首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To probe the mechanism by which intracellular ATP, Na+, and Cl- influence the activity of the NaK2Cl cotransporter, we measured bumetanide-sensitive (BS) 86Rb fluxes in the osteosarcoma cell line UMR- 106-01. Under physiological gradients of Na+, K+, and Cl-, depleting cellular ATP by incubation with deoxyglucose and antimycin A (DOG/AA) for 20 min at 37 degrees C reduced BS 86Rb uptake from 6 to 1 nmol/mg protein per min. Similar incubation with 0.5 mM ouabain to inhibit the Na+ pump had no effect on the uptake, excluding the possibility that DOG/AA inhibited the uptake by modifying the cellular Na+ and K+ gradients. Loading the cells with Na+ and depleting them of K+ by a 2-3- h incubation with ouabain or DOG/AA increased the rate of BS 86Rb uptake to approximately 12 nmol/mg protein per min. The unidirectional BS 86Rb influx into control cells was approximately 10 times faster than the unidirectional BS 86Rb efflux. On the other hand, at steady state the unidirectional BS 86Rb influx and efflux in ouabain-treated cells were similar, suggesting that most of the BS 86Rb uptake into the ouabain-treated cells is due to K+/K+ exchange. The entire BS 86Rb uptake into ouabain-treated cells was insensitive to depletion of cellular ATP. However, the influx could be converted to ATP-sensitive influx by reducing cellular Cl- and/or Na+ in ouabain-treated cells to impose conditions for net uptake of the ions. The BS 86Rb uptake in ouabain-treated cells required the presence of Na+, K+, and Cl- in the extracellular medium. Thus, loading the cells with Na+ induced rapid 86Rb (K+) influx and efflux which, unlike net uptake, were insensitive to cellular ATP. Therefore, we suggest that ATP regulates a step in the turnover cycle of the cotransporter that is required for net but not K+/K+ exchange fluxes. Depleting control cells of Cl- increased BS 86Rb uptake from medium-containing physiological Na+ and K+ concentrations from 6 to approximately 15 nmol/mg protein per min. The uptake was blocked by depletion of cellular ATP with DOG/AA and required the presence of all three ions in the external medium. Thus, intracellular Cl- appears to influence net uptake by the cotransporter. Depletion of intracellular Na+ was as effective as depletion of Cl- in stimulating BS 86Rb uptake.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

2.
The effect of Ca+2 on the transport and intracellular distribution of Na+ and K+ in Ehrlich ascites tumor cells was investigated in an effort to establish the mechanism of Ca+2-induced hyperpolarization of the cell membrane. Inclusion of Ca+2 (2 mM) in the incubation medium leads to reduced cytoplasmic concentrations of Na+, K+ and Cl- in steady cells. In cells inhibited by ouabain, Ca+2 causes a 41% decrease in the rate of net K+ loss, but is without effect on the rate of net Na+ accumulation. Net K+ flux is reduced by 50%, while net Na+ flux is unchanged in the transport-inhibited cells. The membrane potential of cells in Ca+2-free medium (-13.9 +/- 0.8 mV) is unaffected by the addition of ouabain. However, the potential of cells in Ca+2-containing medium (-23.3 +/- 1.2 mV) declines in one hour after the addition of ouabain to values comparable to those of control cells (-15.2 +/- 0.7 mV). The results of these experiments are consistent with the postulation that Ca+2 exerts two effects on Na+ and K+ transport. First, Ca+2 reduces the membrane permeability to K+ by 25%. Second, Ca+2 alters the coupling of the Na/K active transport mechanism leading to an electrogenic hyperpolarization of the membrane.  相似文献   

3.
Unidirectional and net Na+ fluxes modified by changes in internal Na+ concentration ([Na+]i) were studied in human red blood cells incubated in K+-free solutions containing 10-minus 4 m ouabain. An increase in [Na+]i brought about (a) a reduction in net Na+ gain, (b) no change in Na+ influx, (c) a reduction in the rate constant for Na+ effux and (d) an increase in Na+ efflux. Similar reductions in net Na+ gain were observed when the changes in [Na+]i were carried out at constant [K+]i. In addition, the rate constant for 42K+ efflux was not affected by changes in [Na+]i. The electrical membrane potential (as determined from the chloride distribution ratio) was also constnat. Furosemide (10-minus 3 M) increased the net Na+ gain in concentration reduced Na+ efflux and increased Na+ influx: the magnitude of these effects was dependent onthe intracellular Na+. The reduction in the net Na+ gain as [Na+]i increased was unaffected by depletion of cellular ATP to values below 10 mumol/1 cells, and this effect was independent of the depletion method used  相似文献   

