首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Isoelectric focusing of MCF-7 cell extracts revealed an association of the glycolytic enzymes glyceraldehyde 3-phosphate-dehydrogenase, phosphoglycerate kinase, enolase, and pyruvate kinase. This complex between the glycolytic enzymes is sensitive to RNase. p36 could not be detected within this association of glycolytic enzymes; however an association of p36 with a specific form of malate dehydrogenase was found. In MCF-7 cells three forms of malate dehydrogenase can be detected by isoelectric focusing: the mitochondrial form with an isoelectric point between 8.9 and 9.5, the cytosolic form with pl 5.0, and a p36-associated form with pl 7.8. The mitochondrial form comprises the mature mitochondrial isoenzyme (pl 9.5) and its precursor form (pl 8.9). Refocusing of the pl 7.8 form of malate dehydrogenase also gave rise to the mitochondrial isoenzyme. Thus, the pl 7.8 form of malate dehydrogenase is actually the mitochondrial isoenzyme retained in the cytosol by the association with p36. Addition of fructose 1,6-bisphosphate to the initial focusing column induced a quantitative shift of the pl 7.8 form of malate dehydrogenase to the mitochondrial forms (pl 8.9 and 9.5). In MCF-7 cells p36 is not phosphorylated in tyrosine. Kinetic measurements revealed that the pl 7.8 form of malate dehydrogenase has the lowest affinity for NADH. Compared to both mitochondrial forms the cytosolic isoenzyme has a high capacity when measured in the NAD → NADH direction (malate → oxaloacetate direction). The association of p36 with the mitochondrial isoenzyme may favor the flow of hydrogen from the cytosol into the mitochondria. Inhibition of cell proliferation by AMP which leads to an inhibition of glycolysis has no effect on complex formation by glycolytic and glutaminolytic enzymes in MCF-7 cells. AMP treatment leads to an activation of malate dehydrogenase, which correlates with the increase of pyruvate and the decrease of lactate levels, but has no effect on the distribution of the various malate dehydrogenase forms. © 1996 Wiley-Liss, Inc.  相似文献   

2.
The inhibition of fructose utilization by whole cells of Hydrogenomonas eutropha H 16, following the addition of hydrogen to the gas phase, has been explained as an inhibition of glucose 6-phosphate dehydrogenase (Blackkolb and Schlegel, 1968a, b). The intracellular concentrations of glucose 6-phosphate, 6-phosphogluconate, three inhibitors of the enzyme (NADH, ATP and phosphoenolpyruvate) and some related metabolites were measured in cells incubated in the presence and absence of hydrogen. Inhibition of glucose 6-phosphate dehydrogenase was confirmed by an increase in the glucose 6-phosphate pool and a decrease in the 6-phosphogluconate concentration. The regulatory control is apparently due to a threefold increase in the NADH concentration while the concentrations of the other two inhibitors fell slightly. When the measured intracellular concentrations of intermediates were used in the in vitro assay of glucose 6-phosphate dehydrogenase activity, an almost total inhibition of the dehydrogenase was observed, therefore further regulatory factors must be considered.  相似文献   

3.
Dictyosomes in the yeastSchizosaccharomyces pombe   总被引:2,自引:0,他引:2  
Schizosaccharomyces pombe log-phase cells were studied by the methods of freeze-etching and ultrathin sectioning. Recognizable dictyosomes consisted of 3–7 cisternae surrounded by vesicles. No distinct tubuli were found on the periphery of the cisternae. Each cell contained several solitary dictyosomes which were most frequently observed near regions of cell-wall growth.  相似文献   

