-N.  相似文献   

10.
Magnetic shielding constants for an isolated fullerene C60, cucurbituril CB[9], and the host-guest complex C60@CB[9] were calculated as a function of separation of the monomers. Our results in the gas phase and water indicate a significant variation of the magnetic properties for all atoms of the monomers in the complex and after liberation of fullerene C60 from the interior of the CB[9] cavity. The interaction between the two monomers results in a charge transfer that collaborates with a redistribution of electron density to deshield the monomers.
Graphical Abstract NMR spectroscopy alteration on C60@CB[9] host-guest mutual interactions?
  相似文献   

11.
In this work, the poly(ethylene oxide) bulk as one example has been iteratively heated and cooled back using MD simulations to examine the effects of thermal history on the resulting Tg. It is demonstrated that, after the system is equilibrated once at the high temperatures, the simulated Tg does not exhibit a systematical shift with the thermal history, and the averaged Tg compares well with that for the single procedure, that is, adequately equilibrating at the highest temperature and cooling with the same rate to the lowest temperature. Additionally, the continuous and stepwise processes lead to almost identical Tg, density and volumetric expansive coefficients at both the glassy and rubbery states at 300 K and 1 atm. However, these results would somewhat vary with what (volume or density) are used and how to yield them. Furthermore, the stepwise processes allow one to obtain the time-dependent dynamical Tg values from the reorientation functions of the monomer vectors, which suggest greater differences within longer observation time. This work rationalizes the “golden standard” procedure to simulate polymer Tg using the MD method, and provides some key clues to obtain the reliable results (specially for comparisons).
Graphical abstract The extensive molecular dynamics simulations show that the glass transition temperature (Tg) values obtained from volumetric (vol.) or density (den.) data do not exhibit a systematic shift with the thermal history (Proc.) whereas the Tg values obtained from dynamical (dyn.) data decrease and exhibit greater difference with increasing the observation time (t*)
  相似文献   

12.
13.
Mechanisms for the activation of water, ammonia, and other small molecules by the PCcarbeneP nickel pincer complex were studied computationally with the aid of density functional theory. The calculation results indicate that the strongly donating, nucleophilic carbene center can engage in a variety of heterolytic splitting of E?H (E=H, C, N, O) bonds, some of which are reversible. The cleavage of E?H bonds across the Ni=C bond represents a new mode of bond activation by ligand cooperativity in nickel pincer complex. On the basis of the calculations, we also demonstrate that reversible H2 activation across the Ir=C bond via the PCcarbeneP iridium pincer complex was observed in the experiments, while other E?H (E=C, N, O) bonds were not activated. Our calculations are in good agreement with experimental observations and could provide new insights into ligand cooperativity in nickel pincer complexes.
Graphical Abstract Synopsis TOC
  相似文献   

14.
To explore the adsorption mechanism of NO, NH3, N2 on a carbon surface, and the effect of basic and acidic functional groups, density functional theory was employed to investigate the interactions between these molecules and carbon surfaces. Molecular electrostatic potential, Mulliken population analyses, reduced density gradient, and Mayer bond order analyses were used to clarify the adsorption mechanism. The results indicate that van der Waals interactions are responsible for N2 physisorption, and N2 is the least likely to adsorb on a carbon surface. Modification of carbon materials to decorate basic or acidic functional groups could enhance the NH3 physisorption because of hydrogen bonding or electrostatic interactions, however, NO physisorption on a carbon surface is poor. Zig-zag sites are more reactive than armchair sites when these gas molecules absorb on the edge sites of carbon surface.
Graphical abstract NH3, N2, NO adsortion on carbon surface
  相似文献   

15.
The effect of alkali metal oxides M n O (M?=?Li, Na, K; n?=?2, 3, 4) on the geometric, electronic, and linear and nonlinear optical properties of the Mg12O12 nanocage was investigated by density-functional-based methods. According to the computational results, these alkali metal oxides are adsorbed on the Mg12O12 nanocage because this adsorption reduces its energy gap. The static first hyperpolarizability (β 0) of the nanocage is dramatically increased in the presence of the alkali metal oxides, with the greatest increase seen in the presence of the superalkalis (i.e., M3O; M?=?Li, Na, and K). The highest first hyperpolarizability (β 0?≈?600,000 a.u.) was calculated for K3O@Mg12O12, which was considerably more than that for Mg12O12. The thermodynamic properties and relative stabilities of these inorganic compounds are discussed.
Graphical Abstract Optimized structure and DOS spectrum of K3O(e@Mg12O12)
  相似文献   

16.
This paper inquires the C60 capabilities to contain radio-iodide (131I2) molecules. The encapsulation conditions are investigated applying first principles method to simulate with geometric optimizations and molecular dynamics at 310 K and atmospheric pressure. We find that the n131I2@C60 system, where n?=?1, 2, 3…, is stable if the content does not exceed three molecules of radio-iodide. The application of density functional theory allows us to determine that, the nanocapsules content limit is related with the amount of charge that is transferred from the iodine 131I2 molecules to the carbon atoms in the fullerene surface. The Mulliken population analysis reveals that the excess of charge increases the repulsive forces between atoms and the bond length average in the C60 structure. The weakened bonds easily break and will critically damage the encapsulation properties. Additionally, we test the interaction nanocapsules with different amounts of radioactive iodine diatomic molecules content with calcium atoms, and find that only the fullerene containing one radioactive iodine diatomic molecule was able to interact with up to nine atoms of calcium without disrupting or cracking. Other fullerenes with two and three radio iodine diatomic molecules cannot resist the interaction with a single calcium atom without cracking or being broken.
Graphical Abstract Instability of 3131I2@C60 Ca.
  相似文献   

