首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Experiments were conducted to determine the effects of acute hyperprolactinemia (hyperPRL) on the control of luteinizing hormone and follicle-stimulating hormone secretion in male rats. Exposure to elevated levels of prolactin from the time of castration (1 mg ovine prolactin 2 X daily) greatly attenuated the post-castration rise in LH observed 3 days after castration. By 7 days after castration, LH concentrations in the prolactin-treated animals approached the levels observed in control animals. HyperPRL had no effect on the postcastration rise in FSH. Pituitary responsiveness to gonadotropin hormone-releasing hormone (GnRH), as assessed by LH responses to an i.v. bolus of 25 ng GnRH, was only minimally effected by hperPRL at 3 and 7 days postcastration. LH responses were similar at all time points after GnRH in control and prolactin-treated animals, except for the peak LH responses, which were significantly smaller in the prolactin-treated animals. The effects of hyperPRL were examined further by exposing hemipituitaries in vitro from male rats to 6-min pulses of GnRH (5 ng/ml) every 30 min for 4 h. HyperPRL had no effect on basal LH release in vitro, on GnRH-stimulated LH release, or on pituitary LH concentrations in hemipituitaries from animals that were intact, 3 days postcastration, or 7 days postcastration. However, net GnRH-stimulated release of FSH was significantly higher by pituitaries from hyperprolactinemic, castrated males. To assess indirectly the effects of hyperPRL on GnRH release, males were subjected to electrical stimulation of the arcuate nucleus/median eminence (ARC/ME) 3 days postcastration. The presence of elevated levels of prolactin not only suppressed basal LH secretion but reduced the LH responses to electrical stimulation by 50% when compared to the LH responses in control castrated males. These results suggest that acute hyperPRL suppresses LH secretion but not FSH secretion. Although pituitary responsiveness is somewhat attenuated in hyperprolactinemic males, as assessed in vivo, it is normal when pituitaries are exposed to adequate amounts of GnRH in vitro. Thus, the effects of hyperPRL on pituitary responsiveness appear to be minimal, especially if the pituitary is exposed to an adequate GnRH stimulus. The suppression of basal LH secretion in vivo most likely reflects inadequate endogenous GnRH secretion. The greatly reduced LH responses after electrical stimulation in hyperprolactinemic males exposed to prolactin suggest further that hyperPRL suppresses GnRH secretion.  相似文献   

2.
With advancing pregnancy in the ewe there was a marked decline in plasma LH concentrations and pituitary LH-RH responsiveness (integrated LH release) and a marked increase in plasma prolactin values and pituitary TRH responsiveness (integrated prolactin release). In lactating ewes plasma LH levels and pituitary LH-RH responsiveness had returned to values found in the luteal phase of the normal cycle by 21 days post partum, whereas at 42 days post partum prolactin levels were still high. No interaction between TRH and LH-RH on prolactin and LH release in dioestrous ewes was detected. In non-pregnant ewes plasma prolactin levels were significantly higher in June than in January but TRH responsiveness was similar. It is concluded that, in sheep, pituitary LH secretion recovers more rapidly from the chronic negative feedback effect of oestrogens and progesterone in pregnancy than prolactin secretion recovers from the chronic positive feedback effects of oestrogens. This finding may be a contributory factor in the resistance to resumption of breeding activity.  相似文献   

