首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Studies of hatching asynchrony have rarely assessed the effect of parental investment strategies on the development of intra-brood hierarchies using indicators of nestling quality. The influence of hatching asynchrony and other variables related to parental investment on immunocompetence was evaluated measuring T-cell mediated immune response in broods of red-billed choughs ( Pyrrhocorax pyrrhocorax ), a large long-living passerine with a pronounced sexual size dimorphism. The results showed that T-cell mediated immune response depends on parental effects as shown by the differences between broods on hatching asynchrony. Male nestlings were both heavier and larger than female nestlings, but there was no effect of hatching order on these traits, nor on sex differences in immunocompetence. Differential investment strategy in relation to laying order did not favour older offspring or either of the sexes. Successful reproduction in this species might be so unpredictable and infrequent that strategies of parental investment in the brood could have evolved to attempt to maximize the survival of all nestlings by avoiding within-brood hierachies of size, body condition, and immunocompetence.  © 2008 The Linnean Society of London, Biological Journal of the Linnean Society , 2008, 94 , 675–684.  相似文献   

2.
Parents are predicted to trade offspring number and quality against the costs of reproduction. In altricial birds, parasites can mediate these costs because intensity of parasitism may increase with parental effort. In addition, parasites may mediate a trade-off between offspring number and quality because nestlings in large broods may have reduced anti-parasite immune defence. In this study, we experimentally analysed the effect of brood size on infestation by an ectoparasitic mite in nests of barn swallows (Hirundo rustica). Nests with an enlarged brood had larger prevalence and intensity of infestation than those with a reduced brood. Importantly, each nestling in enlarged broods was exposed to a larger number of mites, even when measured on a per nestling basis, than in reduced broods. Nestlings in enlarged broods had smaller body mass and T-cell-mediated immune response compared to reduced broods. T-cell-mediated immune response and feather growth were negatively correlated with per nestling intensity of infestation in enlarged but not in reduced broods. The results suggest that nestlings in enlarged broods have depressed immunity leading to larger per nestling mite infestation. Hence, exposure to parasites of offspring and parents increases with brood size, and parasitism can thus mediate trade-offs between reproduction and number and quality of the progeny in the barn swallow.  相似文献   

3.
Life history theory predicts a trade-off between number and quality of offspring. Reduced quality with increasing brood size may arise from a decrease in body condition or in immunocompetence that would be important in fighting off virulent parasites by immunologically naive offspring. We tested the effect of rearing conditions on immune function of nestling great tits (Parus major) by reducing or increasing broods by two hatchlings. In the middle of the nestling period (on day 8), nestlings from enlarged broods developed lower T cell responses [as measured from the cutaneous swelling reaction to injection with phytohaemagglutinin (PHA)] and tended to have lower total leukocyte and lymphocyte concentrations in their peripheral blood than nestlings from reduced broods. Brood size manipulation affected the PHA response of nestlings most strongly in small clutches, suggesting that nestling immune function was dependent on their parents’ condition, as estimated by original clutch size. Intra-brood differences in nestling mortality were unrelated to immune parameters, but nestlings in broods without mortality had a stronger PHA response, higher concentration of lymphocytes and higher body mass on day 15 than nestlings in broods with mortality. These results support the prediction that the immune function of altricial birds is affected by rearing conditions, and that growth and immune parameters are related to inter-brood differences in nestling survival. Received: 1 February 1999 / Accepted: 19. July 1999  相似文献   

