首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Practitioners of life cycle assessment (LCA) have recently turned their attention to social issues in the supply chain. The United Nations life cycle initiative's social LCA task force has completed its guidelines for social life cycle assessment of products, and awareness of managing upstream corporate social responsibility (CSR) issues has risen due to the growing popularity of LCA. This article explores one approach to assessing social issues in the supply chain—life cycle attribute assessment (LCAA). The approach was originally proposed by Gregory Norris in 2006, and we present here a case study. LCAA builds on the theoretical structure of environmental LCA to construct a supply chain model. Instead of calculating quantitative impacts, however, it asks the question “What percentage of my supply chain has attribute X?” X may represent a certification from a CSR body or a self‐defined attribute, such as “is locally produced.” We believe LCAA may serve as an aid to discussions of how current and popular CSR indicators may be integrated into a supply chain model. The case study demonstrates the structure of LCAA, which is very similar to that of traditional environmental LCA. A labor hours data set was developed as a satellite matrix to determine number of worker hours in a greenhouse tomato supply. Data from the Quebec tomato producer were used to analyze how the company performed on eight sample LCAA indicators, and conclusions were drawn about where the company should focus CSR efforts.  相似文献   

2.
The study fills the gap in existing literature by comparing the economic costs and environmental impacts of processes in four services companies in Europe and the United States. Process-based life cycle assessment (LCA) and the case study method are used to compare companies both on four global-scale impacts and on environmental intensity (impacts per unit cost). The study builds on prior publications on the environmental contribution of processes. The processes include all the activities of the companies that result in an entry into the bookkeeping records. The results show that despite the substantial differences in organizational characteristics and line of business, all the cases had similar environmental contributions and intensity profiles. Wages, which accounted for over half of the costs, were assumed not to cause any environmental impacts. By contrast, the office premises, which generated less than 10% of the costs, caused around 50% of the environmental impacts. At a more general level, the results suggest that both the high environmental impact and the high intensity are attributed mostly to a few premises-related processes in the services industry. The results also seem to imply that the companies could gain added value by using life cycle assessment in determining the significant environmental impacts of their operations.  相似文献   

3.
Life cycle assessment (LCA) was combined with primary data from nine forest harvesting operations in New York, Maine, Massachusetts, and Vermont, from 2013 to 2019 where forest biomass (FB) for bioenergy was one of several products. The objective was to conduct a data‐driven study of greenhouse gas emissions associated with FB feedstock harvesting operations in the Northeast United States. Deterministic and stochastic LCA models were built to simulate the current FB bioenergy feedstock supply chain in the Northeast US with a cradle‐to‐gate scope (forest harvest through roadside loading) and a functional unit of 1.0 Mg of green FB feedstock at a 50% moisture content. Baseline LCA, sensitivity analysis, and uncertainty analyses were conducted for three different FB feedstock types—dirty chips, clean chips, and grindings—enabling an empirically driven investigation of differences between feedstock types, individual harvesting process contributions, and literature comparisons. The baseline LCA average impacts were lower for grindings (4.57 kg CO2eq/Mg) and dirty chips (7.16 kg CO2eq/Mg) than for clean chips (23.99 kg CO2eq/Mg) under economic allocation, but impacts were of similar magnitude under mass allocation, ranging from 24.42 to 27.89 kg CO2eq/Mg. Uncertainty analysis showed a wider range of probable results under mass allocation compared to economic allocation. Sensitivity analysis revealed the impact of variations in the production masses and total economic values of primary products of forest harvests on the LCA results due to allocation of supply chain emissions. The high variability in fuel use between logging contractors also had a distinct influence on LCA results. The results of this study can aid decision‐makers in energy policy and guide emissions reductions efforts while informing future LCAs that expand the system boundary to regional FB energy pathways, including electricity generation, transportation fuels, pellets for heat, and combined heat and power.  相似文献   