3.
This study was undertaken to examine the possibility that the prolonged anovulatory period frequently experienced by the post-partum cow is due to a disruption of function at the ovarian level promoted by the high, suckling-induced, blood prolactin concentrations. Fifteen cows, less than 35 days post partum, were allocated to three groups (1, 3 and 5) and given no hormonal treatment, prostaglandin plus pregnant mare serum gonadotrophin (PMSG) treatment or injected with 2-bromo-alpha-ergocryptine to reduce circulating prolactin levels. Ten synchronized cyclic cows were allocated to two groups (2 and 4) and given prostaglandin or prostaglandin plus PMGS treatment. All cows were ovariectomized 1 or 2 days after treatment of Graafian follicles less than 9 mm in diameter were selected after dissection from the ovaries. The follicles were cultured for 18 h with or without prolactin (1 microgram/ml) and steroid accumulation in the culture medium estimated. The follicles were then separated into theca and granulosa which were incubated for 40 min with LH (1 microgram/ml) or FSH (5 micrograms/ml). Cyclic AMP concentrations were estimated as an indication of tissue responsiveness to gonadotrophins. The secretion of oestradiol-17 beta, progesterone, testosterone or androstenedione during 18 h culture did not differ between follicles isolated from post-partum or cyclic cows. The presence of prolactin in the culture medium had no overall effect on steroid secretion although some specific effects within each group were noticed. Incubation with LH increased cyclic AMP levels in the theca but the granulosa did not respond. Likewise FSH increased cyclic AMP levels in granulosa preparations but not in theca. There were no differences in response between post-partum and cyclic cows, but exposure of the follicles to prolactin in vitro did significantly reduce the LH-induced increase in cyclic AMP levels in isolated theca. We have concluded that endogenous prolactin may modify but does not inhibit the resumption of ovarian function following parturition in the beef cow.  相似文献   

4.
Castrate rams and ovariectomized ewes were maintained in the presence of entire rams and ewes and subjected to successive periods of alternating 6 h light:18 h darkness ('short' days) and 18 h light:6 h darkness ('long' days) preceded by a period of 12 h light:12 h darkness ('constant' light days). Plasma concentrations of LH and prolactin were measured in the castrate animals in order to determine how LH and prolactin secretion responded to the artificial light regime and corresponding periods of elevated or depressed testicular and ovarian activity in the entire rams and ewes. There was no variation in mean plasma LH concentrations or LH pulse frequency with either the changes in photoperiod or the phases of gonadal activity in the entire animals. However, there was a highly significant (P less than 0.001) relationship between prolactin secretion and the artificial photoperiod in both castrate groups with high and low levels coinciding with long and short days respectively. In addition, there was a marginally significant (P less than 0.1) relationship between prolactin secretion in the castrate ram and the stage of testicular activity in the entire rams with elevated levels associated with regressed activity. Prolactin secretion in the ovariectomized ewes was significantly (P less than 0.05) related to the phase of ovarian development with high levels associated with acyclic activity. It is concluded that LH secretion and pituitary responsiveness to exogenous GnRH were not modified by the artificial light regime. However, the changing light pattern was physiologically 'perceived' by the castrate animals as indicted by a concomitant variation in plasma prolactin concentrations.  相似文献   

5.
In the presence of a functional corpus luteum, positive estrogen feedback on the surge modes of gonadotropin secretion is blocked in rhesus monkeys. We investigated the effects of luteectomy (Lx) on the time required for recovery of pituitary responsiveness (LH/FSH surges) to positive estrogen feedback. Estradiol-17 beta-3- benzoate (EB, 50 microgram/kg sc) was given: 1) 24th prior to, 2) the day of, or 3) 24 h after luteal ablation. Daily measurements of serum follicle stimulating hormone (FSH), luteinizing hormone (LH), estradiol-17 beta (e2) and progesterone (P) were made on each monkey for 5 days. Serum P fell to undetectable levels within 24 h after Lx, whereas E2 levels in circulation peaked within 24h after injection of EB. Among early follicular phase monkeys, this EB treatment results in typical midcycle type LH/FSH surges within 48h. Lx alone was not soon followed by significant changes in pituitary gonadotropin secretion. When circulating P levels were undetectable the pituitary responded fully to EB; that is, typical midcycle type FSH/LH surges occurred. When serum P was in the midst of declining after Lx, gonadotropin surges were present, but attenuated. However, when P levels remained elevated for more than 24 h after EB injection, the surge modes of FSH/LH secretion remained fully blocked. These results demonstrate that the suppressive influence of luteal secretions (principally progesterone) on positive estrogen feedback regulation of the surge modes of pituitary gonadotropin secretion is quite transient in these primates.  相似文献   

