首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Electron microscopy and single-particle analyses have been carried out on negatively stained photosystem II (PSII) complexes isolated from the green alga Chlamydomonas reinhardtii and the thermophilic cyanobacterium Synechococcus elongatus. The analyses have yielded three-dimensional structures at 30-A resolution. Biochemical analysis of the C. reinhardtii particle suggested it to be very similar to the light-harvesting complex II (LHCII).PSII supercomplex of spinach, a conclusion borne out by its three-dimensional structure. Not only was the C. reinhardtii LHCII.PSII supercomplex dimeric and of comparable size and shape to that of spinach, but the structural features for the extrinsic OEC subunits bound to the lumenal surface were also similar thus allowing identification of the PsbO, PsbP, and PsbQ OEC proteins. The particle isolated from S. elongatus was also dimeric and retained its OEC proteins, PsbO, PsbU, and PsbV (cytochrome c(550)), which were again visualized as protrusions on the lumenal surface of the complex. The overall size and shape of the cyanobacterial particle was similar to that of a PSII dimeric core complex isolated from spinach for which higher resolution structural data are known from electron crystallography. By building the higher resolution structural model into the projection maps it has been possible to relate the positioning of the OEC proteins of C. reinhardtii and S. elongatus with the underlying transmembrane helices of other major intrinsic subunits of the core complex, D1, D2, CP47, and CP43 proteins. It is concluded that the PsbO protein is located over the CP47 and D2 side of the reaction center core complex, whereas the PsbP/PsbQ and PsbV/PsbU are positioned over the lumenal surface of the N-terminal region of the D1 protein. However, the mass attributed to PsbV/PsbU seems to bridge across to the PsbO, whereas the PsbP/PsbQ proteins protrude out more from the lumenal surface. Nevertheless, within the resolution and quality of the data, the relative positions of the center of masses for OEC proteins of C. reinhardtii and S. elongatus are similar and consistent with those determined previously for the OEC proteins of spinach.  相似文献   

2.
The sll1418 gene encodes a PsbP-like protein in Synechocystis sp. PCC 6803. Expression of sll1418 was similar in BG-11 and in Cl- or Ca2+-limiting media, and inactivation of sll1418 did not prevent photoautotrophic growth in normal or nutrient-limiting conditions. Also the wild-type and ΔPsbP strains exhibited similar oxygen evolution and assembly of Photosystem II (PS II) centers. Inactivation of sll1418 in the ΔPsbO: ΔPsbP, ΔPsbQ:ΔPsbP, ΔPsbU:ΔPsbP and ΔPsbV:ΔPsbP mutants did not prevent photoautotrophy or alter PS II assembly and oxygen evolution in these strains. Moreover, the absence of PsbP did not affect the ability of alkaline pH to restore photoautotrophic growth in the ΔPsbO:ΔPsbU strain. The PsbO, PsbU and PsbV proteins are required for thermostability of PS II and thermal acclimation in Synechocystis sp. PCC 6803 [Kimura et al. (2002) Plant Cell Physiol 43: 932–938]. However, thermostability and thermal acclimation in ΔPsbP cells were similar to wild type. These results are consistent with the conclusion that PsbP is associated with ∼3 of PS II centers, and may play a regulatory role in PS II [Thornton et al. (2004) Plant Cell 16: 2164–2175].  相似文献   

3.
Cross-reconstitution of the extrinsic proteins and Photosystem II (PS II) from a green alga, Chlamydomonas reinhardtii, and a higher plant,Spinacia oleracea, was performed to clarify the differences of binding properties of the extrinsic proteins between these two species of organisms. (1) Chlamydomonas PsbP and PsbQ directly bound to Chlamydomonas PS II independent of the other extrinsic proteins but not to spinach PS II. (2) Chlamydomonas PsbP and PsbQ directly bound to the functional sites of Chlamydomonas PS II independent of the origins of PsbO, while spinach PsbP and PsbQ only bound to non-functional sites on Chlamydomonas PS II. (3) Both Chlamydomonas PsbP and spinach PsbP functionally bound to spinach PS II in the presence of spinach PsbO. (4) While Chlamydomonas PsbP functionally bound to spinach PS II in the presence of Chlamydomonas PsbO, spinach PsbP bound loosely to spinach PS II in the presence of Chlamydomonas PsbO with no concomitant restoration of oxygen evolution. (5) Chlamydomonas PsbQ bound to spinach PS II in the presence of Chlamydomonas PsbP and PsbO or spinach PsbO but not to spinach PS II in the presence of spinach PsbP and Chlamydomonas PsbO or spinach PsbO. (6) Spinach PsbQ did not bind to spinach PS II in the presence of Chlamydomonas PsbO and PsbP. On the basis of these results, we showed a simplified scheme for binding patterns of the green algal and higher plant extrinsic proteins with respective PS II.  相似文献   