4.
Government agencies, companies, and other entities are using environmental assessments, like life cycle assessment (LCA), as an input to decision‐making processes. Communicating the esoteric results of an LCA to these decision makers can present challenges, and interpretation aids are commonly provided to increase understanding. One such method is normalizing results as a means of providing context for interpreting magnitudes of environmental impacts. Normalization is mostly carried out by relating the environmental impacts of a product (or process) under study to those of another product or a spatial reference area (e.g., the United States). This research is based on the idea that decision makers might also benefit from normalization that considers comparisons to their entity's (agency, company, organization, etc.) total impacts to provide additional meaning and aid in comprehension. Two hybrid normalization schemes have been developed, which include aspects of normalization to both spatially based and entity‐based impacts. These have been named entity‐overlaid and entity‐accentuated normalization, and the schemes allow for performance‐based planning or emphasizing environmental impact types that are most relevant to an entity's operational profile, respectively. A hypothetical case study is presented to demonstrate these schemes, which uses environmental data from a U.S. transportation agency as the basis for entity normalization factors. Results of this case study illustrate how entity‐related references may be developed, and how this additional information may enhance the presentation of LCA results using the hybrid normalization schemes.  相似文献   

5.
A dissolved air flotation (DAF) system upgrade was proposed for an urban paper mill to recycle effluent. To understand the influence of operating variables on the environmental impacts of greenhouse gas (GHG) emissions and water consumption, a dynamic supply chain model was linked with life cycle assessment (LCA) to produce an environmental inventory. Water is a critical natural resource, and understanding the environmental impacts of recycling water is paramount in continued development of sustainable supply chains involving water. The methodology used in this study bridged the gap between detailed process models and static LCA modeling so that operating variables beyond discrete scenario analysis could be investigated without creating unnecessarily complex models. The model performed well in evaluating environmental impacts. It was found that there was no single optimum operating regime for all environmental impacts. For a mill discharging 80 cubic meters of effluent per hour (m3/hour), GHGs could be minimized with a DAF capacity of 17.5 m3/hour, while water consumption could be minimized with a DAF capacity of 25 m3/hour, which allowed insight into where environmental trade‐offs would occur. The study shows that more complexity can be achieved in supply chain modeling without requiring a full technical model. It also illustrates the need to consider multiple environmental impacts and highlights the trade‐off of GHG emissions with water consumption in water recycling. The supply chain model used in this water treatment case study was able to identify the environmental trade‐offs from the operating variables selected.  相似文献   

6.
In many cases, policy makers and laymen perceive harmful emissions from chemical plants as the most important source of environmental impacts in chemical production. As a result, regulations and environmental efforts have tended to focus on this area. Concerns about energy use and greenhouse gas emissions, however, are increasing in all industrial sectors. Using a life cycle assessment (LCA) approach, we analyzed the full environmental impacts of producing 99 chemical products in Western Europe from cradle to factory gate. We applied several life cycle impact assessment (LCIA) methods to cover various impact areas. Our analysis shows that for both organic and inorganic chemical production in industrial countries, energy‐related impacts often represent more than half and sometimes up to 80% of the total impacts, according to a range of LCIA methods. Resource use for material feedstock is also important, whereas direct emissions from chemical plants may make up only 5% to 10% of the total environmental impacts. Additionally, the energy‐related impacts of organic chemical production increase with the complexity of the chemicals. The results of this study offer important information for policy makers and sustainability experts in the chemical industry striving to reduce environmental impacts. We identify more sustainable energy production and use as an important option for improvements in the environmental profile of chemical production in industrial countries, especially for the production of advanced organic and fine chemicals.  相似文献   

7.
The implementation of global sustainability has gained worldwide attention in recent years. The Organization Environmental Footprint, which encompasses 14 impact categories, is a multicriteria measure of the environmental performance of goods and services provided by an organization from a life cycle perspective. In this article, the focus is on quantifying the Organization Environmental Footprint of a construction company in Spain. By applying an environmentally extended input‐output approach, its total footprint and impacts along the supply chain from two consecutive years were calculated. The results show that the environmental impacts from the second year of implementation were significantly higher than those from the first year. The impact category climate change was found to have experienced the greatest increase from one year to the other, with a 31% increase. This work provides an overview of 14 environmental impact categories of the company assessed, as well as recommendations for the implementation of this indicator in companies and public procurement. This approach could pave the way to shape organizations’ action plans and meet the European environmental challenges.  相似文献   