4.
Liver aldehyde dehydrogenase (ALDH), the enzyme involved in the oxidation of aldehydes such as acetaldehyde derived from ethanol, exists in multiple forms in most mammals. Up to five separable forms have been identified from the cytosolic fraction of Wistar rat liver. We investigated the genetic basis of a particular set of three enzyme forms by selective breeding and analysis of electrophoretic patterns of liver ALDH by isoelectric focusing. The forms of liver ALDH investigated were at pI 5.8 or 6.2, or a triple form with enzymes at pI 5.8, 6.0, and 6.2. There are two alleles found at the ALDH locus which encode in homozygotes for one of two electrophoretically separable ALDH forms. A rat heterozygous at the locus forms both ALDH types plus a hybrid. The alleles are expressed codominantly, found at an autosomal locus, and remain constant postpartum. The activities associated with the triplet enzyme form were statistically indistinguishable from a 1:2:1 ratio. This suggests that the enzymes hybridize to form a set of dimers or tetramers of the form A2, AB, B2 or A4, A2B2, B4, respectively.  相似文献   

5.
Isoelectric focusing of a homogenate of Schistosoma mansoni, followed by malate dehydrogenase-specific staining, showed the presence of two major and five minor malate dehydrogenase isoenzymes (EC 1.1.1.37), with isoelectric points ranging from 7.3 to 9.5. The malate dehydrogenase isoenzymes were purified by gel filtration, followed by ion-exchange chromatography on DEAE- and CM-cellulose. The isoenzymes could be differentiated by their susceptibility to substrate inhibition. No differences in the Michaelis-Menten constants for substrate were found. One of the isoenzymes is inhibited by 5′-AMP. Further purification of this particular isoenzyme was achieved by affinity chromatography on 5′-AMP-Sepharose 4B. Analysis after subcellular fractionation indicated a mitochondrial origin for this isoenzyme. The mitochondrial isoenzyme (at a recovery of 80%) was purified 218-fold compared to the crude soluble extract, and contained about 40% of the total malate dehydrogenase activity. The enzyme has a molecular weight of 65,500 and showed absolute specificity for l-malic acid, NAD, and NADH. The final preparation has a specific activity of 451 U/mg protein. Physicochemical studies, including binding constants, substrate inhibition, thermostability, and pH optima, demonstrated differences between the mitochondrial and cytoplasmic enzymes. A role for malate dehydrogenase in Schistosoma mansoni metabolism is discussed.  相似文献   

6.
R. -A. Walk  B. Hock 《Planta》1977,136(3):211-220
Molecular properties of the glyoxysomal and mitochondrial isoenzyme of malate dehydrogenase (EC 1.1.1.37; L-malate: NAD+ oxidoreductase) from watermelon cotyledons (Citrullus vulgaris Schrad.) were investigated, using completely purified enzyme preparations. The apparent molecular weights of the glyoxysomal and mitochondrial isoenzymes were found to be 67,000 and 74,000 respectively. Aggregation at high enzyme concentrations was observed with the glyoxysomal but not with the mitochondrial isoenzyme. Using sodium dodecyl sulfate electrophoresis each isoenzyme was found to be composed of two polypeptide chains of identical size (33,500 and 37,000, respectively). The isoenzymes differed in their isoelectric points (gMDH: 8,92, mMDH: 5.39), rate of heat inactivation (gMDH: 1/2 at 40°C=3.0 min; mMDH: stable at 40°C; 1/2 at 60°C=4.5 min), adsorption to dextran gels at low ionic strenght, stability against alkaline conditions and their pH optima for oxaloacetate reduction (gMDH: pH 6.6, mMDH: pH 7.5). Very similar pH optima, however, were observed for L-malate oxidation (pH 9.3–9.5). The results indicate that the glyoxysomal and mitochondrial MDH of watermelon cotyledons are distinct proteins of different structural composition.Abbreviations EDTA ethylene diamine tetraacetic acid - gMDH and mMDH glyoxysomal and mitochondrial malate dehydrogenase, respectively  相似文献   