4.
In many bird species, eggs in a brood hatch within days of each other, leading to a size asymmetry detrimental to younger siblings. Hatching asynchrony is often thought of as an adaptive strategy, and the most widely studied hypothesis in relation to this is the ‘brood reduction hypothesis’. This hypothesis states that when food resources are unpredictable, hatching asynchrony will allow the adjustment of the brood size maximizing fledging success and benefitting parents. The Magellanic penguin Spheniscus magellanicus is an appropriate species to test this hypothesis because it has a 2‐egg clutch that hatches over a 2‐d interval with a broad range of variation (–1 to 4 d), it shows facultative brood reduction, and food abundance between breeding seasons is variable. We performed a manipulative study at Isla Quiroga, Argentina, during three breeding seasons (2010–2012) by forcing broods to hatch synchronously (0 d) or asynchronously (2 or 4 d). Years were categorized based on estimated food abundance. Our study provided mixed results because in the low estimated food abundance year asynchronous broods did not have higher nestling survival than synchronous broods, and the second‐hatchling in asynchronous broods did not die more often than those in synchronous broods. On the other hand, younger siblings of 4‐d asynchronous broods starved earlier than those of synchronous broods, and 2‐d asynchronous broods fledged heavier young than synchronous broods. Asynchronous hatching would seem to benefit reproduction in this species, not with respect to survival, but in terms of the advantages it can accord to nestlings and, in terms of lower costs, for parents raising nestlings.  相似文献   

5.
Growth is a fundamental life history trait in all organisms and is closely related to individual fitness. In altricial birds, growth of many traits is restricted to the short period between hatching and fledging and strongly depends on the amount of food that parents deliver and the extent of hatching asynchrony. However, empirical studies of energy allocation to growth of different body size traits as a function of hatching asynchrony are scarce. We studied growth and mortality of Eurasian Hoopoe Upupa epops, a species with a long breeding season and high brood size variance, whose nestlings show pronounced hatching asynchrony, in order to test how hatching asynchrony affects different growth traits in the context of territory quality, season and brood size. The growth of five body traits (body mass, and lengths of tarsus, third primary, bill and longest crest feather) was investigated to understand how it was affected by brood size, hatching date and order, and territory quality. In total, 241 nestlings from 39 nests were measured every 4 days in 2014 in south‐western Switzerland. Brood size, hatching date and hatching order had the strongest influence on growth trajectories, although tarsus growth was only marginally affected by these variables. Nestlings that hatched earlier than their siblings were heavier and had longer third primaries, bills and crest feathers compared with later‐hatched siblings. In territories of high quality, hatching order differences disappeared for body mass growth, but persisted for lengths of third primary, bill and crest feathers. Brood size was inversely associated with third primary, bill and crest feather lengths, but positively associated with body mass. Nestling mortality was higher in later‐hatched nestlings and in broods that were raised in territories of lower quality. Our study shows that in nestlings, energy was allocated differentially between body traits and this allocation interacted with hatching order and territory quality. Rapid mass gain by nestlings was prioritized in order to increase competitive ability. Our results provide support for the brood reduction hypothesis as an explanation of hatching asynchrony in Hoopoes.  相似文献   

6.
Parent–offspring conflict over the supply of parental care results in offspring attempting to exert control using begging behaviours and parents attempting to exert control by manipulating brood sizes and hatching patterns. The peak load reduction hypothesis proposes that parents can exert control via hatching asynchrony, as the level of competition amongst siblings is determined by their age differences and not by their growth rates. Theoretically, this benefits the parents by reducing both the peak load of the offspring's demand and their overall demand for food and benefits the offspring by reducing the amplification of their competition. However, the peak load reduction hypothesis has only received mixed support. Here, we describe an experiment where we manipulated the hatching patterns of domesticated zebra finch Taeniopygia guttata broods and quantified patterns of nestling begging and parental feeding effort. There was no difference in the begging intensity of nestlings raised in asynchronous or experimentally synchronous broods, yet parental feeding effort was lower when provisioning asynchronous broods and particularly so when levels of nestling begging were low. Further, both parents acted in unison, as there was no evidence of parentally biased favouritism in relation to hatching pattern. Therefore, our study provided empirical support for the prediction that hatching asynchrony reduces the feeding effort of parents, thereby providing empirical support for the peak load reduction hypothesis.  相似文献   