17.
Phospholipase A2 (PLA2) is one of the key enzymes involved in the formation of inflammatory mediators. Inhibition of PLA2 is considered to be one of the efficient methods to control inflammation. In silico docking studies of 160 selected indole derivatives performed against porcine pancreatic PLA2 (ppsPLA2) suggested that, CID2324681, CID8617 (indolebutyric acid or IBA), CID22097771 and CID802 (indoleacetic acid or IAA) exhibited highest binding energies. In silico analysis was carried out to predict some of the ADME properties. The binding potential of these compounds with human non pancreatic secretory PLA2 (hnpsPLA2) was determined using molecular docking studies. In order to corroborate the in silico results, enzyme kinetics and isothermal titration calorimetric analysis of the two selected compounds, IAA and IBA were performed against ppsPLA2. From the analysis, it was concluded that IAA and IBA can act as competitive inhibitors to the enzyme and may be used as anti inflammatory agents.
Figure Inhibitory activity of IAA and IBA against PLA2
  相似文献   

18.
Density functional theory and its time-dependent extension (DFT, TDDFT) were employed to establish the feasibility of using a series of 4,4-difluoro-4-bora-3a,4a-diaza-s-indacenes (BODIPYs) in photodynamic therapy. Their absorption electronic spectra, singlet–triplet energy gaps, and spin–orbit matrix elements were computed and are discussed here. The effects of bromine substitution on the photophysical properties of BODIPY were elucidated. The investigated compounds were found to possess different excited triplet states that lie below the energy of the bright excited singlet state (S1 or S2), depending on the positions occupied by the bromine atoms. The computed spin–orbit matrix elements for the radiationless intersystem crossing Sn?→ ?Tm and the relative singlet–triplet energy gaps allowed the prediction of plausible nonradiative decay pathways for the production of singlet excited molecular oxygen, the key cytotoxic agent in photodynamic therapy.
Graphical Abstract The photophysical properties affected by the presence of bromine atoms in different positions of a BODIPY core have been here elucidated. In particular it has been found that SOC values strongly depend on the position of heavy atoms into the BODIPY core, suggesting positions 1 and 7 as the best ones to enhance the ISC kinetics
  相似文献   

19.
For the first time, the structures, stabilities and electronic properties of alkaline-earth metal doped B44 fullerenes were investigated by means of density functional theory calculations. Our results reveal that M@B44 (M = Ca, Sr, Ba) possess endohedral configurations as their lowest energy structures, whereas the exohedral form is favored when metal is Be or Mg. The large binding energies and sizable HOMO–LUMO gap energies of Ca@B44, Sr@B44 and Ba@B44 suggest the considerable possibility to achieve these novel endohedral borofullerenes experimentally. Born-Oppenheimer molecular dynamics (BO-MD) simulations at various temperatures further confirmed the extreme dynamic stabilities of these endohedral complexes. Their bonding patterns were also analyzed in detail. Finally, we simulated their infrared absorption spectra and 11B nuclear magnetic resonance spectra to help future structural characterization.
Graphical Abstract Stuffing B44 fullerene with metals
  相似文献   

20.
The present study reports the geometries, electronic structures, growth behavior, and stabilities of neutral and ionized copper-doped germanium clusters containing 1–20 Ge atoms within the framework of linear combination of atomic orbitals density functional theory (DFT) under the spin-polarized generalized gradient approximation. It was found that Cu-capped Ge n (or Cu-substituted Ge n+1) and Cu-encapsulated Ge n clusters mostly occur in the ground state at a particular cluster size (n). In order to explain the relative stabilities of the ground-state clusters, parameters such as the average binding energy per atom (BE), the embedding energy (EE), and the fragmentation energy (FE) of the clusters were calculated, and the resulting values are discussed. To explain the chemical stabilities of the clusters, parameters such as the energy gap between the highest occupied and the lowest unoccupied molecular orbitals (the HOMO–LUMO gap), the ionization energy (IP), the electron affinity (EA), the chemical potential (μ), the chemical hardness (η), and the polarizability were calculated, and the resulting values are also discussed. Natural atomic orbital (NAO) and natural bond orbital (NBO) analyses were also used to determine the electron-counting rule that should be applied to the most stable Ge10Cu cluster. Finally, the relevance of the calculated results to the design of Ge-based superatoms is discussed.
Figure Contributions of the valance orbitals of the Ge and Cu atom(s) to the HOMO of the ground-state icosahedral Ge10Cu cluster obtained from NBO analysis. The numbers below the clusters represent the occupancies of the HOMO orbitals
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号