首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sex comb is a recently evolved male specific character confined to the Sophophoran group of Drosophila. Such innovations in phenotypes as Waddington proposed, are, outcome of “canalization” in developmental pathways that occur due to mutations creating “choice points” in genetic regulatory pathways. Our interest in the present study is to understand the shifts in genetic network, which has lead to the origin of sex comb from the basic bristle pattern that is seen in rest of the members of Drosophilidae. Here we have made a comparative analysis of expression of some of the key regulators of sex comb morphogenesis, between D. melanogaster and a group of selected species, which primitively lack sex comb. Sex combs reduced (Scr), dachshund (dac), and bric‐a‐brac (bab) gene expression were studied. We show that, primitive bristle pattern is marked by a strikingly down regulated expression of Sex combs reduced in the first tarsal segment of the prothoracic leg discs of male flies. Further a remarkable change with respect to Dachshund, an activator of sex combs reduced gene in the sex comb regulatory pathway, is seen. This is attributed to changes in DAC protein that might have taken place between the two groups of species. bric‐a‐brac does not reveal any significant expression modulation between the sex comb bearing and the primitive patterned species. Earlier works had shown that within the Sophophoran group, dynamic changes in SCR expression is responsible for the diversity seen in sex comb morphology, where as no such variation is witnessed with respect to DAC expression. Our findings have demonstrated that the scenario is different between the group primitively lacking sex comb and D. melanogaster wherein an obvious change in the protein has taken place. genesis 51:97–109, 2013, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

2.
Animal diversity is shaped by the origin and diversification of new morphological structures. Many examples of evolutionary innovations are provided by male-specific traits involved in mating and sexual selection. The origin of new sex-specific characters requires the evolution of new regulatory interactions between sex-determining genes and genes that control spatial patterning and cell differentiation. Here, we show that sex-specific regulation of the HOX gene Sex combs reduced (Scr) is associated with the origin and evolution of the Drosophila sex comb — a novel and rapidly diversifying male-specific organ. In species that primitively lack sex combs, Scr expression shows little spatial modulation, whereas in species that have sex combs, Scr is upregulated in the presumptive sex comb region and is frequently sexually dimorphic. Phylogenetic analysis shows that sex-specific regulation of Scr has been gained and lost multiple times in Drosophila evolution and correlates with convergent origin of similar sex comb morphologies in several independent lineages. Some of these transitions occurred on microevolutionary timescales, indicating that HOX gene expression can evolve with surprising ease. This is the first example of a sex-specific regulation of a HOX gene contributing to the development and evolution of a secondary sexual trait.  相似文献   

3.
On macroevolutionary time scales, the same genes can regulate the development of homologous structures through strikingly different cellular processes. Comparing the development of similar morphological traits in closely related species may help elucidate the evolutionary dissociation between pattern formation and morphogenesis. We address this question by focusing on the interspecific differences in sex comb development in Drosophilids. The sex comb is a recently evolved, male‐specific structure composed of modified bristles. Previous work in the obscura and melanogaster species groups (Old World Sophophora) has identified two distinct cellular mechanisms that give rise to nearly identical adult morphologies. Here, we describe sex comb development in a species from a more distantly related lineage, the genus Lordiphosa. Although the expression of key regulatory genes is largely conserved in both clades, the cell behaviors responsible for sex comb formation show major differences between Old World Sophophora and Lordiphosa. We suggest that the many‐to‐one mapping between development and adult phenotype increases the potential for evolutionary innovations.  相似文献   