4.
Transformed mouse fibroblasts, such as 3T6, exhibit an increase in plasma membrane permeability to nucleotides and other normally impermeant molecules when incubated with external ATP in an alkaline medium low in divalent cations. Increased nucleotide permeability, induced by external ATP, occurs after a 3- to 5-min lag period. Prior to this event, there is a dramatic Na+ influx and K+ efflux, a significant reduction in the levels of intracellular ATP and organic phosphates, and a reduction in the plasma membrane potential. Accordingly, we postulate that these cellular responses to external ATP play a role in the efflux of nucleotides. Ouabain, a specific inhibitor of the plasma membrane (Na+,K+)-ATPase, acts together with low concentrations of external ATP to increase nucleotide permeability in 3T6 cells. This effect occurs at concentrations of ouabain and ATP which alone do not increase nucleotide permeability. In addition, ouabain and low concentrations of ATP alone have little effect on the level of intracellular ATP. This is in contrast to energy inhibitors and uncouplers which appear to enhance nucleotide permeability by lowering the intracellular ATP concentration. Ouabain alone causes a threefold increase in intracellular Na+ levels and a similar reduction in intracellular K+ levels under our experimental conditions, supporting the idea that ion fluxes are involved in the mechanism of permeabilization.  相似文献   

5.
The affinity and number of binding sites of [3H]ouabain to isolated transverse (T) tubules were determined in the absence and presence of deoxycholate. In both conditions the KD was approximately 53 nM while deoxycholate increased the number of binding sites from 3.5 to 37 pmol/mg protein. We concluded that the ouabain binding sites were located primarily on the inside of the isolated vesicle and that the vesicles were impermeable to ouabain. ATP induced a highly active Na+ accumulation by the T tubules which increased Na+ in the T tubular lumen by almost 200 nmol/mg protein. The accumulation had an initial fast phase lasting 2-3 min and a subsequent slow phase which continued for at least 40 min. The rate of the initial fast phase indicated a turnover number of 20 Na+/s. The Na+ accumulation was prevented by monensin but was unaffected by valinomycin. Ouabain did not influence Na+ uptake, but digitoxin inhibited it. At low K+ the accumulation of Na+ was reduced 3.7-fold below the value at 50 mM K+. 86Rb, employed as a tracer to detect K+, showed a first phase of K+ release while Na+ was accumulated. After 2-3 min, K+ was reaccumulated while Na+ continued to increase in the lumen. T tubules accumulated Cl- on addition of ATP. This suggested that ATP initiated an exchange of Na+ for K+ followed by uptake of Na+ and K+ accompanied by Cl-.  相似文献   

6.
Extracellular ATP (1 mM) inhibited the growth of Friend virus-infected murine erythroleukemia cells (MEL cells) but had no effect on dimethyl sulfoxide-induced differentiation. ATP (1 mM) also caused changes in the permeability of MEL cells to ions. There was an increased influx of 45Ca2+ from a basal level of 5 pmol/min to 18 pmol/min/10(6) cells to achieve a 2-fold increase in steady-state Ca2+ as measured at isotopic equilibration. Ca2+ influx was blocked by diisothiocyanostilbene disulfonate (DIDS), an inhibitor of anion transport. ATP also stimulated Cl- uptake, and this flux was inhibited by DIDS. The ratio of ATP stimulated Cl- to Ca2+ uptake was 1.6:1. K+ and Na+ influx were also stimulated by ATP, but phosphate uptake was inhibited; the Na+ influx dissipated the Na+ gradient and thus inhibited nutrient uptake. ATP-stimulated K+ influx was ouabain inhibitable; however, the total cellular K+ decreased due to an ATP-stimulated ouabain-resistant K+ efflux. Na+ influx and Ca2+ influx occurred by separate independent routes, since Na+ influx was not inhibited by DIDS. The effects observed were specific for ATP *K1/2 MgATP = 0.7 mM) since AMP, GTP, adenosine, and the slowly hydrolyzable ATP analogue adenyl-5'-yl imidodiphosphate were without effect. The major ionic changes in the cell were a decrease in K+ and increase in Na+; cytoplasmic pH and free Ca2+ did not change appreciably. These ATP-induced changes in ion flux are considered to be responsible for growth inhibition.  相似文献   