7.
The effect of light and carbon nutrition on the synthesis of citrate synthase (EC 4.1.3.7) and malate dehydrogenase (EC 1.1.1.37) in dark-grown resting (carbon deficient) and in phototrophic division-synchronized cultures of Euglena gracilis Klebs strain z were investigated. Exposure of dark-grown Euglena to white or red light produced a transient increase in the specific activities of citrate synthase and malate dehydrogenase but blue light (of equal energy) was ineffective. Citrate-synthase activity increased at the end of the light phase and in early dark phase in phototrophic cultures division-synchronized by a regime of 14 h light-10 h dark. The addition of ethanol or malate produced a twofold increase in citrate-synthase activity compared with phototrophic cultures. White and blue light, but not red light, produced a transient repression of the metabolite-induced increase in citrate-synthase activity in division-synchronized cultures. Since only red light could effect a transient increase in the specific activity of mitochondrial enzymes, and the blue-red plastid receptor should respond to both blue and red light, the synthesis of mitochondrial enzymes in regreening cultures may be under the control of a new photoreceptor responding only to red light. In division-synchronized phototrophic cells the primary effector of synthesis of mitochondrial enzymes is not light but carbon nutrition.  相似文献   

8.
The Schizosaccharomyces pombe cells harboring the methionine- R-sulfoxide reductase (MsrB)-overexpressing recombinant plasmid pFMetSO exhibited better growth than vector control cells, when shifted into fresh medium containing cadmium chloride (abbreviated as Cd). Although both groups of cells contained enhanced reactive oxygen species (ROS) and nitric oxide (NO) levels in the presence of Cd, ROS and NO levels were significantly lower in the S. pombe cells harboring pFMetSO than in vector control cells. Conversely, the S. pombe cells harboring pFMetSO possessed higher total glutathione (GSH) levels and a greater reduced/oxidized GSH ratio than vector control cells under the same conditions.  相似文献   

9.
The microbody isoenzyme of malate dehydrogenase (EC 1.1.1.37) from leaves of Spinacia oleracea was purified to a specific activity of 3000 units/mg protein and examined for a number of physical, kinetic, and immunological properties. The purified enzyme has a molecular weight of approximately 70,000 and an isoelectric point of 5.65. Thermal inactivation first order rate constants were 0.068 (35 °C), 0.354 (45 °C), and 2.11 (55 °C) for irreversible denaturation. Apparent millimolar Michaelis constants are 0.34 (NAD, pH 8.5) 0.16 (NADH, pH 7.5), 3.33 (malate, pH 8.5), 0.07 (OAA, pH 6.0), 0.06 (OAA, pH 7.5), and 0.50 (OAA, pH 9.0). The enzyme is stablized by 20% glycerol and can be stored for several months at 4 °C without detectable loss of activity. The purified enzyme is sensitive to the ionic strength of the assay medium exhibiting a pH optimum of 5.65 at high ionic strength and 7.00 at low ionic strength. Rabbit antiserum prepared against the purified microbody MDH shows a single precipitin band on immunodiffusion analysis. Immunological studies indicate that rabbit antiserum prepared against the purified microbody enzyme cross reacts approximately 10% with the mitochondrial isoenzyme of MDH. No cross reaction was shown with the soluble isoenzyme. In general, the data presented in this report tend to support the notion of organelle specific isoenzymes of malate dehydrogenase in higher plant tissues and uniqueness of the microbody form of malate dehydrogenase in particular.  相似文献   

10.
Five Torulopsis species, in which, characteristically, the mean molar percentage of guanine plus cytosine of the DNA bases (GC content) is above 50%, were examined to determine their cell-wall structure; the mode of bud formation; course of mitosis and their urease activity. The two urease-negative species, T. gropengiesseri (% GC 57.1) and T. silvatica (% GC 56.3), were found to possess affinitive properties which characterize perfect ascomycetous yeast species. In the urease-positive species, T. fujisanensis (% GC 65.0–66.1), T. ingeniosa (% GC 55.6) and T. philyla (% GC 63.9), there appeared to be a correlation between pronounced urease activity and the affinitive properties which characterize perfect basidiomycetous yeast species. Pronounced urease activity has, however, also been found in the ascomycetous species Schizosaccharomyces pombe. Consequently neither high GC ratios nor the presence of urease activity when considered individually, can be taken as reliable criteria when attempting to establish the affinity of yeasts the perfect states of which are not known, with the Basidiomycetes. A strain of the ascomycetous species Sclerotinia trifoliorum was examined by electron microscopy for comparative purposes.  相似文献   