6.
Jean H. Dussault 《CMAJ》1974,111(11):1195-1197
Serum thyrotropin (TSH) and prolactin levels were measured after intravenous administration of 400 μg of synthetic thyrotropin-releasing hormone (TRH) in 13 normal subjects and six hypothyroid patients before and after three days of administration of dexamethasone 2 mg per day. In the normal subjects dexamethasone suppressed baseline serum levels and secretion of TSH after TRH stimulation. On the other hand, it had no effect on the hypothyroid patients. In the control group dexamethasone also suppressed baseline serum levels but not secretion of prolactin after TRH stimulation. Dexamethasone had no effect on prolactin levels in the hypothyroid group. It is concluded that in normal patients short-term administration of dexamethasone has an inhibitory effect on TSH secretion at the pituitary level. As for prolactin, our results could indicate that TRH is a more potent stimulator of prolactin secretion than of TSH secretion, or that TSH and prolactin pituitary thresholds for TRH are different.  相似文献   

7.
Exposure to short days for 8 weeks suppressed mean serum concentrations of FSH, LH and prolactin compared to hamsters kept in long days. Hamsters in short days exhibited a small afternoon rise in serum FSH, but serum LH and prolactin did not exhibit 24-h variations. In hamsters under long days, a late afternoon-early evening increase was evident for circulating prolactin but none was detected for the gonadotrophins. A fall in testes weights rapidly occurred by 14-28 days after transfer to short days. This was accompanied or preceded by a decrease in serum gonadotrophins and prolactin. Reductions in serum FSH and LH occurred in short days in blood samples taken at 09:00 h or 15:00 h. However, the nadir in serum prolactin was first achieved (at 09:00 h), at least 7 days before that at 15:00 h (i.e. Day 14 versus Day 21 of short photoperiod, respectively). The ability to secrete gonadotrophins was further tested in hamsters that had undergone gonadal regression. Castration of hamsters exposed to short days or injected with melatonin in the afternoon, a treatment known to mimic short day effects, induced a 3- to 5-fold increase in serum gonadotrophins. However, this rise in FSH and LH was significantly attenuated compared to the 10-fold response in controls in long days. The results indicate that gonadal involution induced by short days may be mediated by the decline in mean gonadotrophin secretion which, in turn, is regulated by responsiveness to steroids, as well as a mechanism independent of the negative feedback action of gonadal steroids.  相似文献   

8.
The presence of neuronal nitric oxide synthase (nNOS) in two populations of pituitary cells, gonadotrophs (LH) and folliculostellate (FS) cells, suggests that pituitary nitric oxide (NO) is involved in the control of hormone secretion. We have used single and double immunostaining and quantitative procedures to investigate possible gender-related differences in the nNOS expression pattern in the anterior pituitary lobe and its possible alterations in different endocrine situations. Our results reveal a sexual dimorphism in the pattern of nNOS expression. In males, nNOS is mainly found in FS cells, whereas only a few LH cells express nNOS. Conversely, in females, nNOS is mainly found in LH cells. After gonadectomy, paralleling an increase in LH cell size and serum luteinizing hormone (LH) levels, there is nNOS upregulation in LH cells and nNOS downregulation in FS cells. After testoterone replacement, LH cells become nNOS-immunonegative again. In lactating rats, LH cells overexpress nNOS, but LH cell size and serum LH levels are low. This suggests that, depending on its cellular source, pituitary NO can exert either an inhibitory or a stimulatory effect on hormone secretion. When released from FS cells, NO exerts a paracrine inhibitory effect, and when released from gonadotrophs it exerts an autocrine or paracrine stimulatory effect on LH or prolactin secretion, respectively.  相似文献   