4.
Male secondary sexual traits of animals are richly diversified in form and complexity, yet there are many species in which their precise function remains unknown. Within the genus Drosophila, species belonging to the melanogaster and obscura species groups have evolved a remarkable variety of sex combs, male‐limited secondary sexual traits located on the tarsi of both front legs. Information concerning sex comb function is minimal or absent, except for D. melanogaster, where previous studies indicate that the sex combs are used for grasping the female prior to copulation. These studies, however, do not unambiguously demonstrate comb function, because it has not been possible to ascribe observed behavioral outcomes of the various comb manipulations to changes in the combs per se. We used microscale laser surgery to manipulate comb size in D. melanogaster and D. bipectinata, and tested the hypothesis that the sex combs function as grasping devices in courtship, making them essential for copulation to ensue. Results of high‐resolution behavioral analysis in small observation arenas demonstrated that in both species in which sex combs were surgically eliminated, males were unable to grasp, mount or copulate. The combless foretarsi of these altered males slipped off the end (D. melanogaster) and sides (D. bipectinata) of the female abdomen when courting males attempted to grasp. In most cases, males whose sex combs were reduced but not completely removed exhibited similar copulation probabilities as surgical control males, a result we demonstrated in observation chambers as well as under more ecologically realistic conditions inside population cages where males and females interacted on the surface of fruit substrates. Thus, the sex combs in D. melanogaster and D. bipectinata are grasping devices, essential for mounting and copulation.  相似文献   

5.
SUMMARY Identification of the events responsible for rapid morphological variation during evolution can help understand how developmental processes are changed by genetic modifications and thus produce diverse body features and shapes. Sex combs, a sexually dimorphic structure, show considerable variation in morphology and numbers among males from related species of Sophophora , a subgenus of Drosophila . To address which evolutionary changes in developmental processes underlie this diversity, we first analyzed the genetic network that controls morphogenesis of a single sex comb in the model D. melanogaster . We show that it depends on positive and negative regulatory inputs from proximo-distal identity specifying genes, including dachshund, bric à brac , and sex combs distal . All contribute to spatial regulation of the Hox gene Sex combs reduced (Scr ), which is crucial for comb formation. We next analyzed the expression of these genes in sexually dimorphic species with different comb numbers. Only Scr shows considerable expression plasticity, which is correlated with comb number variation in these species. We suggest that differences in comb numbers reflect changes of Scr expression in tarsus primordia, and discuss how initial comb formation could have occurred in an ancestral Sophophora fly following regulatory modifications of developmental programs both parallel to and downstream of Scr .  相似文献   

6.
7.
A hypothesis on the evolutionary origin of the genetic pathway of sex determination in the nematode Caenorhabditis elegans is presented here. It is suggested that the pathway arose in steps, driven by frequency-dependent selection for the minority sex at each step, and involving the sequential acquisition of dominant negative, neomorphic genetic switches, each one reversing the action of the previous one. A central implication is that the genetic pathway evolved in reverse order from the final step in the hierarchy up to the first. The possible applicability of the model to the other well-characterized sex determination pathway, that of Drosophila melanogaster, and to sex determination in mammals, is discussed, along with some potential implications for pathway evolution in general. Finally, the specific molecular and population genetic questions that the model raises are described and some tests are proposed.  相似文献   

8.
The origin of new morphological structures requires the establishment of new genetic regulatory circuits to control their development, from initial specification to terminal differentiation. The upstream regulatory genes are usually the first to be identified, while the mechanisms that translate novel regulatory information into phenotypic diversity often remain obscure. In particular, elaborate sex-specific structures that have evolved in many animal lineages are inevitably controlled by sex-determining genes, but the genetic basis of sexually dimorphic cell differentiation is rarely understood. In this report, we examine the role of dachshund (dac), a gene with a deeply conserved function in sensory organ and appendage development, in the sex comb, a recently evolved male-specific structure found in some Drosophila species. We show that dac acts during metamorphosis to restrict sex comb development to the appropriate leg region. Localized repression of dac by the sex determination pathway is necessary for male-specific morphogenesis of sex comb bristles. This pupal function of dac is separate from its earlier role in leg patterning, and Dac at this stage is not dependent on the pupal expression of Distalless (Dll), the main regulator of dac during the larval period. Dll acts in the epithelial cells surrounding the sex comb during pupal development to promote sex comb rotation, a complex cellular process driven by coordinated cell rearrangement. Our results show that genes with well-conserved developmental functions can be re-used at later stages in development to regulate more recently evolved traits. This mode of gene co-option may be an important driver of evolutionary innovations.  相似文献   