7.
Maternal and environmental effects can profoundly influence offspring phenotypes, independent of genetic effects. Within avian broods, both the asymmetric post‐hatching environment created by hatching asynchrony and the differential maternal investment through the laying sequence have important consequences for individual nestlings in terms of the allocation of resources to body structures with different contributions to fitness. The purpose of this study was to evaluate the relative importance of post‐hatching environmental and maternal effects in generating variation in offspring phenotypes. First, an observational study showed that within blue tit, Cyanistes caeruleus, broods, late‐hatched nestlings allocated resources to tarsus development, maintained mass gain and head‐bill growth and directed resources away from the development of fourth primary feathers. Second, a hatching order manipulation experiment resulted in nestlings from first‐laid eggs hatching last, thereby allowing comparison with both late and early‐hatched nestlings. Experimental nestlings had growth patterns which were closer to late‐hatched nestlings, suggesting that within‐brood growth patterns are determined by post‐hatching environmental effects. Therefore, we conclude that post‐hatching environmental effects play an important role in generating variation in offspring phenotypes.  相似文献   

8.
Is hatching asynchrony beneficial for the brood?   总被引:1,自引:0,他引:1  
Many hypotheses have been proposed to explain why female birdsstart to incubate before clutch completion (IBCC). Some of thosesuggest that the resulting hatching asynchrony (HA) is adaptivebecause it increases the size hierarchy among offspring andin turn reduces nestling competition and energy demands duringthe peak feeding period. Others argue that IBCC is a good strategyin unpredictable environments. When food conditions deteriorate,the large size hierarchy quickly results in the death of thelast hatched nestlings, allowing the remaining ones to surviveand fledge in better condition. In comparison, under favorableconditions, all nestlings can fledge independent of hatchingorder. To test these hypotheses, we performed a brood size manipulationexperiment (as a simulation of good and bad years) in collaredflycatchers Ficedula albicollis and examined the effect of sizehierarchy on offspring and brood performance. We found thatchicks with an initial size disadvantage experienced reducedbody mass growth and had shorter feathers at fledging in bothreduced and enlarged broods. In enlarged broods, they also fledgedwith a smaller skeletal size. Although broods on average orparents could possibly still benefit from HA when food is scarce,this was not seen in the current study. Parental survival wasnot related to the size hierarchy in the broods, and the averagebody mass growth of the nestlings was slower in broods witha high initial size variance. We therefore conclude that HAand the resulting size hierarchy are probably detrimental forthe growth of nestlings in both good and bad years, at leastin species where nestling mortality does not occur early inlife.  相似文献   

9.
The Australian zebra finch, Taeniopygia guttata, is a widely used model organism, yet few studies have compared domesticated and wild birds with the aim of examining its relevance as an evolutionary model species. Domestic and wild broods hatch over approximately 4 and 2 days, respectively, which is important given that nestlings can fledge after as little as 12 days, although 16–18 days is common. We aimed to evaluate the extent to which the greater hatching asynchrony in domestic stock may effect reproductive success through greater variance in size hierarchies, variance in within‐brood growth rates, and partial brood mortality. Therefore, by simultaneously controlling brood sizes and experimentally manipulating hatching intervals in both domesticated and wild birds, we investigated the consequences of hatching intervals for fledging success and nestling growth patterns, as well as trade‐offs. Fledging success was similarly high in domestic and wild broods of either hatching pattern. Nonetheless, between‐brood analyses revealed that domestic nestlings had significantly higher masses, larger skeletal characters, and longer wings than their wild counterparts, although wild nestlings had comparable wing lengths at the pre‐fledging stage. Moreover, within‐brood analyses revealed only negligible differences between domestic and wild nestlings, and larger effects of hatching order and hatching pattern. Therefore, despite significant differences in the hatching intervals, and the ultimate size achieved by nestlings, the domestication process does not appear to have significantly altered nestling growth trade‐offs. The present study provides reassuring evidence that studies involving domesticated zebra finches, or other domesticated model organisms, may provide reasonable adaptive explanations in behavioural and evolutionary ecology. © 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2010, 100 , 763–773.  相似文献   

