首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Adenosine deaminase (ADA) deficiency results in a combined immunodeficiency brought about by the immunotoxic properties of elevated ADA substrates. Additional non-lymphoid abnormalities are associated with ADA deficiency, however, little is known about how these relate to the metabolic consequences of ADA deficiency. ADA-deficient mice develop a combined immunodeficiency as well as severe pulmonary insufficiency. ADA enzyme therapy was used to examine the relative impact of ADA substrate elevations on these phenotypes. A "low-dose" enzyme therapy protocol prevented the pulmonary phenotype seen in ADA-deficient mice, but did little to improve their immune status. This treatment protocol reduced metabolic disturbances in the circulation and lung, but not in the thymus and spleen. A "high-dose" enzyme therapy protocol resulted in decreased metabolic disturbances in the thymus and spleen and was associated with improvement in immune status. These findings suggest that the pulmonary and immune phenotypes are separable and are related to the severity of metabolic disturbances in these tissues. This model will be useful in examining the efficacy of ADA enzyme therapy and studying the mechanisms underlying the immunodeficiency and pulmonary phenotypes associated with ADA deficiency.  相似文献   

2.
Adenosine deaminase (ADA) is involved in purine metabolism and plays an important role in the mechanism of the immune system. ADA activity is composed of two kinetically distinct isozymes, which are referred to as ADA1 and ADA2. ADA1 is widely distributed in many animals and well characterized. On the contrary, relatively little is known about ADA2. In this study, we first purified ADA2 to homogeneity from chicken liver. The purified enzyme had a molecular mass of approximately 110 kDa on gel filtration. Also, the enzyme was shown to be a homodimer with an estimated molecular mass of 61 kDa on SDS-PAGE. Following treatment with N-glycosidase, the molecular mass of ADA2 changed to 55 kDa. Several properties of the highly purified ADA2 were also investigated in this study. Furthermore, the N-terminal amino acid sequence of ADA2 was determined.  相似文献   

3.
Human adenosine deaminase (ADA) is an important purine catabolic enzyme which irreversibly deaminates adenosine and deoxyadenosine. Severe genetic deficiency of ADA leads to an immunological deficiency state in which T-lymphoid cells are selectively destroyed by the accumulation of toxic levels of deoxyadenosine and deoxy-ATP. In preparation for transfer of ADA sequences into a variety of cell types, we explored expression of ADA cDNAs transfected into cultured cells within a simian virus 40-based expression vector. After transfection into monkey kidney (COS) cells, ADA cDNA encompassing the entire coding region of the protein generated human ADA activity. An unexpected finding, however, was the identification of a cDNA clone that failed to produce either human enzyme activity or immunoreactive ADA protein. As this pattern is typical of many naturally occurring mutant ADA alleles, we characterized the molecular defect in this clone. DNA sequence analysis revealed a single nucleotide substitution in amino acid position 50 (glycine-valine). Northern blotting with a unique 17-mer oligonucleotide demonstrated the absence of the mutant sequence in the mRNA from which the cDNA library giving rise to the mutant cDNA was constructed. Therefore, the substitution in the variant cDNA was created during cloning. These data define one critical region of the human ADA protein molecule and suggest a convenient strategy for characterization of the phenotypes associated with naturally occurring mutant alleles.  相似文献   

4.
Rabbit antibody to calf adenosine deaminase (ADA) was used to localize this enzyme in tissues of the young rat and calf by the immunoperoxidase method. The distribution patterns of ADA in most tissues were similar for both species. Within the thymus gland, the enzyme was strongly expressed predominantly in cortical lymphocytes. In the spleen and lymph nodes, most lymphocytes of T-cell areas stained weakly for ADA, whereas only a small number of ADA-positive cells were found in B-cell areas. Clumps of strongly ADA-positive mononuclear blastoid and plasma cells were observed in the medullary regions of lymph nodes, around peri-arteriolar lymphocyte sheaths and in the red pulp of the spleen, and in the lamina propria of the intestine. Double immunofluorescence staining studies in the rat showed that some of these blastoid cells contained both ADA and immunoglobulins and appeared to be plasmablasts. Strong staining for ADA was also found, in both the rat and calf, in as yet unidentified mononuclear blastoid cells in the interstitium of non-lymphoid organs (kidney, heart, lung), in endothelial cells of some arterioles and capillaries, and in Kupffer cells of the liver. In addition, ADA was strongly expressed in calf bile canaliculi. These studies define areas in rat and calf tissues which contain ADA-positive cells and provide a model system for investigations of the relationship between ADA and the function and development of these cells.  相似文献   