9.
Sexual selection can drive rapid evolutionary change in reproductive behaviour, morphology and physiology. This often leads to the evolution of sexual dimorphism, and continued exaggerated expression of dimorphic sexual characteristics, although a variety of other alternative selection scenarios exist. Here, we examined the evolutionary significance of a rapidly evolving, sexually dimorphic trait, sex comb tooth number, in two Drosophila species. The presence of the sex comb in both D. melanogaster and D. pseudoobscura is known to be positively related to mating success, although little is yet known about the sexually selected benefits of sex comb structure. In this study, we used experimental evolution to test the idea that enhancing or eliminating sexual selection would lead to variation in sex comb tooth number. However, the results showed no effect of either enforced monogamy or elevated promiscuity on this trait. We discuss several hypotheses to explain the lack of divergence, focussing on sexually antagonistic coevolution, stabilizing selection via species recognition and nonlinear selection. We discuss how these are important, but relatively ignored, alternatives in understanding the evolution of rapidly evolving sexually dimorphic traits.  相似文献   

10.
Male fitness is dependent on sexual traits that influence mate acquisition (precopulatory sexual selection) and paternity (post‐copulatory sexual selection), and although many studies have documented the form of selection in one or the other of these arenas, fewer have done it for both. Nonetheless, it appears that the dominant form of sexual selection is directional, although theoretically, populations should converge on peaks in the fitness surface, where selection is stabilizing. Many factors, however, can prevent populations from reaching adaptive peaks. Genetic constraints can be important if they prevent the development of highest fitness phenotypes, as can the direction of selection if it reverses across episodes of selection. In this study, we examine the evidence that these processes influence the evolution of the multivariate sex comb morphology of male Drosophila simulans. To do this, we conduct a quantitative genetic study together with a multivariate selection analysis to infer how the genetic architecture and selection interact. We find abundant genetic variance and covariance in elements of the sex comb. However, there was little evidence for directional selection in either arena. Significant nonlinear selection was detected prior to copulation when males were mated to nonvirgin females, and post‐copulation during sperm offence (again with males mated to nonvirgins). Thus, contrary to our predictions, the evolution of the D. simulans sex comb is limited neither by genetic constraints nor by antagonistic selection between pre‐ and post‐copulatory arenas, but nonlinear selection on the multivariate phenotype may prevent sex combs from evolving to reach some fitness maximizing optima.  相似文献   

11.
The Polycomb (Pc) group of genes are required for maintenance of cell determination in Drosophila melanogaster. At least 11 Pc group genes have been described and there may be up to 40; all are required for normal regulation of homeotic genes, but as a group, their phenotypes are rather diverse. It has been suggested that the products of Pc group genes might be members of a heteromeric complex that acts to regulate the chromatin structure of target loci. We examined the phenotypes of adult flies heterozygous for every pairwise combination of Pc group genes in an attempt to subdivide the Pc group functionally. The results support the idea that Additional sex combs (Asx), Pc, Polycomblike (Pcl), Posterior sex combs (Psc), Sex combs on midleg (Scm), and Sex combs extra (Sce) have similar functions in some imaginal tissues. We show genetic interactions among extra sex combs (esc) and Asx, Enhancer of Pc, Pcl, Enhancer of zeste E(z), and super sex combs and reassess the idea that most Pc group genes function independently of esc. Most duplications of Pc group genes neither exhibit anterior transformations nor suppress the extra sex comb phenotype of Pc group mutations, suggesting that not all Pc group genes behave as predicted by the mass-action model. Surprisingly, duplications of E(z) enhance homeotic phenotypes of esc mutants. Flies with increasing doses of esc + exhibit anterior transformations, but these are not enhanced by mutations in trithorax group genes. The results are discussed with respect to current models of Pc group function.  相似文献   

12.
Ahuja A  De Vito S  Singh RS 《Genetica》2011,139(4):505-510
Genetic architecture of variation underlying male sex comb bristle number, a rapidly evolving secondary sexual character of Drosophila, was examined. First, in order to test for condition dependence, diet was manipulated in a set of ten Drosophila melanogaster full-sib families. We confirmed heightened condition dependent expression of sex comb bristle number and its female homologue (distal transverse row bristles) as compared to non-sex sternopleural bristles. Significant genotype by environment effects were detected for the sex traits indicating a genetic basis for condition dependence. Next we measured sex comb bristle number and sternopleural bristle number, as well as residual mass, a commonly used condition index, in a set of thirty half-sib families. Sire effect was not significant for sex comb and sternopleural bristle number, and we detected a strong dominance and/or maternal effect or X chromosome effect for both traits. A strong sire effect was detected for condition and its heritability was the highest as compared to sex comb and sternopleural bristles. We discuss our results in light of the rapid response to divergent artificial selection for sex comb bristle number reported previously. The nature of genetic variation for male sex traits continues to be an important unresolved issue in evolutionary biology.  相似文献   