4.
The mechanism of oxygen evolution by photosystem II (PSII) has remained highly conserved during the course of evolution from ancestral cyanobacteria to green plants. A cluster of manganese, calcium, and chloride ions, whose binding environment is optimized by PSII extrinsic proteins, catalyzes this water-splitting reaction. The accepted view is that in plants and green algae, the three extrinsic proteins are PsbO, PsbP, and PsbQ, whereas in cyanobacteria, they are PsbO, PsbV, and PsbU. Our previous proteomic analysis established the presence of a PsbQ homolog in the cyanobacterium Synechocystis 6803. The current study additionally demonstrates the presence of a PsbP homolog in cyanobacterial PSII. Both psbP and psbQ inactivation mutants exhibited reduced photoautotrophic growth as well as decreased water oxidation activity under CaCl(2)-depleted conditions. Moreover, purified PSII complexes from each mutant had significantly reduced activity. In cyanobacteria, one PsbQ is present per PSII complex, whereas PsbP is significantly substoichiometric. These findings indicate that both PsbP and PsbQ proteins are regulators that are necessary for the biogenesis of optimally active PSII in Synechocystis 6803. The new picture emerging from these data is that five extrinsic PSII proteins, PsbO, PsbP, PsbQ, PsbU, and PsbV, are present in cyanobacteria, two of which, PsbU and PsbV, have been lost during the evolution of green plants.  相似文献   

5.
The protein assembly and stability of photosystem II (PSII) (sub)complexes were studied in mature leaves of four plastid mutants of tobacco (Nicotiana tabacum L), each having one of the psbEFLJ operon genes inactivated. In the absence of psbL, no PSII core dimers or PSII-light harvesting complex (LHCII) supercomplexes were formed, and the assembly of CP43 into PSII core monomers was extremely labile. The assembly of CP43 into PSII core monomers was found to be necessary for the assembly of PsbO on the lumenal side of PSII. The two other oxygen-evolving complex (OEC) proteins, PsbP and PsbQ, were completely lacking in Delta psbL. In the absence of psbJ, both intact PSII core monomers and PSII core dimers harboring the PsbO protein were formed, whereas the LHCII antenna remained detached from the PSII dimers, as demonstrated by 77 K fluorescence measurements and by the lack of PSII-LHCII supercomplexes. The Delta psbJ mutant was characterized by a deficiency of PsbQ and a complete lack of PsbP. Thus, both the PsbL and PsbJ subunits of PSII are essential for proper assembly of the OEC. The absence of psbE and psbF resulted in a complete absence of all central PSII core and OEC proteins. In contrast, very young, vigorously expanding leaves of all psbEFLJ operon mutants accumulated at least traces of D2, CP43 and the OEC proteins PsbO and PsbQ, implying developmental control of the expression of the PSII core and OEC proteins. Despite severe problems in PSII assembly, the thylakoid membrane complexes other than PSII were present and correctly assembled in all psbEFLJ operon mutants.  相似文献   

6.
Photosystem II (PSII), which catalyzes photosynthetic water oxidation, is composed of more than 20 subunits, including membrane-intrinsic and -extrinsic proteins. The extrinsic proteins of PSII shield the catalytic Mn4CaO5 cluster from exogenous reductants and serve to optimize oxygen evolution at physiological ionic conditions. These proteins include PsbO, found in all oxygenic organisms, PsbP and PsbQ, specific to higher plants and green algae, and PsbU, PsbV, CyanoQ, and CyanoP in cyanobacteria. Furthermore, red algal PSII has PsbQ′ in addition to PsbO, PsbV, and PsbU, and diatoms have Psb31 in supplement to red algal-type extrinsic proteins, exemplifying the functional divergence of these proteins during evolution. This review provides an updated summary of recent findings on PSII extrinsic proteins and discusses their binding, function, and evolution within various photosynthetic organisms.  相似文献   