5.
Thymocytes lacking adenosine deaminase (ADA) activity, a purine metabolism enzyme, accumulate intracellular dATP and consequently undergo apoptosis during development. We have analyzed the effect of ADA enzyme inhibition in human thymocyte suspension cultures with regard to accumulation of intracellular dATP and induction of apoptosis. We demonstrate that while inhibition of deoxycytidine kinase will prevent the accumulation of dATP and induction of apoptosis to a large degree, inhibition of both deoxycytidine kinase and adenosine kinase completely abrogates the accumulation of dATP and significantly reduces the induction of apoptosis. Thus, both deoxynucleoside kinases are involved in this model of ADA deficiency.  相似文献   

6.
Thymocytes lacking adenosine deaminase (ADA) activity, a purine metabolism enzyme, accumulate intracellular dATP and consequently undergo apoptosis during development. We have analyzed the effect of ADA enzyme inhibition in human thymocyte suspension cultures with regard to accumulation of intracellular dATP and induction of apoptosis. We demonstrate that while inhibition of deoxycytidine kinase will prevent the accumulation of dATP and induction of apoptosis to a large degree, inhibition of both deoxycytidine kinase and adenosine kinase completely abrogates the accumulation of dATP and significantly reduces the induction of apoptosis. Thus, both deoxynucleoside kinases are involved in this model of ADA deficiency.  相似文献   

7.
8.
In this study we have investigated the effect of reactive oxygen species produced by some chemicals in aqueous solutions on activity of adenosine deaminase 2 (ADA2) purified from human blood plasma. An activating effect on ADA2 was observed in vitro with sodium nitroprusside (SNP), the source of NO (nitrosonium ions NO in aqueous solutions). Not SH-groups of cysteine but other amino acid residues sensitive to NO were responsible for ADA2 activation. The SNP-derived activation was more pronounced when purified ADA2 was preincubated with heparin and different proteins as an experimental model of the protein environment in vivo. The most effective was heparin, which is known for its ability to regulate enzyme and protein functions in extracellular matrix. We conclude that ADA2 is a protein with flexible conformation that is affected by the protein environment, and it changes its activity under oxidative (nitrosative) stress.  相似文献   

9.
10.
Inherited deficiency of the enzyme adenosine deaminase (ADA) has been found in a significant proportion of patients with severe combined immunodeficiency disease and inherited defect generally characterized by a deficiency of both B and T cells. Two questions are central to understanding the pathophysiology of this disease: (1) at what stage or stages in lymphocyte development are the effects of the enzyme deficiency manifested; (2) what are the biochemical mechanisms responsible for the selective pathogenicity of the lymphoid system. We have examined the stage or stages of rat T-cell development in vivo which are affected by an induced adenosine deaminase deficiency using the ADA inhibitors, erythro-9-(2-hydroxy-3-nonyl)adenine (EHNA) and 2'-deoxycoformycin (DCF). In normal rats given daily administration of an ADA inhibitor, cortical thymocytes were markedly depleted; peripheral lymphocytes and pluripotent hemopoietic stem cells (CFU-S) all were relatively unaffected. Since a deficiency of ADA affects lymphocyte development, the regeneration of cortical and medullary thymocytes and their precursors after sublethal irradiation was used as a model of lymphoid development. By Day 5 after irradiation the thymus was reduced to 0.10-0.5% of its normal size; whereas at Days 9 and 14 the thymus was 20-40% and 60-80% regenerated, respectively. When irradiated rats were given daily parenteral injections of the ADA inhibitor plus adenosine or deoxyadenosine, thymus regeneration at Days 9 and 14 was markedly inhibited, whereas the regeneration of thymocyte precursors was essentially unaffected. Thymus regeneration was at least 40-fold lower than in rats given adenosine or deoxyadenosine alone. Virtually identical results were obtained with both ADA inhibitors, EHNA and DCF. The majority of thymocytes present at Day 9 and at Day 14 in inhibitor-treated rats had the characteristics of subcapsular cortical thymocytes which are probably the most ancestral of the thymocytes. Thus, an induced ADA deficiency blocked the proliferation and differentiation of subcapsular cortical thymocytes which are the precursors of cortical and medullary thymocytes.  相似文献   