8.
The portfolio of impacts that are quantified in life cycle assessment (LCA) has grown to include rather different stressors than those that were the focus of early LCAs. Some of the newest life cycle impact assessment (LCIA) models are still in an early phase of development and have not yet been included in any LCA study. This is the case for sound emissions and noise impacts, which have been only recently modeled. Sound emissions are matter‐less, time dependent, and bound to the physical properties of waves. The way sound emissions and the relative noise impacts are modeled in LCA can show how new or existing matter‐less impacts can be addressed. In this study, we analyze, through the example of sound emissions, the specific features of a matter‐less impact that does not stem from the use of a kilogram of matter, nor is related to the emission of a kilogram of matter. We take as a case study the production of energy by means of wind turbines, contradicting the commonly held assumption that windmills have no emissions during use. We show how to account for sound emissions in the life cycle inventory phase of the life cycle of a wind turbine and then calculate the relative impacts using a noise LCIA model.  相似文献   

9.
Background, aim, and scope  As the sustainability improvement becomes an essential business task of industry, a number of companies are adopting IT-based environmental information systems (EIS). Life cycle assessment (LCA), a tool to improve environmental friendliness of a product, can also be systemized as a part of the EIS. This paper presents a case of an environmental information system which is integrated with online LCA tool to produce sets of hybrid life cycle inventory and examine its usefulness in the field application of the environmental management. Main features  Samsung SDI Ltd., the producer of display panels, has launched an EIS called Sustainability Management Initiative System (SMIS). The system comprised modules of functions such as environmental management system (EMS), green procurement (GP), customer relation (e-VOC), eco-design, and LCA. The LCA module adopted the hybrid LCA methodology in the sense that it combines process LCA for the site processes and input–output (IO) LCA for upstream processes to produce cradle-to-gate LCA results. LCA results from the module are compared with results of other LCA studies made by the application of different methodologies. The advantages and application of the LCA system are also discussed in light of the electronics industry. Results and discussion  LCA can play a vital role in sustainability management by finding environmental burden of products in their life cycle. It is especially true in the case of the electronics industry, since the electronic products have some critical public concerns in the use and end-of-life phase. SMIS shows a method for hybrid LCA through online data communication with EMS and GP module. The integration of IT-based hybrid LCA in environmental information system was set to begin in January 2006. The advantage of the comparing and regular monitoring of the LCA value is that it improves the system completeness and increases the reliability of LCA. By comparing the hybrid LCA and process LCA in the cradle-to-gate stage, the gap between both methods of the 42-in. standard definition plasma display panel (PDP) ranges from 1% (acidification impact category) to −282% (abiotic resource depletion impact category), with an average gap of 68.63%. The gaps of the impact categories of acidification (AP), eutrophication (EP), and global warming (GWP) are relatively low (less than 10%). In the result of the comparative analysis, the strength of correlation of three impact categories (AP, EP, GWP) shows that it is reliable to use the hybrid LCA when assessing the environmental impacts of the PDP module. Hybrid LCA has its own risk on data accuracy. However, the risk is affordable when it comes to the comparative LCA among different models of similar product line of a company. In the results of 2 years of monitoring of 42-in. Standard definition PDP, the hybrid LCA score has been decreased by 30%. The system also efficiently shortens man-days for LCA study per product. This fact can facilitate the eco-design of the products and can give quick response to the customer's inquiry on the product's eco-profile. Even though there is the necessity for improvement of process data currently available, the hybrid LCA provides insight into the assessments of the eco-efficiency of the manufacturing process and the environmental impacts of a product. Conclusions and recommendations  As the environmental concerns of the industries increase, the need for environmental data management also increases. LCA shall be a core part of the environmental information system by which the environmental performances of products can be controlled. Hybrid type of LCA is effective in controlling the usual eco-profile of the products in a company. For an industry, in particular electronics, which imports a broad band of raw material and parts, hybrid LCA is more practicable than the classic LCA. Continuous efforts are needed to align input data and keep conformity, which reduces data uncertainty of the system.  相似文献   

10.
Life cycle assessment (LCA) and environmentally extended input–output analyses (EEIOA) are two techniques commonly used to assess environmental impacts of an activity/product. Their strengths and weaknesses are complementary, and they are thus regularly combined to obtain hybrid LCAs. A number of approaches in hybrid LCA exist, which leads to different results. One of the differences is the method used to ensure that mixed LCA and EEIOA data do not overlap, which is referred to as correction for double counting. This aspect of hybrid LCA is often ignored in reports of hybrid assessments and no comprehensive study has been carried out on it. This article strives to list, compare, and analyze the different existing methods for the correction of double counting. We first harmonize the definitions of the existing correction methods and express them in a common notation, before introducing a streamlined variant. We then compare their respective assumptions and limitations. We discuss the loss of specific information regarding the studied activity/product and the loss of coherent financial representation caused by some of the correction methods. This analysis clarifies which techniques are most applicable to different tasks, from hybridizing individual LCA processes to integrating complete databases. We finally conclude by giving recommendations for future hybrid analyses.  相似文献   