7.
Recent X-ray structures determined for the Photosystem II (PSII) core complex isolated from cyanobacteria have provided important information for understanding the functionality of this photosynthetic enzyme including its water splitting activity. As yet, no high-resolution structure is available for PSII of plants or eukaryotes in general. However, crystal structures have been determined for some components of plant PSII which together with the cyanobacterial structure can be used to interpret lower resolution structures of plant PSII derived from electron cryomicroscopy (cryo-EM). Here, we utilise the published X-ray structures of a cyanobacterial PSII core, Light Harvesting Complex II (LHCII), PsbP and PsbQ proteins to construct a model of the plant LHCII-PSII supercomplex using a 17 A resolution 3D electron density map of the spinach supercomplex determined by cryo-EM and single particle analysis. In so doing, we tentatively identify the relative positioning of the chlorophylls within the supercomplex and consider energy transfer pathways between the different subunits. The modelling has also allowed density to be assigned to the three extrinsic proteins of plant PSII, PsbO, PsbP and PsbQ associated with the water splitting centre and concluded that although the position of PsbO is the same as in cyanobacteria, PsbP and PsbQ are located in different positions to the cyanobacterial extrinsic PsbU and PsbV proteins.  相似文献   

8.
Interfering RNA was used to suppress simultaneously the expression of the four genes which encode the PsbO and PsbP proteins of Photosystem II in Arabidopsis (PsbO: At5g66570, At3g50820 and PsbP: At1g06680, At2g30790). A phenotypic series of transgenic plants was obtained that expressed variable amounts of the PsbO proteins and undetectable amounts of the PsbP proteins. Immunological studies indicated that the loss of PsbP expression was correlated with the loss of expression of the PsbQ, D2, and CP47 proteins, while the loss of PsbO expression was correlated with the loss of expression of the D1 and CP43 proteins. Q(A)(-) reoxidation kinetics in the absence of DCMU indicated that the slowing of electron transfer from Q(A)(-) to Q(B) was correlated with the loss of the PsbP protein. Q(A)(-) reoxidation kinetics in the presence of DCMU indicated that charge recombination between Q(A)(-) and donor side components of the photosystem was retarded in all of the mutants. Decreasing amounts of the PsbO protein in the absence of the PsbP component also led to a progressive loss of variable fluorescence yield (F(V)/F(M)). During fluorescence induction, the loss of PsbP was correlated with a more rapid O to J transition and a loss of the J to I transition. These results indicate that the losses of the PsbO and PsbP proteins differentially affect separate protein components and different PS II functions and can do so, apparently, in the same plant.  相似文献   

9.
Years of genetic, biochemical, and structural work have provided a number of insights into the oxygen evolving complex (OEC) of Photosystem II (PSII) for a variety of photosynthetic organisms. However, questions still remain about the functions and interactions among the various subunits that make up the OEC. After a brief introduction to the individual subunits Psb27, PsbP, PsbQ, PsbR, PsbU, and PsbV, a current picture of the OEC as a whole in cyanobacteria, red algae, green algae, and higher plants will be presented. Additionally, the role that these proteins play in the dynamic life cycle of PSII will be discussed.  相似文献   

10.
Eaton-Rye JJ  Shand JA  Nicoll WS 《FEBS letters》2003,543(1-3):148-153
The removal of either the PsbU or PsbV protein has been investigated in a cyanobacterial DeltaPsbO strain and in mutants carrying deletions or substitutions in lumen-exposed domains of CP47. These experiments have demonstrated a functional interaction between the PsbU protein and photosystem II (PSII) in the absence of the PsbO subunit. The control:DeltaPsbO:DeltaPsbU strain assembled PSII centers at pH 7.5 but did not evolve oxygen; however, photoautotrophic growth was restored at pH 10.0. In addition, several CP47 mutants, lacking extrinsic proteins, were obligate photoheterotrophs at pH 7.5 but photoautotrophic at pH 10.0, whereas other strains remained photoheterotrophs at alkaline pH.  相似文献   