13.
The independent evolution of males and females is potentially constrained by both sexes inheriting the same alleles from their parents. This genetic constraint can limit the evolvability of complex traits; however, there are few studies of multivariate evolution that incorporate cross‐sex genetic covariances in their predictions. Drosophila wing‐shape has emerged as a model high‐dimensional phenotype; wing‐shape is highly evolvable in contemporary populations, and yet perplexingly stable across phylogenetic timescales. Here, we show that cross‐sex covariances in Drosophila melanogaster, given by the B ‐matrix, may considerably bias wing‐shape evolution. Using random skewers, we show that B would constrain the response to antagonistic selection by 90%, on average, but would double the response to concordant selection. Both cross‐sex within‐trait and cross‐sex cross‐trait covariances determined the predicted response to antagonistic selection, but only cross‐sex within‐trait covariances facilitated the predicted response to concordant selection. Similar patterns were observed in the direction of extant sexual dimorphism in D. melanogaster, and in directions of most and least dimorphic variation across the Drosophila phylogeny. Our results highlight the importance of considering between‐sex genetic covariances when making predictions about evolution on both macro‐ and microevolutionary timescales, and may provide one more explanatory piece in the puzzle of stasis.  相似文献   

14.
Binary communication systems that involve sex‐specific signaling and sex‐specific signal perception play a key role in sexual selection and in the evolution of sexually dimorphic traits. The driving forces and genetic changes underlying such traits can be investigated in systems where sex‐specific signaling and perception have emerged recently and show evidence of potential coevolution. A promising model is found in Drosophila prolongata, which exhibits a species‐specific increase in the number of male chemosensory bristles. We show that this transition coincides with recent evolutionary changes in cuticular hydrocarbon (CHC) profiles. Long‐chain CHCs that are sexually monomorphic in the closest relatives of D. prolongata (D. rhopaloa, D. carrolli, D. kurseongensis, and D. fuyamai) are strongly male‐biased in this species. We also identify an intraspecific female‐limited polymorphism, where some females have male‐like CHC profiles. Both the origin of sexually dimorphic CHC profiles and the female‐limited polymorphism in D. prolongata involve changes in the relative amounts of three mono‐alkene homologs, 9‐tricosene, 9‐pentacosene, and 9‐heptacosene, all of which share a common biosynthetic origin and point to a potentially simple genetic change underlying these traits. Our results suggest that pheromone synthesis may have coevolved with chemosensory perception and open the way for reconstructing the origin of sexual dimorphism in this communication system.  相似文献   

15.
Temperature is one of the most important climatic factors that may influence different traits (morphological, physiological or behavioral) in Drosophila. In this study, we examined the effects of two developmental temperatures (18°C and 25°C) on the size and the symmetry of sex combs (a male sexual trait) and their importance for male mating success in Drosophila melanogaster. However, the number of sex comb teeth (“size”) and its difference between right and left legs (“symmetry”) were relevant neither to male mating success nor to the growth temperatures.  相似文献   

16.
Sex‐dependent gene expression is likely an important genomic mechanism that allows sex‐specific adaptation to environmental changes. Among Drosophila species, sex‐biased genes display remarkably consistent evolutionary patterns; male‐biased genes evolve faster than unbiased genes in both coding sequence and expression level, suggesting sex differences in selection through time. However, comparatively little is known of the evolutionary process shaping sex‐biased expression within species. Latitudinal clines offer an opportunity to examine how changes in key ecological parameters also influence sex‐specific selection and the evolution of sex‐biased gene expression. We assayed male and female gene expression in Drosophila serrata along a latitudinal gradient in eastern Australia spanning most of its endemic distribution. Analysis of 11 631 genes across eight populations revealed strong sex differences in the frequency, mode and strength of divergence. Divergence was far stronger in males than females and while latitudinal clines were evident in both sexes, male divergence was often population specific, suggesting responses to localized selection pressures that do not covary predictably with latitude. While divergence was enriched for male‐biased genes, there was no overrepresentation of X‐linked genes in males. By contrast, X‐linked divergence was elevated in females, especially for female‐biased genes. Many genes that diverged in D. serrata have homologs also showing latitudinal divergence in Drosophila simulans and Drosophila melanogaster on other continents, likely indicating parallel adaptation in these distantly related species. Our results suggest that sex differences in selection play an important role in shaping the evolution of gene expression over macro‐ and micro‐ecological spatial scales.  相似文献   