11.
Growing concerns about energy security and climate change have prompted interest in Australia and worldwide to look for alternatives of fossil fuels. Among the renewable fuel sources, biofuels are one such alternative that have received unprecedented attention in the past decade. Cellulosic biofuels, derived from agricultural and wood biomass, could potentially increase Australia's oil self‐sufficiency. In this study, we carry out a hybrid life‐cycle assessment (LCA) of a future cellulose‐refining industry located in the Green Triangle region of South Australia. We assess both the upstream and downstream refining stages, and consider as well the life‐cycle effects occurring in conventional industries displaced by the proposed biofuel supply chains. We improve on conventional LCA method by utilising multi‐region input–output (IO) analysis that allows a comprehensive appraisal of the industry's supply chains. Using IO‐based hybrid LCA, we evaluate the social, economic and environmental impacts of lignocellulosic biofuel production. In particular, we evaluate the employment, economic stimulus, energy consumption and greenhouse gas impacts of the biofuel supply chain and also quantify the loss in economic activity and employment in the paper, pulp and paperboard industry resulting from the diversion of forestry biomass to biofuel production. Our results reveal that the loss in economic activity and employment will only account for 10% of the new jobs and additional stimulus generated in the economy. Lignocellulosic biofuel production will create significant new jobs and enhance productivity and economic growth by initiating the growth of new industries in the economy. The energy return on investment for cellulosic biofuel production lies between 2.7 and 5.2, depending on the type of forestry feedstock and the travel distance between the feedstock industry and the cellulose refinery. Furthermore, the biofuel industry will be a net carbon sequester.  相似文献   

12.
生命周期管理研究述评   总被引:5,自引:2,他引:3  
黄和平 《生态学报》2017,37(13):4587-4598
生命周期管理起源于生命周期思想,它是生命周期思想在实践中的具体应用,是面向可持续生产和消费,对产品、工艺和服务的全生命周期环境影响进行的综合管理,是解决复合生态系统中结构无序、效率不高和代谢冗余的有效途径,是基于生命周期评价原则与框架的一种环境管理手段或环境管理体系。全面回顾了生命周期管理的起源与内涵,阐述了生命周期管理与生命周期评价的区别与联系,梳理了生命周期管理与环境管理体系的关系。对生命周期管理在产品、企业、行业及城市等层次上的具体应用进行了总结与述评,并对其今后需深入研究的方向进行了展望。  相似文献   

13.
Integration of working environment into life cycle assessment framework   总被引:1,自引:0,他引:1  
Background, aim, and scope  Life cycle assessment (LCA) has been considered one of the tools for supporting decision-making related to the environmental aspects of a product system. It has mainly been used to evaluate the potential impacts associated with relevant inputs and outputs to/from a given product system throughout its life cycle. In most cases, LCA has not considered the impacts on the internal environment, i.e. working environment, but only the external environment. Recently, it has been recognized that the consideration of the impacts on the working environment as well as on the external environment, is needed in order to assess all aspects of the effects on human well-being. To this end, this study has developed a total environmental assessment methodology which enables one to integrate both the working environment and the external environment into the conventional LCA framework. Materials and methods  In general, the characteristics of the impacts on the external environment are different from those on the working environment. In order to properly integrate the two types into total environmental impacts, it is necessary to define identical system boundaries and select impact category indicators at the same level. In order to define the identical system boundary and reduce the uncertainties of LCI results, the hybrid IOA (input–output analysis) method, which integrates the advantages between conventional LCI method and IOA method, is introduced to collect input and output data throughout the entire life cycle of a given product. For the impact category indicators at the endpoint level, LWD (Lost Work Days) is employed to evaluate the damage to human health and safety in the working environment, while DALY (disability-adjusted life years) and PAF (Potentially Affected Fraction) are selected to evaluate the damage to human health and eco-system quality in the external environment, respectively. Results and discussion  The environmental intervention factors (EIFs) are developed not only for the data categories of resource use, air emissions, and water emissions, but also for occupational health and safety to complete a life cycle inventory table. For the development of the EIFs on occupational health and safety, in particular, the number of workers affected by i hazardous items and the number of workers affected at the i magnitude of disability are collected. For the characterization of the impact categories in the working environment, such as occupational health and safety, the exposure factors, effect factors, and damage factors are developed to calculate the LWD of each category. For normalization, the normalization reference is defined as the total LWD divided by the total number of workers. A case study is presented to illustrate the applicability of the proposed method for the integration of the working environment into the conventional LCA framework. Conclusions  This study is intended to develop a methodology which enables one to integrate the working environmental module into the conventional LCA framework. The hybrid IOA method is utilized to extend the system boundary of both the working environment module and the external environment module to the entire life cycle of a product system. In this study, characterization models and category indicators for occupational health and safety are proposed, respectively, while the methodology of Eco-indicator 99 is used for the external environment. In addition to aid further understanding on the results of this method, this study introduced and developed the category indicators such as DALY, and LWD, which can be expressed as a function of time, and introduced PAF, which can be expressed as a probability. Recommendations and perspectives  The consideration of the impacts not only on the external environment, but also on the working environment, is very important, because the best solution for the external environment may not necessarily be the best solution for the working environment. It is expected that the integration of occupational health and safety matters into the conventional LCA framework can bring many benefits to individuals, as well as industrial companies, by avoiding duplicated measures and false optimization.  相似文献   