11.
12.
Low-temperature absorption and fluorescence spectra of fully active cores and membrane-bound PS II preparations are compared. Detailed temperature dependence of fluorescence spectra between 5 and 70 K are presented as well as 1.7-K fluorescence line-narrowed (FLN) spectra of cores, confirming that PS II emission is composite. Spectra are compared to those reported for LHCII, CP43, CP47 and D1/D2/cytit b559 subunits of PS II. A combination of subunit spectra cannot account for emission of active PS II. The complex temperature dependence of PS II fluorescence is interpretable by noting that excitation transfer from CP43 and CP47 to the reaction centre is slow, and strongly dependent on the precise energy at which a ‘slow-transfer’ pigment in CP43 or CP47 is located within its inhomogeneous distribution. PS II fluorescence arises from CP43 and CP47 ‘slow-transfer’ states, convolved by this dependence. At higher temperatures, thermally activated excitation transfer to the PS II charge-separating system bypasses such bottlenecks. As the charge-separating state of active PS II absorbs at >700 nm, PS II emission in the 680–700 nm region is unlikely to arise from reaction centre pigments. PS II emission at physiological temperatures is discussed in terms of these results.  相似文献   

13.
PsbU is a lumenal peripheral protein in the photosystem II (PS II) complex of cyanobacteria and red algae. It is thought that PsbU is replaced functionally by PsbP or PsbQ in plant chloroplasts. After the discovery of PsbP and PsbQ homologues in cyanobacterial PS II [Thornton et al. (2004) Plant Cell 16, 2164-2175], we investigated the function of PsbU using a psbU deletion mutant (DeltaPsbU) of Synechocystis 6803. In contrast to the wild type, DeltaPsbU did not grow when both Ca2+ and Cl- were eliminated from the growth medium. When only Ca2+ was eliminated, DeltaPsbU grew well, whereas when Cl- was eliminated, the growth rate was highly suppressed. Although DeltaPsbU grew normally in the presence of both ions under moderate light, PS II-related disorders were observed as follows. (1) The mutant cells were highly susceptible to photoinhibition. (2) Both the efficiency of light utilization under low irradiance and the chlorophyll-specific maximum rate of oxygen evolution in DeltaPsbU cells were 60% lower than those of the wild type. (3) The decay of the S2 state in DeltaPsbU cells was decelerated. (4) In isolated PS II complexes from DeltaPsbU cells, the amounts of the other three lumenal extrinsic proteins and the electron donation rate were drastically decreased, indicating that the water oxidation system became significantly labile without PsbU. Furthermore, oxygen-evolving activity in DeltaPsbU thylakoid membranes was highly suppressed in the absence of Cl-, and 60% of the activity was restored by NO3- but not by SO4(2-), indicating that PsbU had functions other than stabilizing Cl-. On the basis of these results, we conclude that PsbU is crucial for the stable architecture of the water-splitting system to optimize the efficiency of the oxygen evolution process.  相似文献   

14.
A PsbQ homologue has been found associated with photosystem II complexes in Synechocystis sp. PCC 6803 where it is involved in optimal photoautotrophic growth and water splitting under CaCl(2)-depleted conditions [Thornton, L. E., Ohkawa, H., Roose, J. L., Kashino, Y., Keren, N., and Pakrasi, H. B. (2004) Plant Cell 16, 2164-2175]. By inactivating psbQ in strains carrying photosystem II-specific mutations, we have identified stringent requirements for PsbQ in vivo. Whereas under nutrient-replete conditions the DeltaPsbQ mutant was similar to wild type, a strain lacking PsbQ and PsbV was not photoautotrophic, exhibiting decreased oxygen evolution and decreased photosystem II assembly compared to the DeltaPsbV mutant. Combining the removal of PsbU and PsbQ introduced an altered requirement for Ca(2+) and Cl(-), and photoautotrophic growth of the DeltaPsbQ strain was prevented in nutrient-limiting media depleted in Ca(2+), Cl(-), and iron. Unlike other photosystem II extrinsic proteins PsbQ did not participate in the acquisition of thermotolerance; however, photoautotrophic growth at elevated temperatures was impaired in this mutant. Growth of the DeltaPsbV:DeltaPsbQ mutant was restored at pH 10.0: in contrast, an additional deletion between Arg-384 and Val-392 in the CP47 protein of photosystem II prevented recovery at alkaline pH. When conditions prevented photoautotrophy in strains lacking PsbQ, photoheterotrophic growth was indistinguishable to wild type, indicating that photosystem II had been inactivated. These data substantiate a role for PsbQ in optimizing photosystem II activity in Synechocystis sp. PCC 6803 and establish an absolute requirement for the subunit under specific biochemical and physiological conditions.  相似文献   