11.
A total of 22 strains of known species of the genusSchizosaccharomyces Lindner were evaluated by numerical taxonomy based on conventional identification tests. The results of numerical taxonomy were supplemented by a determination of activity of extracellular hydrolytic enzymes, especially 1,3-β-D-glucanase, RNAase and DNAase. All the strains tested were capable of utilizing the 1,4-capable of utilizing the 1,4-α-D-glucan tamarind. Study of life cycles of these organisms showed that extracellular hydrolytic enzymes were present mainly at the time of maturation of asci and release of their walls. Strains forming four-spore asci could be comprised in the single speciesSchizosaccharomyces pombe Lindner as two varieties:S. pombe var.pombe andS. pombe var.malidevorans. The two varieties differ in maltose fermentation. Urease is produced by all strains irrespective of the life cycle phase. A number of hydrolytic enzymes are not produced by the genusSchizosaccharomyces (e.g. amylolytic enzymes) despite the fact that oligomers of the maltose type are utilized. Species of the genusSchizosaccharomyces lack also xylanase, cellulases, mannase, and are incapable of degrading carrageenan and acid polysaccharides.  相似文献   

12.
13.
The formation of protoplasts of the fission yeastsSchizosaccharomyces pombe andSchizosaccharomyces versatilis after the combined application of snail enzymes andTrichoderma viride enzymes in an osmotic stabilizer (0.4m KC1, pH 5.5) was studied by light and electron microscopy. The effect of the enzymes used leads during 30 min to the formation of 100% protoplast population. Using electron microscopy no original walls or wall remnants were detected in the suspension of protoplasts. Protoplasts are viable and in liquid nutrient medium they regenerate cell walls and revert into normal cells. Such a protoplast population may be useful for biochemical study of protoplast metabolism by quantitative methods as well as for the chemical study of regenerating cell walls.  相似文献   

14.
By either acrylamide or starch gel electrophoresis of Norway spruce (Picea abies) seed extracts, two prominent isoenzyme bands were obtained after staining for leucine aminopeptidase (LAP). These bands were proved to correspond to each other by reelectrophoresis in both gel media. Single endosperm studies with acrylamide gels showed clearly that, in addition to LAP, two bands are expressed after staining for alanine aminopeptidase (AAP) as well. Both the LAP and the AAP activities appeared together as a single peak between catalase and ferritin after gel chromatography on Sepharose. Isoelectric focusing in sucrose gradients proved the two LAP activities to have identical isoelectric points and revealed that LAP, but not AAP, is detectable by standard starch gel electrophoretic procedures. The two LAP bands refer to approximate molecular weights of 71,000 and 131,000, respectively. Disaggregation studies did not conclusively determine whether these two bands represent different enzymes or not. Only inhibitors succeeded in producing a definite differentiation by selective inhibition of one of the two bands. It is concluded that in both gel media the isoenzyme bands reflect the activity of two distinct leucine aminopeptidases.  相似文献   

15.
The glucose-utilizing mutantHydrogenomonas strain H16G+ differs from the original strain H16 in having a higher specific activity of glucose-6-phosphate dehydrogenase. During incubation of the original strain or of the mutant H16G+ in a mineral salts/fructose-medium under an atmosphere of 80% H2 + 20% O2, neither growth nor formation of the enzymes of the Entner-Doudoroff system occur. Molecular hydrogen represses the formation of these enzymes even in the presence of carbon dioxide, peptone, or lactate. Under air, the formation of the enzymes of the Entner-Doudoroff pathway is not repressed by lactate nor by acetate, glutamate or pyruvate. In strain H16G+ fructose suppresses the adaptation to glucose; glucose does not repress the formation of a fructose permease. Fructose also suppresses adaptation to and utilization of glutamate and aspartate, but not of lactate. In cells grown either chemolithotrophically or on fructose acetyl-CoA kinase, malate synthase and isocitrate lyase are rapidly formed under air after addition of acetate; the formation of these enzymes is also completely suppressed by molecular hydrogen or fructose.  相似文献   