9.
Studies on human prolactin physiology   总被引:1,自引:0,他引:1  
Although the clinical and experimental data were in favour of the existence of prolactin in humans like other vertebrates, as a pituitary hormone distinct from growth hormone, its presence remained contested until recent years. The predominant influence of the human hypothalamus on prolactin secretion is inhibitory. Circulating prolactin shows diurnal variations, which are not synchronized with that of TSH or ACTH; the prolactin rhythm is abolished during the last trimester of pregnancy and in patients with prolactin secreting tumors. Estrogens appeared to be less marked stimulators of prolactin secretion in man than in animals, although serum prolactin levels follow a pattern similar to that of endogenous estrogens during the normal menstrual cycle and during pregnancy. After delivery, basal prolactin levels declined progressively. In women under long term medroxyprogesterone acetate treatment, the immunoreactive serum prolactin was within the normal range of cycling women. Prolactin is found in appreciable amounts in amniotic fluid and in the serum of newborn infants. Synthetic LH and FSH releasing hormone did not change circulating prolactin levels in normal humans. A possible luteotrophic action of human prolactin in synergism with LH cannot be excluded.  相似文献   

10.
Luteinizing hormone-releasing hormone (LH-RH) was administered to prepubertal male rats (intact, castrate or castrate-adrenalectomized, 60 g body weight) for 28 days (1 microgram LH-RH/day, s.c.), at a 10-fold physiological dose, as compared to the minimal FSH-releasing dose of 100 ng/rat s.c. In intact rats, serum LH and weight of androgen-dependent organs (vented prostate, seminal vesicles) were reduced after 14 days of treatment. In castrate rats, the postcastration rise in serum LH was abolished by treatment. Pituitary LH content, FSH secretion and prolactin secretion were not suppressed. Hypothalamic LH-RH was increased at 14 and 21 days. In castrate adrenalectomized male rats, LH secretion was also suppressed by 1 microgram LH-RH s.c. x 28 days. The hypothalamic LH-RH content did not increase. The pituitary LH-RH receptor level was not down-regulated after 14 days treatment either in intact or castrate male rats. Pituitary inhibition (LH release) in rats by a supraphysiological dose of LH-RH given for 28 days indicates that the optimal regime for chronic treatment has to be determined by monitoring LH release at regular intervals. Direct pituitary inhibition by LH-RH may explain some of the unexpected antifertility effects observed with high doses of LH-RH.  相似文献   

11.
Our previous work has suggested that glucocorticoid pretreatment suppresses the enhanced responsiveness to GnRH seen in serum LH 12 h after castration. By contrast, serum FSH continues to show the castration-induced hypersensitivity to GnRH. Our attempts to replicate this LH suppression in static pituitary culture in vitro were not successful. This suggested to us the possibility that corticoids in vivo might be preventing castration-induced increases in pituitary GnRH receptor levels. We tested this at 24 h post-castration and, in fact, corticoids did not suppress the increase in GnRH receptors. In addition to the aforementioned effects of corticoids, we have seen that cortisol reverses the castration-induced drop in pituitary FSH content. It does this for 7 days post-castration, even though it no longer has an effect in suppressing serum LH. Thus, our accumulated data reveal that glucocorticoids have a differential effect on LH and FSH synthesis and secretion. Further studies are needed to clarify the site(s) of action of glucocorticoids in gonadotropin secretion and synthesis. Glucocorticoids may well prove to be a key in unlocking the mystery of the mechanism of differential control of regulation of LH and FSH.  相似文献   