15.
Red alga contains four extrinsic proteins in photosystem II (PSII), which are PsbO, PsbV, PsbU, and PsbQ′. Except for the PsbQ′, the composition is the same in cyanobacterial PSII. Reconstitution analysis of cyanobacterial PSII has shown that oxygen-evolving activity does not depend on the presence of PsbQ′. Recently, the structure of red algal PSII was elucidated. However, the role of PsbQ′ remains unknown. In this study, the function of the acceptor side of PSII was analyzed in PsbQ′-reconstituted PSII by redox titration of QA and thermoluminescence. The redox potential of QA was positively shifted when PsbQ′ was attached to the PSII. The positive shift of QA is thought to cause a decrease in the amount of triplet chlorophyll in PSII. On the basis of these results, we propose that PsbQ′ has a photoprotective function when irradiated with strong light.  相似文献   

16.
The extrinsic subunits of membrane-bound photosystem II (PSII) maintain an essential role in optimizing the water-splitting reaction of the oxygen-evolving complex (OEC), even though they have undergone drastic change during the evolution of oxyphototrophs from symbiotic cyanobacteria to chloroplasts. Two specific extrinsic proteins, PsbP and PsbQ, bind to the lumenal surface of PSII in green plants and maintain OEC conformation and stabilize overall enzymatic function; however, their precise location has not been fully resolved. In this study, PSII-enriched membranes, isolated from spinach, were subjected to chemical cross-linking combined with release-reconstitution experiments. We observed direct interactions between PsbP and PsbE, as well as with PsbR. Intriguingly, PsbP and PsbQ were further linked to the CP26 and CP43 light-harvesting proteins. In addition, two cross-linked sites, between PsbP and PsbR, and that of PsbP and CP26, were identified by tandem mass spectrometry. These data were used to estimate the binding topology and location of PsbP, and the putative positioning of PsbQ and PsbR on the lumenal surface of the PSII. Our model gives new insights into the organization of PSII extrinsic subunits in higher plants and their function in stabilizing the OEC of the PSII supercomplex.  相似文献   

17.
Photosystem II (PSII) is a membrane-bound enzyme that utilizes solar energy to catalyze the photooxidation of water. Molecular oxygen is evolved after four sequential light-driven oxidation reactions at the Mn4CaO5 oxygen-evolving complex, producing five sequentially oxidized states, Sn. PSII is composed of 17 membrane-spanning subunits and three extrinsic subunits, PsbP, PsbQ, and PsbO. PsbO is intrinsically disordered and plays a role in facilitation of the water oxidizing cycle. Native PsbO can be removed and substituted with recombinant PsbO, thereby restoring steady-state activity. In this report, we used reaction-induced Fourier transform infrared spectroscopy to obtain information concerning the role of PsbP, PsbQ, and PsbO during the S state cycle. Light-minus-dark difference spectra were acquired, monitoring structural changes associated with each accessible flash-induced S state transition in a highly purified plant PSII preparation (Triton X-100, octylthioglucoside). A comparison of S2 minus S1 spectra revealed that removal of PsbP and PsbQ had no significant effect on the data, whereas amide frequency and intensity changes were associated with PsbO removal. These data suggest that PsbO acts as an organizational template for the PSII reaction center. To identify any coupled conformational changes arising directly from PsbO, global 13C-PsbO isotope editing was employed. The reaction-induced Fourier transform infrared spectra of accessible S states provide evidence that PsbO spectral contributions are temperature (263 and 277 K) and S state dependent. These experiments show that PsbO undergoes catalytically relevant structural dynamics, which are coupled over long distance to hydrogen-bonding changes at the Mn4CaO5 cluster.  相似文献   