16.
The eukaryotic translation initiation factor 2A (eIF2A) was identified as a factor that stimulates the binding of methionylated initiator tRNA (Met-tRNA i Met ) to the 40S ribosomal subunit, but its physiological role remains poorly defined. Recently, eIF2A was shown to be involved in unconventional translation initiation from CUG codons and in viral protein synthesis under stress conditions where eIF2 is inactivated. We determined the crystal structure of the WD-repeat domain of Schizosaccharomyces pombe eIF2A at 2.5 Å resolution. The structure adopts a novel nine-bladed β-propeller fold. In contrast to the usual β-propeller proteins, the central channel of the molecule has the narrower opening on the bottom of the protein and the wider opening on the top. Highly conserved residues are concentrated in the positively-charged top face, suggesting the importance of this face for interactions with nucleic acids or other initiation factors.  相似文献   

17.
Summary 13C Nuclear magnetic resonance and fumarase and NAD-malate dehydrogenase isoenzyme studies were carried out in a strain of A. flavus which produces relatively high levels of l-malic acid from glucose. The results of the 13C NMR showed that the 13C label from [1-13C] glucose was incorporated only to C-3 (-CH2-) of l-malic acid and indicated that this acid must be synthesized from pyruvate mainly via oxaloacetate. Electrophoretic analysis has established the presence of unique mitochondrial and cytosolic isoenzymes for fumarase and malate dehydrogenase. Changes in the isoenzyme pattern were observed for malate dehydrogenase but not for fumarase during acid production. Cycloheximide inhibited profoundly both l-malic acid production and the increase in the major isoenzyme of malate dehydrogenase, without affecting either the total activity of fumarase or its isoenzyme pattern. The results suggested that de novo protein synthesis is involved in the increase in the activity of the major isoenzyme of malate dehydrogenase and that this isoenzyme is essential for l-malic acid production and accumulation.  相似文献   

18.
Davis B  Merrett MJ 《Plant physiology》1973,51(6):1127-1132
Sucrose density gradient centrifugation of broken cell suspensions of autotrophically grown Euglena gracilis Klebs. has allowed the separation of chloroplasts, mitochondria, and peroxisomes. Chlorophyll was taken as a marker for chloroplasts, fumarase and succinate dehydrogenase for mitochondria, and glycolate oxidoreductase for peroxisomes. Peaks of malate dehydrogenase (l-malate-NAD oxidoreductase, EC 1.1.1.37) activity were found in the mitochondrial and peroxisomal fractions. Acrylamide gel electrophoresis showed specific isoenzymes in the mitochondrial and peroxisomal fractions and a third isoenzyme in the supernatant. The mitochondrial isoenzyme which had a Km (oxaloacetate) of 30μm was inhibited by oxaloacetate concentrations above 0.17 mm, an inhibition of 50% being given by 0.9 mm oxaloacetate. The peroxisomal isoenzyme had a Km (oxaloacetate) of 24 μm, was inhibited by oxaloacetate concentrations above 0.13 mm, 50% inhibition being given by 0.25 mm oxaloacetate. Malate dehydrogenase activity in the supernatant did not show inhibition by increasing oxaloacetate concentration, the Km (oxaloacetate) being 91 μm.  相似文献   

19.
The method of isoelectric focusing in polyacrylamide gel was used to separate G6PD isozymes in crude hemolysates of human, rabbit, and rat erythrocytes. G6PD (B) from erythrocytes of a normal human male donor revealed six bands of activity. Their mean isoelectric points, using pH 3–10 and 5–8 range empholytes, were pI 7.04 for band I, pI 6.60 for band II, pI 6.37 for band III, pI 6.11 for band IV, pI 5.94 for band V, pI 5.79 for band VI. G6PD from rabbit and rat erythrocytes revealed completely different multiple band patterns. The method of isoelectric focusing in polyacrylamide gel is presented as a new way of detecting G6PD isozyme patterns.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号