7.
The membrane potential of the Ehrlich ascites tumor cell was shown to be influenced by its amino acid content and the activity of the Na+ :K+ pump. The membrane potential (monitored by the fluorescent dye, 3,3'-dipropylthiodicarbocyanine iodide) varied with the size of the endogenous amino acid pool and with the concentration of accumulated 2-aminoisobutyrate. When cellular amino acid content was high, the cells were hyperpolarized; as the pool declined in size, the cells were depolarized. The hyperpolarization seen with cellular amino acid required cellular Na+ but not cellular ATP. Na+ efflux was more rapid from cells containing 2-aminoisobutyrate than from cells low in internal amino acids. These observations indicate that the hyperpolarization recorded in cells with high cellular amino acid content resulted from the electrogenic co-efflux of Na+ and amino acids. Cellular ATP levels were found to decline rapidly in the presence of the dye and hence the influence of the pump was seen only if glucose was added to the cells. When the cells contained normal Na+ (approx. 30mM), the Na+ :K+ pump was shown to have little effect on the membrane potential (the addition of ouabain had little effect on the potential). When cellular Na+ was raised to 60mM, the activity of the pump changed the membrane potential from the range -25 to -30 mV to -44 to -63 mV. This hyperpolarization required external K+ and was inhibited by ouabain.  相似文献   

8.
We present a new technique for the simultaneous measurement of cell volume changes and intracellular ionic activities in single cells. The technique uses measurement of changes in the concentration of intracellularly trapped fluorescent dyes to report relative cell volume. By using pH- or Ca(2+)-sensitive dyes and recording at the ion-sensitive and -insensitive (isosbestic) wavelengths, the method can measure both cell volume changes and intracellular ionic activities. The technique was used to study the mechanisms of regulatory volume decrease (RVD) in the osteosarcoma cell line UMR-106-01 grown on cover slips. Swelling cells in 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES)-buffered hypotonic medium was followed by stable cytosolic acidification and a decrease in cell volume back toward normal. The recovery of cell volume could be blocked by depolarization, treatment with ouabain, or depletion of cell Cl-. These suggest the conductive efflux of K+ and Cl- during RVD. The cytosolic acidification that accompanied cell swelling was not blocked by amiloride, bafilomycin A, or removal of Cl- and could not be reproduced by depletion of cellular ATP. These findings exclude Na+/H+ and Cl-/HCO-3 exchange, intracellularly generated acid, or increased metabolism, respectively, as the cause of the acidification. The cell swelling-induced acidification was inhibited by depolarization, suggesting the involvement of an electrogenic pathway. The acidification, as well as RVD, was inhibited by short incubation with deoxyglucose, and these effects could not be reversed by valinomycin. Thus, the anionic pathway(s) participating in RVD and the acidification are sensitive to the cellular level of ATP. Together, these studies indicate that RVD in UMR-106-01 cells in HEPES-buffered medium is mediated by the conductive efflux of K+, Cl-, and OH-.  相似文献   

9.
Volume-induced increase of anion permeability in human lymphocytes   总被引:14,自引:7,他引:7       下载免费PDF全文
Peripheral blood mononuclear cells (PBM) readjust their volumes after swelling in hypotonic media. This regulatory volume decrease (RVD) is associated with a loss of cellular K+ and is thought to be promoted by an increased permeability to this ion. In contrast, no change in volume was observed when K+ permeability of PBM in isotonic media was increased to comparable or higher levels using valinomycin. Moreover, valinomycin-induced 86Rb+ loss in K+-free medium was considerably slower than in K+-rich medium. These results suggest that anion conductance limits net salt loss in isotonic media. Direct measurements of relative conductance confirmed that in volume-static cells, anion conductance is lower than that of K+. In volume-regulating cells depolarization occurred presumably as a result of increased anion conductance. Accordingly, the efflux of 36Cl from PBM was markedly increased by hypotonic stress. Since both membrane potential and intracellular 36Cl concentration are reduced in hypotonically swollen cells, the increased efflux is probably due to a change in Cl- permeability. Anions and cations seem to move independently through the volume-induced pathways: the initial rate of 86Rb uptake in swollen cells was not affected by replacement of external Cl- by SO=4; conversely, 36Cl fluxes were unaffected by substitution of K+ by Na+. The data indicate that anion conductance is rate-determining in salt and water loss from PBM. An increase in anion conductance is suggested to be the critical step of RVD of human PBM.  相似文献   