17.
Gene turnover is a key source of adaptive variation. Yet most evolutionary studies have focused on gene duplication, dismissing gene deletion as a mechanism that simply eradicates redundancy. Here, I use genome‐scale sequence and multi‐tissue expression data from Drosophila melanogaster and Drosophila pseudoobscura to simultaneously assess the evolutionary outcomes of gene duplication and deletion in Drosophila. I find that gene duplication is more frequent than gene deletion in both species, indicating that it may play a more important role in Drosophila evolution. However, examination of several genic properties reveals that genes likely possess distinct functions after duplication that diverge further before deletion, suggesting that loss of redundancy cannot explain a majority of gene deletion events in Drosophila. Moreover, in addition to providing support for the well‐known “out of the testis” origin of young duplicate genes, analyses of gene expression profiles uncover a preferential bias against deletion of old ovary‐expressed genes. Therefore, I propose a novel “into the ovary” hypothesis for gene deletion in Drosophila, in which gene deletion may promote adaptation by salvaging genes that contribute to the evolution of female reproductive phenotypes. Under this combined “out of the testis, into the ovary” evolutionary model, gene duplication and deletion work in concert to generate and maintain a balanced repertoire of genes that promote sex‐specific adaptation in Drosophila.  相似文献   

18.
Summary Cilia bundled into combs or ctenes are an evolutionary innovation that allow comb jellies (animals in the phylum Ctenophora) to swim faster and grow to sizes at least two orders of magnitude larger than animals that propel themselves by beating single cilia. Ctenophore size, shape and swimming behaviors, however, may be constrained by the mechanisms that coordinate comb plate oscillations.Oscillations of comb plates onPleurobrachia bachei (a cydippid comb jelly), are coupled by fluid interactions between combs. Ctenes beat metachronously (in sequence) and the flows generated byP. bachei are retarded by the amount of time it takes a wave to pass down a group of ctenes. Our model predicts thatP. bachei size is constrained by the maximum thrust that can be produced by ctenes that beat in sequence and our flow visualization studies suggest that swimming via metachronous comb oscillations may constrainP. bachei to spherical shapes.In contrast, comb plate oscillations onMnemiopsis leidyi, a lobate comb jelly, are neurally coordinated and groups of ctenes beat in synchrony. As a result, fluid flows generated byM. leidyi are not retarded by the passage of metachronal waves down each comb row.M. leidyi reach sizes 15 times larger, but swim relatively slower (body lengths per second) thanP. bachei.We propose that propulsion via metachronous or synchronous comb plate oscillations has played an important role in the evolution of ctenophore shape and size and may have divided comb jellies into two evolutionary lineages.  相似文献   

19.
Understanding the physiological and genetic basis of growth and body size variation has wide‐ranging implications, from cancer and metabolic disease to the genetics of complex traits. We examined the evolution of body and wing size in high‐altitude Drosophila melanogaster from Ethiopia, flies with larger size than any previously known population. Specifically, we sought to identify life history characteristics and cellular mechanisms that may have facilitated size evolution. We found that the large‐bodied Ethiopian flies laid significantly fewer but larger eggs relative to lowland, smaller‐bodied Zambian flies. The highland flies were found to achieve larger size in a similar developmental period, potentially aided by a reproductive strategy favoring greater provisioning of fewer offspring. At the cellular level, cell proliferation was a strong contributor to wing size evolution, but both thorax and wing size increases involved important changes in cell size. Nuclear size measurements were consistent with elevated somatic ploidy as an important mechanism of body size evolution. We discuss the significance of these results for the genetic basis of evolutionary changes in body and wing size in Ethiopian D. melanogaster.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号