14.
We present a life cycle assessment (LCA) of the operation of Casey Station in Antarctica. The LCA included quantifying material and energy flows, modeling of elementary flows, and subsequent environmental impacts. Environmental impacts were dominated by emissions associated with freight operations and electricity cogeneration. A participatory design approach was used to identify options to reduce environmental impacts, which included improving freight efficiency, reducing the temperature setpoint of the living quarters, and installing alternative energy systems. These options were then assessed using LCA, and have the potential to reduce environmental impacts by between 2% and 19.1%, depending on the environmental indicator.  相似文献   

15.
Life cycle assessment (LCA) has enabled consideration of environmental impacts beyond the narrow boundary of traditional engineering methods. This reduces the chance of shifting impacts outside the system boundary. However, sustainability also requires that supporting ecosystems are not adversely affected and remain capable of providing goods and services for supporting human activities. Conventional LCA does not account for this role of nature, and its metrics are best for comparing alternatives. These relative metrics do not provide information about absolute environmental sustainability, which requires comparison between the demand and supply of ecosystem services (ES). Techno‐ecological synergy (TES) is a framework to account for ES, and has been demonstrated by application to systems such as buildings and manufacturing activities that have narrow system boundaries. This article develops an approach for techno‐ecological synergy in life cycle assessment (TES‐LCA) by expanding the steps in conventional LCA to incorporate the demand and supply of ecosystem goods and services at multiple spatial scales. This enables calculation of absolute environmental sustainability metrics, and helps identify opportunities for improving a life cycle not just by reducing impacts, but also by restoring and protecting ecosystems. TES‐LCA of a biofuel life cycle demonstrates this approach by considering the ES of carbon sequestration, air quality regulation, and water provisioning. Results show that for the carbon sequestration ecosystem service, farming can be locally sustainable but unsustainable at the global or serviceshed scale. Air quality regulation is unsustainable at all scales, while water provisioning is sustainable at all scales for this study in the eastern part of the United States.  相似文献   

16.
Consequential life cycle assessment (CLCA) has emerged as a tool for estimating environmental impacts of changes in product systems that go beyond physical relationships accounted for in attributional LCA (ALCA). This study builds on recent efforts to use more complex economic models for policy‐based CLCA. A partial market equilibrium (PME) model, called the U.S. Forest Products Module (USFPM), is combined with LCA to analyze an energy demand scenario in which wood use increases 400 million cubic meters in the United States for ethanol production. Several types of indirect economic and environmental impacts are identified and estimated using USFPM‐LCA. A key finding is that if wood use for biofuels increases to high levels and mill residue is used for biofuels and replaced by natural gas for heat and power in forest products mills, then the increased greenhouse gas emissions from natural gas could offset reductions obtained by substituting biofuels for gasoline. Such high levels of biofuel demand, however, appear to have relatively low environmental impacts across related forest product sectors.  相似文献   