18.
Two monomeric fractions of photosystem II (PS II) core pacticles from the thermophilic cyanobacterium Thermosynechococcus elongatus have been investigated using flash-induced variable fluorescence kinetics and EPR spectroscopy. One fraction was highly active in oxygen evolution and contained the extrinsic protein subunits PsbO, PsbU, and PsbV. The other monomeric fraction lacked oxygen evolving activity as well as the three extrinsic subunits, but the luminally located, extrinsic Psb27 lipoprotein was present. In the monomeric fraction with bound Psb27, flash-induced variable fluorescence showed an absence of oxidizable Mn on the donor side of PS II and impaired forward electron transfer from the primary quinone acceptor, QA. These results were confirmed with EPR spectroscopy by the absence of the "split S1" interaction signal from YZ* and the CaMn4 cluster and by the absence of the S2-state multiline signal. A different protein composition on the donor side of PS II monomers with Psb27 was also supported by the lack of an EPR signal from cytochrome c550 (in the PsbV subunit). In addition, we did not observe any oxidation of cytochrome b559 at low temperature in this fraction. The presence of Psb27 and the absence of the CaMn4 cluster did not affect the protein matrix around YD or the acceptor side quinones as can be judged from the appearance of the corresponding EPR signals. The diminished electron transport capabilities on both the donor and the acceptor side of PS II when Psb27 is present give further indications that this PS II complex is involved in the earlier steps of the PS II repair cycle.  相似文献   

19.
Distribution of photosystem II (PSII) extrinsic proteins was examined using antibodies raised against various extrinsic proteins from different sources. The results showed that a glaucophyte (Cyanophora paradoxa) having the most primitive plastids contained the cyanobacterial-type extrinsic proteins (PsbO, PsbV, PsbU), and the primitive red algae (Cyanidium caldarium) contained the red algal-type extrinsic proteins (PsO, PsbQ', PsbV, PsbU), whereas a prasinophyte (Pyraminonas parkeae), which is one of the most primitive green algae, contained the green algal-type ones (PsbO, PsbP, PsbQ). These suggest that the extrinsic proteins had been diverged into cyanobacterial-, red algal- and green algal-types during early phases of evolution after a primary endosymbiosis. This study also showed that a haptophyte, diatoms and brown algae, which resulted from red algal secondary endosymbiosis, contained the red algal-type, whereas Euglena gracilis resulted from green algal secondary endosymbiosis contained the green algal-type extrinsic proteins, suggesting that the red algal- and green algal-type extrinsic proteins have been retained unchanged in the different lines of organisms following the secondary endosymbiosis. Based on these immunological analyses, together with the current genome data, the evolution of photosynthetic oxygen-evolving PSII was discussed from a view of distribution of the extrinsic proteins, and a new model for the evolution of the PSII extrinsic proteins was proposed.  相似文献   

20.
The psbC gene encodes the intrinsic chlorophyll protein CP 43, a component of photosystem II in higher plants, green algae, and cyanobacteria. Oligonucleotide-directed mutagenesis was used to introduce mutations into the portion of psbC that encodes the large extrinsic loop E of CP 43 in the cyanobacterium Synechocystis 6803. Three mutations, E293Q, E339Q, and E352Q, each produced a strain with impaired photosystem II activity. The E293Q mutant strain grew photoautotrophically at rates comparable to the control strain. Immunological analyses of several PS II components indicated that this mutant accumulated normal quantities of PS II proteins. However, this mutant evolved oxygen to only 56% of control rates at saturating light intensities. Measurements of total variable fluorescence yield indicated that this mutant assembled approximately 60% of the fully functional PS II centers found in the control strain. The E339Q mutant grew photoautotrophically at a severely reduced rate. Both immunological analysis and variable fluorescence yield experiments indicated that E339Q assembled a normal complement of PS II centers. However, this mutant was capable of evolving oxygen to only 20% of control rates. Variable fluorescence yield experiments demonstrated that this mutant was inefficient at using water as an electron donor. Both E293Q and E339Q strains exhibited an increased (approximately 2-fold) sensitivity to photoinactivation. The E352Q mutant was the most severely affected. This mutant failed to grow photoautotrophically and exhibited essentially no capacity for oxygen evolution. Measurements of total variable fluorescence yield indicated that this mutant assembled no functional PS II centers. Immunological analysis of isolated thylakoid membranes from E352Q revealed a complete absence of CP 43 and reduced levels of both the D1 and manganese-stabilizing proteins. These results suggest that the mutations E293Q and E339Q each produce a defect associated with the oxygen-evolving complex of photosystem II. The E352Q mutation appears to affect the stability of the PS II complex. This is the first report showing that alteration of negatively charged residues in the CP 43 large extrinsic loop results in mutations affecting PS II assembly/function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号