10.
Hatching asynchrony can have profound short‐term consequences for offspring, although the long‐term consequences are less well understood. The purpose of this study was to examine the long‐term consequences of hatching asynchrony for offspring fitness in birds. Specifically, we aimed to test the hypothesis that hatching asynchrony increases the sexual attractiveness and fecundity, respectively, of early‐hatched male and female zebra finch, Taeniopygia guttata (Vieillot, 1817) offspring. Mate‐choice trials comparing male nestlings with the same parents, but that were reared in asynchronous or experimentally synchronous broods, revealed no female preference in relation to hatching regime. We did however find strong evidence that, as adults, late‐hatched males were more attractive to females than siblings that had hatched earlier. Meanwhile, we found a weak trend towards early‐hatched females depositing more carotenoids and retinol in the egg yolk than late‐hatched or synchronously hatched females, although there were no differences in terms of clutch characteristics or the deposition of α‐tocopherol or γ‐tocopherol in the egg yolk. Therefore, we found that the beneficial long‐term consequences of hatching asynchrony were sex specific, being accrued by late‐hatched male nestlings and by early‐hatched female nestlings. Consequently, we conclude that the long‐term consequences of hatching asynchrony are more complex than previously realised. © 2012 The Linnean Society of London, Biological Journal of the Linnean Society, 2012, 106 , 430–438.  相似文献   

11.
Intraclutch egg size variation may non‐adaptively result from nutritional/energetic constraints acting on laying females or may reflect adaptive differential investment in offspring in relation to laying/hatching order. This variation may contribute to size hierarchies among siblings already established due to hatching asynchrony, and resultant competitive asymmetries often lead to starvation of the weakest nestling within a brood. The costs in terms of chick mortality can be high. However, the extent to which this mortality is egg size‐mediated remains unclear, especially in relation to hatching asynchrony which may operate concomitantly. I assessed effects of egg size and hatching asynchrony on nestling development and survival of Herring Gulls (Larus argentatus), where the smaller size and later hatching of c‐eggs may represent a brood‐reduction strategy. To analyze variation in egg size, I recorded the laying order and laying date of 870 eggs in 290 three‐egg clutches over a 3‐yr period (2010–2012). I measured hatchlings and monitored growth and survival of 130 chicks from enclosed nests in 2011 and 2012. The negative effect of laying date (β = ?0.18 ± SE 0.06, P = 0.002) on c‐egg size possibly reflected the fact that late breeders were either low quality or inexperienced females. The mass, size, and condition of hatchling Herring Gulls were positively related to egg size (all P < 0.0001). C‐chicks suffered from increased mortality risk during the first 12 d, identified as the brood‐reduction period in my study population. Although intraclutch variation in egg size was not directly related to patterns of chick mortality, I found that smaller relative egg size interactively increased differences in relative body condition of nestlings, primarily brought about by the degree of hatching asynchrony during this brood‐reduction period. Thus, the value of relatively small c‐eggs in Herring Gulls may lie in reinforcing brood reduction through effects on nestling body condition. A reproductive strategy Herring Gulls might have adopted to maintain a three‐egg clutch, but that also enables them to adjust the number of chicks they rear relative to the prevailing environmental conditions and to their own condition during the nestling stage.  相似文献   

12.
Using an individual-based simulation model we study how different mechanisms of food division among multiple offspring influence nestling number and quality, as well as parental effort. We consider the combination of different scenarios of food availability (feeding conditions), hatching asynchrony and food division. If parents have full control on how to divide food among offspring, asynchronous broods have higher breeding performance than synchronous ones in a wide range of feeding conditions, giving theoretical support to empirically proved benefits of hatching asynchrony. If parents accept the outcome of sibling competition there is a threshold in feeding conditions below which asynchronous broods produced more fledglings and the reverse was true above the threshold. Interestingly, parents relying on the outcome of nestling competition do not necessarily differ in breeding performance from those which have full control over food allocation. Our study combines hatching asynchrony, provisioning behaviour of parents, jostling behaviour of nestlings and feeding conditions as a network of interacting processes of enormous interest to fully understand the parent–offspring conflict.  相似文献   