10.
K Fendler  E Grell  M Haubs    E Bamberg 《The EMBO journal》1985,4(12):3079-3085
The transport activity of purified Na+K+-ATPase was investigated by measuring the electrical pump current induced on black lipid membranes. Discs containing purified Na+K+-ATPase from pig kidney were attached to planar lipid bilayers in a sandwich-like structure. After the addition of only microM concentrations of an inactive photolabile ATP derivative [P3-1-(2-nitro)phenylethyladenosine 5'-triphosphate, caged ATP] ATP was released after illumination with u.v.-light, which led to a transient current in the system. The transient photoresponse indicates that the discs and the underlying membrane are capacitatively coupled. Stationary pump currents were obtained after the addition of the H+, Na+ exchanging agent monensin together with valinomycin to the membrane system, which increased the permeability of the black lipid membrane for the pumped ions. In the absence of ADP and Pi the half saturation for the maximal photoeffect was obtained at 6.5 microM released ATP. The addition of ADP decreased the pump activity. Pump activity was obtained only in the presence of Mg2+ together with Na+ and Na+ and K+. No pump current was obtained in the presence of Mg2+ together with K+. The electrical response was blocked completely by the Na+K+-ATPase-specific inhibitors vanadate and ouabain. No pump currents were observed with a chemically modified protein, which was labelled on the ATP binding site with fluoresceine isothiocyanate. The method described offers the possibility of investigating by direct electrical measurements ion transport of Na+K+-ATPase with a large variety of different parameters.  相似文献   

11.
Tetrodotoxin and acidic pH do not change the resting membrane potential (RMP), whereas Na+ or Cl- free solutions or ouabain and furosemide equally depolarize the membrane of the earthworm somatic muscle cells. The findings of the RMP depending on extracellular K+ concentration corroborate theoretical model by Goldman-Hodgkin-Katz only in Na(+)-free medium or in presence of ouabain. The data suggest that the RMP is the sum of potassium and chlorine diffusion potentials as well as of the potential produced by electrogenic component of Na+ pump and, probably, by furosemide-sensitive Na+,K+Cl- co-transport.  相似文献   

12.
Ehrlich ascites cells were preincubated in hypotonic medium with subsequent restoration of tonicity. After the initial osmotic shrinkage the cells recovered their volume within 5 min with an associated KCl uptake. The volume recovery was inhibited when NO-3 was substituted for Cl-, and when Na+ was replaced by K+, or by choline (at 5 mM external K+). The volume recovery was strongly inhibited by furosemide and bumetanide, but essentially unaffected by DIDS. The net uptake of Cl- was much larger than the value predicted from the conductive Cl- permeability. The undirectional 36Cl flux, which was insensitive to bumetanide under steady-state conditions, was substantially increased during regulatory volume increase, and showed a large bumetanide-sensitive component. During volume recovery the Cl- flux ratio (influx/efflux) for the bumetanide-sensitive component was estimated at 1.85, compatible with a coupled uptake of Na+ and Cl-, or with an uptake via a K+,Na+,2Cl- cotransport system. The latter possibility is unlikely, however, because a net uptake of KCl was found even at low external K+, and because no K+ uptake was found in ouabain-poisoned cells. In the presence of ouabain a bumetanide-sensitive uptake during volume recovery of Na+ and Cl- in nearly equimolar amounts was demonstrated. It is proposed that the primary process during the regulatory volume increase is an activation of an otherwise quiescent, bumetanide-sensitive Na+,Cl- cotransport system with subsequent replacement of Na+ by K+ via the Na+/K+ pump, stimulated by the Na+ influx through the Na+,Cl- cotransport system.  相似文献   

13.
Extracellular ATP rendered the plasma membrane of transformed mouse fibroblasts permeable to normally impermeant molecules. This permeability change was prevented by increasing the ionic strength of the isotonic medium with NaCl. Conversely, the cells exhibited increased sensitivity to ATP when the NaCl concentration was decreased below isotonicity, when the KCl concentration was increased above 5 mM while maintaining isotonicity, and when the pH of the medium was raised above 7.0. These conditions as well as the addition of ATP itself caused cell swelling. However, the effect of ATP was independent of cell volume and dependent upon the ionic strength and not the osmolarity of the medium since 1) addition of sucrose to isotonic medium did not prevent permeabilization although media made hypertonic with either sucrose or NaCl caused a decrease in cell volume; and 2) addition of sucrose or NaCl to hypotonic media caused a decrease in cell volume, but only NaCl addition decreased the response to ATP. Conditions that have been shown to inhibit plasma membrane proteins that play a reciprocal role in cell volume regulation had reciprocal effects on the permeabilization process, even though the effect of ATP was independent of cell volume. For example, inhibition of the Na+,K+-ATPase by ouabain increased sensitivity of cells to ATP while conditions which inhibit Na+,K+,Cl- -cotransporter activity, such as treatment of the cells with the diuretics furosemide or bumetanide or replacement of sodium chloride in the medium with sodium nitrate or thiocyanate, inhibited permeabilization. The furosemide concentration that inhibited permeabilization was greater than the concentration that inhibited Na+,K+,Cl- -cotransporter-mediated 86Rb+ (K+) uptake, suggesting that the effect of furosemide on the permeabilization process may not be specific for the Na+,K+,Cl- -cotransporter.  相似文献   