17.
Ecosystems are under increasing pressure from human activities, with land use and land‐use change at the forefront of the drivers that provoke global and regional biodiversity loss. The first step in addressing the challenge of how to reverse the negative outlook for the coming years starts with measuring environmental loss rates and assigning responsibilities. Pinpointing the global pressures on biodiversity is a task best addressed using holistic models such as Life Cycle Assessment (LCA). LCA is the leading method for calculating cradle‐to‐grave environmental impacts of products and services; it is actively promoted by many public policies, and integrated as part of environmental information systems within private companies. LCA already deals with the potential biodiversity impacts of land use, but there are significant obstacles to overcome before its models grasp the full reach of the phenomena involved. In this review, we discuss some pressing issues that need to be addressed. LCA mainly introduces biodiversity as an endpoint category modeled as a loss in species richness due to the conversion and use of land over time and space. The functional and population effects on biodiversity are mostly absent due to the emphasis on species accumulation with limited geographic and taxonomical reach. Current land‐use modeling activities that use biodiversity indicators tend to oversimplify the real dynamics and complexity of the interactions of species among each other and with their habitats. To identify the main areas for improvement, we systematically reviewed LCA studies on land use that had findings related to global change and conservation ecology. We provide suggestion as to how to address some of the issues raised. Our overall objective was to encourage companies to monitor and take concrete steps to address the impacts of land use on biodiversity on a broader geographical scale and along increasingly globalized supply chains.  相似文献   

18.
This article discusses how eco‐design management standards have been adopted and the environmental and economic results that have been obtained by the Spanish furniture manufacturers. This is precisely the industry sector in Spain where the dissemination of eco‐design standards has been most important. Using multiple case‐study methodology, the research has shown that, in three companies, more than 90% of the environmental impact of the companies’ products occurs within the manufacturing phase. Companies have implemented tools for life cycle assessment with eco‐indicators values that allow them to assess complex products and evaluate their significant environmental impacts at each stage. The environmental strategies of these companies are based on the continuous improvement of the internal processes and the review and monitoring of their activities. In this approach, the proper choice of materials and the environmental management of the supply chain are the main problems for companies. The outcomes achieved by the companies included some improvements, such as a greater control of product management and a reduction in operating costs, that have allowed them to obtain competitive advantages. Moreover, the adoption of standard management has enabled the companies to drive innovation of products, improve the image of companies and their products, significantly reduce the environmental impact of their products, and adapt to new, more demanding environmental laws and regulations.  相似文献   

19.
Background, Intention, Goal and Scope  The analytical laboratory is traditionally considered to be a service provider. This has resulted in laboratory environmental management being considered mostly from a pollution prevention and waste minimization perspective. There is a recognized need to view environmental performance of a laboratory service provider from a broader perspective. This broader perspective is inclusive of sampling, analysis and the potential for impacts to arise from the use of output information products. A generic methodology for the measurement and benchmarking of the overall environmental performance of an analytical laboratory and its outputs using the Laboratory Product Model (LPM) is described. Environmental performance indicators, relating to inputs and processing are proposed. Objectives  The project seeks to broaden the focus of environmental performance away from the individual analytical unit processes to a more encompassing ‘cradle-to-grave’ approach incorporating sample collection and results reporting and use. To support this approach, a functional unit of output for a laboratory has to be defined. Methods  A life cycle assessment approach, incorporating life cycle inventory considerations, is applied within the LPM conceptual framework. Results and Discussion  This approach facilitates a shift in thinking from laboratory service to the life cycle of laboratory product inputs and outputs. It enables LCA methodologies to be applied to environmental performance through the application of the LPM. The definition of a laboratory product output facilitates benchmarking and comparison of laboratories. Conclusions  The LPM approach assigns a critical role to the laboratory for the sustainability of the laboratory operations from sample collection, through analysis to the use of its product outputs. Recommendations and Outlook  The application of the LPM offers a top down approach for the evaluation of the environmental performance of an analytical laboratory. It is expected to provide a useful tool for assessing and benchmarking the environmental performance of analytical laboratories.  相似文献   

20.
After promoting environmental certification of companies in a chain perspective (Udo de Haes & De Snoo, 1996) now the agro-production chain is worked out as a case study. The role of the different links in the chain, such as agricultural producers, processing industry, wholesale companies and retailers is discussed. Also the role of consumers and authorities is described. For every company in the chain the advantages of a company based approach will be a better image and a guaranteed-sale and/or supply. In comparison with a product based approach (ecolabelling) the steering forces in the agro-production chain will be the retailers and not the consumers. Because consumers only get information at company level the approach is less dependent on consumers behaviour in the shop.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号