12.
This study examined the impact of the gonadotrophin-releasing hormone (GnRH) antagonist Antarelix on LH, FSH, ovarian steroid hormone secretion, follicular development and pituitary response to LHRH in cycling gilts. Oestrous cycle of 24 Landrace gilts was synchronised with Regumate (for 15 days) followed by 800 IU PMSG 24h later. In experiment 1, Antarelix (n=6 gilts) was injected i.v. (0.5mg per injection) twice daily on four consecutive days from day 3 to 6 (day 0=last day of Regumate feeding). Control gilts (n=6) received saline. Blood was sampled daily, and every 20 min for 6h on days 2, 4, 6, 8 and 10. In experiment 2, gilts (n=12) were assigned to the following treatments: Antarelix; Antarelix + 50 microg LHRH on day 4; Antarelix + 150 microg LHRH on day 4 or control, 50 microg LHRH only on day 4. Blood samples were collected daily and every 20 min for 6h on days 2, 4 and 6 to assess LH pulsatility. Ovarian follicular development was evaluated at slaughter.Antarelix suppressed (P<0.05) serum LH concentrations. The amount of LH released on days 4-9 (experiment 1) was 8.80 versus 36.54 ngml(-1) (S.E.M.=6.54). The pattern of FSH, and the preovulatory oestradiol rise was not affected by GnRH antagonist. Suppression of LH resulted in a failure (P<0.05) of postovulatory progesterone secretion. Exogenous LHRH (experiment 2) induced a preovulatory-like LH peak, however in Antarelix treated gilts the LH surge started earlier and its duration was less compared to controls (P<0.01). Furthermore, the amount of LH released from day 4 to 5 was lower (P<0.01) in Antarelix, Antarelix + 50 and Antarelix + 150 treated animals compared to controls. No differences were estimated in the number of LH pulses between days and treatment. Pulsatile FSH was not affected by treatment. Mean basal LH levels were lower (P<0.05) after antagonist treatment compared to controls. Antarelix blocked the preovulatory LH surge and ovulation, but the effects of Antarelix were reduced by exogenous LHRH treatment. The development of follicles larger than 4mm was suppressed (P<0.05) by antagonist treatment.In conclusion, Antarelix treatment during the follicular phase blocked preovulatory LH surge, while FSH and oestradiol secretion were not affected. Antarelix failed to alter pulsatile LH and FSH secretor or pituitary responsiveness to LHRH during the preovulatory period.  相似文献   

13.
The effects of RU 486 on the modulation of LH release by progesterone were investigated in cultured anterior pituitary cells from ovariectomized adult female rats. The inhibitory effect of progesterone on LH secretion was demonstrable in estrogen-treated pituitary cells, in which addition of 10(-6) M progesterone to cells cultured in the presence of 10(-9) M estradiol for 52 h reduced the LH response to GnRH (10(-11) to 10(-7) M). When RU 486 was superimposed upon such combined treatment with estradiol and progesterone, the suppressive effect of progesterone on GnRH-induced LH release was completely abolished. The converse (facilitatory) effect of progesterone on LH secretion was observed in pituitary cells pretreated with 10(-9) M estradiol for 48 h and then with 10(-6) M progesterone for 4 h. When RU 486 was added together with progesterone during the 4 h treatment period, the facilitatory effect of progesterone was blocked and LH release fell to below the corresponding control value. The direct effect of RU 486 on LH secretion in the absence of exogenous progesterone was evaluated in cells cultured in the absence or presence of 10(-9) M estradiol and then treated for 4 to 24 h with increasing concentrations of RU 486 (10(-12) to 10(-5) M) and stimulated with GnRH (10(-9) M) during the last 3 h of incubation. In estrogen-deficient cultures, 4 h exposure to RU 486 concentrations of 10(-6) M and above decreased the LH response to GnRH by up to 50%. In cultures pretreated with 10(-9) M estradiol, GnRH-stimulated LH responses was inhibited by much lower RU 486 concentrations, of 10(-9) M and above. After 24 h of incubation the effects of RU 486 were similar in control and estradiol-pretreated pituitary cell cultures. Thus, RU 486 alone has a significant inhibitory effect on LH secretion that is enhanced in the presence of estrogen. The antiprogestin is also a potent antagonist of both the inhibitory and the facilitatory actions of progesterone upon pituitary gonadotropin release in vitro.  相似文献   