13.
Hatching asynchrony is the consequence of birds initiating incubation before clutch completion. It has been suggested that variation in hatching asynchrony in owls is extensive, and therefore they should be excellent objects to study the effects of spatio-temporal variation in food abundance on this phenomenon. We examined how abundance and predictability of food affected hatching asynchrony in Tengmalm's owl Aegolius funereus (Linnaeus), which mainly feeds on voles which fluctuate in 3- to 4-year cycles in northern Europe. Hatching span averaged 6-7 days (range 0-13 days) and increased with clutch size. Food supply did not directly influence levels of hatching asynchrony but it influenced indirectly via marked among-year changes in clutch size. During the decrease phase of the vole cycle the proportion of hatchlings producing fledglings decreased with asynchrony, suggesting that chick mortality was most common among asynchronous broods when food became scarce. This finding is consistent with Lack's brood reduction hypothesis, i.e. that if food becomes scarce during the nestling period the youngest nestlings would die first without endangering the survival of the whole brood.  相似文献   

14.
Several hypotheses have been proposed to explain the adaptiveness of hatching asynchrony for the parents, but delayed hatching is generally detrimental for the late hatched young. These offspring often experience competitive disadvantage and delayed development. If hatching asynchrony has a reason other than producing competitive differences among offspring, it would be advantageous, not only for the offspring but even for the parents, to compensate for its detrimental effects. In some species, increasing investment into later laid eggs has been reported and discussed as a compensation mechanism, but its effect on nestling growth and fledging size has not been examined in details. In this study we investigated nestling growth and size at fledging in terms of body mass and length of primaries in relation to the accurate laying and hatching order in collared flycatcher Ficedula albicollis broods. We found that females laid larger eggs at the end of the laying sequence, and this helped to decrease the disadvantages for the last offspring. The last offspring had lower body mass growth rate and fledged with shorter feathers, but in both cases the larger the last egg was, the smaller the lag of the offspring was. We conclude, that even if females were not able to fully compensate for the detrimental effects of hatching asynchrony, larger eggs may improve the survival prospects of late hatched nestlings.  相似文献   

15.
Individual offspring within a brood may receive different amounts of provisioning from the male and female parents. Some hypotheses suggest that this bias is the result of an active and adaptive choice by parents. An alternative hypothesis is that feeding biases arise as a result of a constraint of fitting large prey items into small gapes. In an experiment with pied flycatchers, Ficedula hypoleuca , we tested for sex-biased allocation to junior nestlings in asynchronous broods and whether this could be explained by active parental choice or by passive allocation according to prey size and gape size. In both control broods and broods with experimentally increased degree of asynchrony, prey types did not differ between parents but females brought smaller prey than males at younger but not older nestling stages. At younger but not older nestling stages, the majority of feeds to junior nestlings were from females, and the smaller nestlings consumed smaller prey than older siblings. However, there was no evidence of active preference of small nestlings by females as parents did not differ in the tendency to bypass a begging senior nestling in order to feed a junior nestling. Provisioning rates by females were lower than those by males when nestlings were young and we suggest that foraging time constraints caused by the need to brood offspring result in females bringing smaller prey than males. In turn, the larger prey brought by males was more often transferred to larger offspring after the smaller ones failed to swallow it. In such cases, 'preferential' feeding of small nestlings by females may simply be a passive side effect of foraging constraints and gape-size limitations.  相似文献   

16.
In some birds, feather ornaments are expressed in nestlings well before sexual maturation, possibly in response to parental favouritism towards high‐quality offspring. In species with synchronous hatching, in which nestling ornaments may vary more among than within broods, parents may use this information to adjust their parental allocation to the current brood accordingly. We tested this hypothesis in the rock sparrow, in which a sexually selected yellow feather ornament is also expressed in nestlings. We experimentally enlarged nestlings’ breast patch in a group of broods and sham‐manipulated another group of control broods. Nestlings with enlarged ornament were fed more frequently and defended more actively from a dummy predator than their control counterparts. Mothers from the enlarged group were more likely to lay a second clutch and showed a reduced survival to the next breeding season. These results provide one of the first evidences of differential parental allocation among different broods based directly on nestlings’ ornamentation, and the first, to our knowledge, to show a reduction in maternal survival.  相似文献   