11.
12.
We have investigated the structural gene for adenosine deaminase (ADA) in a female infant with ADA deficiency associated severe combined immune deficiency (ADA-SCID) disease and her family by DNA restriction-fragment-length analysis. In this family a new ADA-specific restriction-fragment-length variant was detected, which involves a 3.2-kb deletion spanning the ADA promoter as well as the first exon. It was found that the patient, who was born to a consanguineous couple, was homozygous and both her parents and her brother were heterozygous for the deletion. No ADA-specific mRNA could be detected by hybridization in fibroblasts derived from this patient. Thus the patient was established to be homozygous for a true null ADA allele. In the light of the apparently normal development of most tissues except the lymphoid tissue the above finding directly questions the classification of ADA as a 'housekeeping' enzyme.  相似文献   

13.
Several recent X-ray crystal structures of adenosine deaminase (ADA) in complex with various adenosine surrogates have illustrated the preferred mode of substrate binding for this enzyme. To define more specific structural details of substrate preferences for binding and catalysis, we have studied the ADA binding efficiencies and deamination kinetics of several synthetic adenosine analogues in which the furanosyl ring is biased toward a particular conformation. NMR solution studies and pseudorotational analyses were used to ascertain the preferred furanose ring puckers (P, nu(MAX)) and rotamer distributions (chi and gamma) of the nucleoside analogues. It was shown that derivatives which are biased toward a "Northern" (3'-endo, N) sugar ring pucker were deaminated up to 65-fold faster and bound more tightly to the enzyme than those that preferred a "Southern" (2'-endo, S) conformation. This behavior, however, could be modulated by other structural factors. Similarly, purine riboside inhibitors of ADA that prefer the N hemisphere were more potent inhibitors than S analogues. These binding propensities were corroborated by detailed molecular modeling studies. Docking of both N- and S-type analogues into the ADA crystal structure coordinates showed that N-type substrates formed a stable complex with ADA, whereas for S-type substrates, it was necessary for the sugar pucker to adjust to a 3'-endo (N-type) conformation to remain in the ADA substrate binding site. These data outline the intricate structural details for optimum binding in the catalytic cleft of ADA.  相似文献   

14.
Human plasma adenosine deaminase 2 is secreted by activated monocytes   总被引:2,自引:0,他引:2  
Adenosine deaminase (ADA) plays an important role in the immune system, and its activity is composed of two kinetically distinct isozymes, ADA1 and ADA2. ADA2 is a major component of human plasma total ADA activity and ADA2 activity is significantly elevated in patients with various diseases such as HIV infection and chronic hepatitis. However, relatively little is known about ADA2 because of difficulties in purifying this enzyme. In this study we succeeded in purifying human plasma ADA2 and demonstrate the extracellular secretion of ADA2 from human peripheral blood monocytes stimulated with phorbol 12-myristate 13-acetate and calcium ionophore.  相似文献   

15.
Adenosine deaminase (ADA) could be quantitated and the isozyme pattern characterized in cultured amniotic fluid cells. In 20 amniotic fluid cell cultures the mean specific activity was 14.3 U/g protein +/- 6.7 (SD) and compared favorably with values of 14.6 U/g protein +/- 6.8 (SD) observed in 26 cultures of skin fibroblasts. In cultures of skin fibroblasts established from two obligate heterozygotes for ADA deficiency, the specific activity of ADA was 7.0 and 7.7 U/g protein. The ADA isozyme pattern that existed in cultures of amniotic fluid cells was the same as that observed in cultured skin fibroblasts. This identification of the same apparent enzyme may permit the prenatal diagnosis of that form of combined immunodeficiency disease caused by ADA deficiency. Residual enzyme activity of less than 1% and 10% of the mean of normal fibroblasts could be measured in cultured fibroblasts from two unrelated children with ADA deficiency and combined immunodeficiency disease. The tissue-specific enzyme from cultured skin fibroblasts from the child with 10% residual activity had a faster electrophoretic mobility and greater heat stability than normal ADA. This enzymatic evidence indicates that at least two mutant alleles exist at the locus for ADA which predispose to combined immunodeficiency disease when present in the homozygous state.  相似文献   

16.
Abstract

Adenosine deaminase (ADA) is an important catabolic enzyme which converts adenosine and deoxyadenosine to inosine and deoxyinosine, respectively. ADA exists in two different isoenzymes, namely ADA1 and ADA2, whose balance in monocytes-macrophages seems to guarantee the homeostasis of adenine nucleosides. Modifications of the purine moiety or/and substitution of the sugar moiety of adenosine with aliphatic chains led to derivatives which are good ADA inhibitors.  相似文献   