14.
Prolactin suppresses GnRH but not TSH secretion   总被引:3,自引:0,他引:3  
BACKGROUND/AIMS: In animal models, prolactin increases tuberoinfundibular dopamine turnover, which has been demonstrated to suppress both hypothalamic GnRH and pituitary TSH secretion. To test the hypothesis that prolactin suppresses GnRH and TSH secretion in women, as preliminary evidence that a short-feedback dopamine loop also operates in the human, the effect of hyperprolactinemia on GnRH and TSH secretion was examined. METHODS: Subjects (n=6) underwent blood sampling every 10 min in the follicular phase of a control cycle and during a 12-hour recombinant human prolactin (r-hPRL) infusion preceded by 7 days of twice-daily subcutaneous r-hPRL injections. LH and TSH pulse patterns and menstrual cycle parameters were measured. RESULTS: During the 7 days of r-hPRL administration, baseline prolactin increased from 16.0+/-3.0 to 101.6+/-11.6 microg/l, with a further increase to 253.7+/-27.7 microg/l during the 12-hour infusion. LH pulse frequency decreased (8.7+/-1.0 to 6.0+/-1.0 pulses/12 h; p<0.05) with r-hPRL administration, but there were no changes in LH pulse amplitude or mean LH levels. There were also no changes in TSH pulse frequency, mean or peak TSH. The decreased LH pulse frequency did not affect estradiol, inhibin A or B concentrations, or menstrual cycle length. CONCLUSION: These studies demonstrate that hyperprolactinemia suppresses pulsatile LH secretion but not TSH secretion and suggest that GnRH secretion is sensitive to hyperprolactinemia, but that TSH secretion is not. These data further suggest that the degree of GnRH disruption after 7 days of hyperprolactinemia is insufficient to disrupt menstrual cyclicity.  相似文献   

15.
The effects of PGF2alpha infusion in a dose of 25 micrograms/min for 5 hours on serum levels of estradiol-17beta, progesterone, LH, FSH, TSH and prolactin, and on the pituitary hormone responsiveness to LRH and TRH were studied in 10 apparently healthy cycling women in the mid-luteal phase. No systematic alteration was seen in the pituitary and ovarian hormone levels during PGF2alpha infusion, and the pituitary hormone responses to releasing hormones were unaffected. Ovarian steroid production increased in response to increased gonadotropin levels after LRH injection during PGF2alpha administration. These results confirm that PGF2alpha is not luteolytic in humans and no apparent relationship between PGF2alpha and pituitary hormone secretion exists.  相似文献   