17.
It is common in birds that the sizes of nestlings vary greatly when multiple young are produced in one nest. However, the methods used by parents to establish size hierarchy among nestlings and their effect on parental provisioning pattern may differ between species. In the Azure‐winged Magpie Cyanopica cyanus, we explored how and why parents controlled the sizes of nestlings. Asynchronous hatching was the main cause of size hierarchy within the brood, although the laying of larger eggs later in the laying sequence reduced this effect. Parents with asynchronous broods produced more eggs and fledged more nestlings than those with synchronous broods but their brood provisioning rates, food delivery per feeding bout and feeding efficiency did not differ. We performed a cross‐fostering experiment to synchronize some asynchronous broods. Provisioning rates of asynchronous broods were lower than those of synchronized broods, but the daily growth rates and fledging body mass of their nestlings were not different. Our findings indicate that parents of asynchronous broods can achieve higher reproductive success than those of synchronous broods based on the same parental care, and the same reproductive success as those of synchronized broods based on less parental care. It appears that parent birds can better trade off reproductive success and parental care by establishing a size hierarchy among nestlings.  相似文献   

18.
Distribution of food to early and late hatched nestlings was studied in asynchronously hatched broods of the great tit Parus major, the blackbird Turdus merula, and the fieldfare T. pilaris. Food distribution is related to the locomotory and begging behaviour and positions in the nest of these nestlings. Late hatched (small) nestlings were found to beg more often per feed than bigger nestlings and move more towards favoured positions in the nest to counteract selective feeding of bigger young. The functional significance of these differences in the behaviour of early and late hatched nestlings are discussed. It is argued that they are adaptive by 1) ensuring that each nestling survives when food supplies are ample, and 2) by mediating an optimal brood reduction when food is insufficient to raise the entire brood. The roles of asynchronous hatching, and selective feeding which follows from differential behaviour of early and late hatched young are discussed in relation to food conditions during the breeding season.  相似文献   

19.
Parents are expected to invest more in young that provide the greatest fitness returns. The cues that parents use to allocate resources between their offspring have received much recent attention. In birds, parents may use begging intensity, position in the nest or nestling size as cues to provision the most competitive young or those most likely to survive. It may also benefit parents to invest in young differentially by sex or relatedness if the fitness returns of sons and daughters differ or broods are sired by multiple males. We examined the allocation of food to tree swallow, Tachycineta bicolor, nestlings in relation to their begging behaviour, size, sex and paternity. Provisioning by parents was not related to nestling size, sex or paternity. The begging behaviour of nestlings did not differ with respect to sex or paternity. Both parents were more likely to feed nestlings that begged first or were closer to the nest entrance, suggesting that parents allocate food resources in response to cues that nestlings control. As a consequence, brood reduction was facilitated by biased provisioning within the brood in addition to the nestling size hierarchies created by hatching asynchrony. Copyright 2003 Published by Elsevier Science Ltd on behalf of The Association for the Study of Animal Behaviour.   相似文献   

20.
The two main trade-offs considered determining reproductive patterns in iteroparous organisms are the one between current and future reproduction, and the one between the number and quality of offspring. Recently, it has been suggested that these trade-offs may be mediated by stress-induced reduction in immunocompetence. To test the hypothesis that stress reduces immune function, we investigated the effects of brood size manipulation on stress hormone levels, leukocyte profiles and immune responses against challenge with novel antigens in nestling and parent male pied flycatchers ( Ficedula hypoleuca). In male parents, heterophil (H) and lymphocyte (L) numbers, as well as H/L ratio increased with experimentally enlarged brood size, and corticosterone levels tended to do so, indicating that high parental work load altered their stress level and physiological state. Despite this, we found no effects on humoral immune responsiveness, measured as antibody production against diphtheria-tetanus vaccine. In nestlings, heterophil numbers and H/L ratio increased in enlarged broods, whereas T-cell-mediated immune responsiveness, measured against phytohemagglutinin (PHA), decreased in enlarged broods. The results support the view that growth-stress-induced immunosuppression may be an important physiological pathway mediating the trade-off between the number and viability of offspring. The difference in the observed immune-related responses between nestlings and males may be because we measured different aspects of the immune system (cellular vs humoral). However, it may also be a result of males lowering their own costs by feeding less, (and their mate possibly compensate by feeding more), whereas nestlings cannot escape the costs of increased intra-brood competition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号