17.
Near total inhibition of brain adenosine deaminase (ADA) activity in rats injected with the potent ADA inhibitor 2'-deoxycoformycin (DCF) was previously shown to reduce enzyme activity for up to 50 days during which time the enzyme exhibited reduced sensitivity to in vivo inhibition by DCF. Here, we investigated the biochemical properties of ADA and the basis for its reduced activity after DCF treatment. It was found that much higher doses of DCF were required to inhibit ADA in DCF-treated compared with drug-naive animals. Fourteen days after DCF administration, reduced ADA activity in brain homogenates was due to a decrease in Vmax, rather than to an altered Km of ADA for adenosine. DCF treatment had no effect on Ki values for erythro-9-(2-hydroxy-3-nonyl)adenine inhibition of ADA. The IC50 value for DCF inhibition of ADA in hypothalamus was unchanged. However, the Ki for DCF inhibition of ADA in whole brain increased by fivefold. Sucrose gradient analysis of brain ADA revealed only one corresponding peak of activity and [3H]DCF-labeled ADA in DCF-treated and control rats. A radioligand filtration assay with [3H]DCF was developed to assess the effects of DCF on ADA protein levels. Over a roughly 200-fold range of ADA activities the binding of [3H]DCF was highly correlated with deaminase activity (r = 0.99). In brain tissues taken 8 and 33 days after treatment of rats with DCF, [3H]DCF binding was reduced to 27% and 48% of control levels, respectively.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
Biochemical and molecular research on parasites has increased considerably in trypanosomes in the recent years. Many of them have the purpose of identify areas, proteins and structures of the parasite which are vulnerable and could be used in therapy against the protozoan. Based on this hypothesis this study aimed to detect biochemically the enzyme adenosine deaminase (ADA) in Trypanosoma evansi, and to adapt an assay to the measurement of its activity in trypomastigotes. Firstly, the parasites were separated from the blood of mice experimentally infected with a DEAE-cellulose column. The ADA activity in trypomastigotes was evaluated at concentrations of 0.1, 0.2, 0.5, 0.6 and 0.8 mg of protein by spectrophotometry. ADA activity was observed in the parasites at all concentrations tested and its activity was proportional to the concentration of protein, ranging between 0.64 and 2.24 U/L in the lowest and highest concentration of protein, respectively. Therefore, it is possible to detect biochemically ADA in T. evansi, an enzyme that may be associated with vital functions of the parasite, similar to what occurs in mammals. This knowledge may be useful in the association of the chemotherapic treatment with specific inhibitors of the enzyme, in future studies.  相似文献   

19.
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is a potent immunosuppressant in several animal species. The purpose of this study was to determine if TCDD affected the activity of adenosine deaminase (ADA), a purine metabolizing enzyme that is vital to the proper functioning of the immune system. The effect of TCDD on ADA ctivity was studied in various tissues of male Balb/c mice (a TCDD-responsive strain) and DBA/2 mice (a less-responsive strain). Of the tissues examined after administration of TCDD in vivo (115 μ/kg, i.p.), ADA activity was found to be significantly reduced in thymic and splenic tissues of Balb/c mice at 24 hours postadministration. The enzyme activity in these affected tissues remained consistently low through 10 days postadministration. Such an effect of TCDD was both dose and time related in the thymic tissue of Balb/c mice. In contrast, no appreciable alterations in ADA activity were evident in any of the tissues of DBA/2 mice at any of the sampling intervals, indicating that such an effect of TCDD is likely to be mediated through the Ah receptor. This in vivo effect of TCDD on thymic ADA activity was also reproducible in situ where isolated whole thymuses were directly incubated with 10 nM TCDD. In this model, TCDD's effects on ADA activity were antagonized by known protein kinase or phosphorylation inhibitors such as quercetin, genistein, tyrphostin, and neomycin. These results indicate that the effect of TCDD on ADA activity in the thymus may be related to its property to elevate protein kinase activities in this tissue. ADA activity was also reduced in 3T3 cells that were treated with 10 nM TCDD in a low (1%) serum media. In contrast, 25 ng/mL epidermal growth factor (EGF) under such conditions consistently stimulated ADA activity. Interestingly, EGF at a similar concentration failed to elicit a stimulatory effect on ADA activity when cells were pretreated with TCDD. The property of TCDD to lower ADA activity under in vivo, in situ, as well as in vitro conditions appears to be largely related to its action to modulate protein phosphorylation activities.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号