16.
The effect of pituitary homografts on the accessory sex organs and hormonal levels were studied in Wistar mature male rats. Grafted rats were further divided into four experiments: rats were bled once daily via a jugular vein cannula for seven days to investigate when serum prolactin began to rise after transplantation. rats were decapitated on the seventh day after transplantation to test whether 7 days were long enough to show the effect of pituitary grafts on the weight of prostate and seminal vesicles. rats were orchiectomized or orchiectomized and adrenalectomized on the seventh day after transplantation and then decapitated 4 weeks later to test a long term action of pituitary grafts and hormonal levels on the accessory sex organs without androgen. Rats grafted with several pieces of muscle were used as controls in each experiment. The initial rise in serum prolactin level was observed on the fourth day after pituitary transplantation, and then a higher serum prolactin level was maintained thereafter. Despite the higher prolactin level in the pituitary-grafted rat than in the control, no significant differences from the control in the weight of prostates and seminal vesicles and adrenal gland and the concentrations of serum luteinizing hormone (LH) and follicular stimulating hormone (FSH) were measured. This result showed that the weight of accessory sex organs was not affected by a higher serum prolactin within seven days.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
To test the hypothesis that the synthesis and secretion of follicle-stimulating hormone (FSH) and luteinizing hormone (LH) are differentially regulated after depletion by oestradiol, circulating concentrations of oestradiol were maintained at approximately 30 pg/ml for 16 days in each of 35 ovariectomized ewes. Five other ovariectomized ewes that did not receive oestradiol implants served as controls. After treatment with oestradiol, implants were removed and pituitary glands were collected from each of 5 ewes at 0, 2, 4, 8, 12, 16 and 32 days thereafter and amounts of mRNA for gonadotrophin subunits and contents of LH and FSH were quantified. Before collection of pituitary glands, blood samples were collected at 10-min intervals for 6 h. Treatment with oestradiol reduced (P less than 0.05) steady-state concentrations of LH beta- and FSH beta-subunit mRNAs and pituitary and serum concentrations of these hormones. At the end of treatment the amount of mRNA for FSH beta-subunit was reduced by 52% whereas that for LH beta-subunit was reduced by 93%. Steady-state concentrations of mRNA for FSH beta-subunit returned to control values within 2 days of removal of oestradiol, but 8 days were required for concentrations of FSH in the pituitary and serum to return to control values. Steady-state concentrations of mRNA for LH beta-subunit and mean serum concentrations of LH returned to control values by Day 8, but pituitary content of LH may require as long as 32 days to return to control levels. Therefore, replenishment of FSH beta-subunit mRNA preceded increases in pituitary and serum concentrations of FSH.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
To study the role of androgens in the control of gonadotropin and prolactin secretion in ther ewe, we have characterized androgen receptors in pituitary cytosol, and investigated the effect of androgens on pituitary hormone release in vivo and in vitro. High affinity, low capacity receptors, with an affinity for methyltrienolone (R1881) greater than 5 alpha-dihydrotestosterone (5 alpha-DHT) greater than testosterone (T) much greater than androstenedione (A4), estradiol-17 beta (E2) and progesterone (P), were identified in pituitary cytosol. Addition of 1 nM 5 alpha-DHT, but not A4, inhibited luteinizing hormone (LH) release from pituitary cells in vitro, induced by 10(10) to 10(-7) M luteinizing hormone releasing hormone (LHRH). The release of follicle-stimulating hormone (FSH) with 10(-9) M LHRH was inhibited when cells were incubated with 1 nM 5 alpha-DHT. 5 alpha-DHT had no effect when higher or lower doses of LHRH were used. In ovariectomized ewes, neither an i.v. injection of 1 mg, nor intracarotid injections of up to 1 mg, 5 alpha-DHT affected plasma LH, FSH or prolactin levels, despite dose-related increases in plasma 5 alpha-DHT levels. Daily or twice daily i.m. injections of 5 mg 5 alpha-DHT in oil did not affect LH or FSH levels, but daily injections of 20 mg significantly reduced plasma LH levels within 4 days and plasma FSH levels within 6 days. Thus, despite the presence of androgen receptors in the ewe pituitary, we conclude that androgens per se are of minimal importance in the regulation of pituitary LH, FSH and prolactin secretion in the ewe. The low binding affinity of A4 and the lack of its effect on hormone secretion in vitro suggests that A4 may act as an estrogen precursor rather than an androgenic hormone. The function of the pituitary androgen receptor remains to be established.  相似文献   

19.
Three experiments (EXP) were conducted to determine the role of insulin-like growth factor-I (IGF-I) in the control of growth hormone (GH) and LH secretion. In EXP I, prepuberal gilts, 65 ± 6 kg body weight and 140 days of age received intracerebroventricular (ICV) injections of saline (n = 4), 25 μg (n = 4) or 75 μg (n = 4) IGF-I and jugular blood samples were collected. In EXP II, anterior pituitary cells in culture collected from 150-day-old prepuberal gilts (n = 6) were challenged with 0.1, 10 or 1000 nM [Ala15]-h growth hormone-releasing hormone-(1-29)NH2 (GHRH), or 0.01, 0.1, 1, 10, 30 nM IGF-I individually or in combinations with 1000 nM GHRH. Secreted GH was measured at 4 and 24 h after treatment. In EXP III, anterior pituitary cells in culture collected from 150-day-old barrows (n = 5) were challenged with 10, 100 or 1000 nM gonadotropin-releasing hormone (GnRH) or 0.01, 0.1, 1, 10, 30 nM IGF-I individually or in combinations with 100 nM GnRH. Secreted LH was measured at 4 h after treatment. In EXP I, serum GH and LH concentrations were unaffected by ICV IGF-I treatment. In EXP II, relative to control all doses of GHRH increased (P < 0.01) GH secretion. Only 1, 10, 30 nM IGF-I enhanced (P < 0.02) basal GH secretion at 4 h, whereas by 24 h all doses except for 30 nM IGF-I suppressed (P < 0.02) basal GH secretion compared to control wells. All doses of IGF-I in combination with 1000 nM GHRH increased (P < 0.04) the GH response to GHRH compared to GHRH alone at 4 h, whereas by 24 h all doses of IGF-I suppressed (P < 0.04) the GH response to GHRH. In EXP III, all doses of IGF-I increased (P < 0.01) basal LH levels while the LH response to GnRH was unaffected by IGF-I (P > 0.1). In conclusion, under these experimental conditions the results suggest that the pituitary is the putative site for IGF-I modulation of GH and LH secretion. Further examination of the role of IGF-I on GH and LH secretion is needed to understand the inhibitory and stimulatory action of IGF-I on GH and LH secretion.  相似文献   

20.
It has been suggested that changes in endogenous glutamatergic stimulation of secretion of luteinizing hormone (LH) induced by photoperiod play a role in regulating seasonal cycles of reproductive activity. The aim of this study was to test the hypothesis that the glutamatergic control of the secretion of LH in the male Syrian hamster is sensitive to photoperiod, by determining whether the glutamate agonist N-methyl-D-aspartate (NMDA) could stimulate LH secretion in this species and, if so, to determine whether the response varied among animals exposed to different daylengths. In the first experiment, adult male hamsters were housed in either short day (8 h light: 16 h dark) for 6 weeks to induce testicular regression, or long days (16 h light: 8 h dark) to maintain testicular function, and the effects of systemic administration of NMDA on serum LH concentrations were determined. In the short-day hamsters, all s.c. doses of NMDA (25-75 mg kg-1 body weight) produced a robust rise in serum LH concentrations within 15 min. In the long-day hamsters, basal LH concentrations were higher than in short-day hamsters, but only the highest dose of NMDA produced a significant increase in LH concentrations, and the magnitude of this increment was less than those observed in short days. In hamsters in long days, the low doses of NMDA that did not significantly alter LH concentrations nevertheless significantly suppressed serum prolactin concentrations, demonstrating the efficacy of the drug. In hamsters in short days, serum prolactin concentrations were at the limit of detection of the assay, so no inhibitory effect of NMDA on prolactin secretion could be determined on this photoperiod. In the second experiment, the effects of a fixed dose of NMDA (50 mg kg-1 body weight) was tested at intervals in hamsters exposed to short days for a prolonged period such that their testes initially regressed, but then became scotorefractory and testicular recrudescence occurred. After 6 and 12 weeks in short days, NMDA stimulated LH secretion. However, after 24 weeks in short days when testicular recrudescence was complete, the response to NMDA was lost. A third experiment determined whether the reduced response to NMDA in hamsters on long days relative to those in short days might result from higher concentrations of circulating testosterone. Hamsters in long days were castrated to remove the influence of gonadal feedback, and the response to NMDA tested 3 weeks later when endogenous LH concentrations had risen to levels characteristic of the chronically castrated condition.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号