14.
(1) Unidirectional K+ (86Rb) influx and efflux were measured in subconfluent layers of MDCK renal epithelial cells and HeLa carcinoma cells. (2) In both MDCK and HeLa cells, the furosemide-inhibitable and chloride-dependent component of K+ influx/efflux was stimulated 2-fold by a 30 min incubation in 1 . 10(-3) M ouabain. (3) Measurements of net K+ loss and Na+ gain in ouabain-treated cells at 1 h failed to show any diuretic sensitive component, confirming the exchange character of the diuretic-sensitive fluxes. (4) Prolonged incubations for 2.5 h in ouabain revealed a furosemide- and anion-dependent K+ (Cl-) outward net flux uncoupled from net Na+ movement. Net K+ (Cl-) outward flux was half-maximally inhibited by 2 microM furosemide. (5) After 2.5 h ouabain treatment, the anion and cation dependence of the diuretic-sensitive K+ influx/efflux were essentially unchanged when compared to untreated controls.  相似文献   

15.
The effect of K+ depletion of Hep 2 cells on ion fluxes, internal pH, cell volume, and membrane potential was studied. The cells were depleted of K+ by incubation in K+-free buffer with or without a preceding exposure to hypotonic medium. Efflux of K+ in cells not exposed to hypotonic medium was inhibited by furosemide or by incubation in Na+-free medium, indicating that in this case at least part of the K+ efflux occurs by Na+/K+/Cl- cotransport. After exposure to hypotonic medium, K+ efflux was not inhibited by furosemide, whereas it was partly inhibited by 4,4'-diisothiocyano-2,2'-stilbene-disulfonic acid (DIDS). Exposure to hypotonic medium induced acidification of the cytosol, apparently because of efflux of protons from intracellular acidic vesicles. When isotonicity was restored, a rebound alkalinization of the cytosol was induced, because of activation of the Na+/H+ antiporter. While hypotonic shock and a subsequent incubation in K+-free buffer rapidly depolarized the cells, depolarization occurred much more slowly when the K+ depletion was carried out by incubation in K+-free buffer alone. The cell volume was reduced in both cases. K+ depletion by either method strongly reduced the ability of the cells to accumulate 36Cl- by anion antiport, and K+-depleted cells were unable to increase the rate of 36Cl- uptake in response to alkalinization of the cytosol.  相似文献   

16.
The cellular mechanism of active chloride secretion, as it is manifested in the intestine and trachea, appears to possess the following elements: (1)NaCl cl-transport across the basolateral membrane; (2) Cl- accumulation in the cell above electrochemical equilibrium due to the Na+ gradient; (3) a basolateral Na+-K+ pump that maintains the Na+ gradient; (4) a hormone-regulated Cl- permeability in the apical membrane; (5) passive Na/ secretion through a paracellular route, driven by the transepithelial potential difference; and (6) an increase in basolateral membrane K+ permeability occurring in conjunction with an increase in Na+-K+ pump rate. Electrophysiological studies in canine trachea support this model. Adrenalin, a potent secretory stimulus in that tissue, increases apical membrane conductance through a selective increase in Cl- permeability. Adrenalin also appears to increase basolateral membrane K+ permeability. Whether or not adrenalin also increases paracellular Na+ permeability is unclear. Some of the testable implications of the above secretion model are discussed.  相似文献   

17.
1. Addition of 3.5 mM ATP to mouse neuroblastoma Neuro-2A cells results in a selective enhancement of the plasma membrane permeability for Na+ relative to K+, as measured by cation flux measurements and electro-physiological techniques. 2. Addition of 3.5 mM ATP to Neuro-2A cells results in a 70% stimulation of the rate of active K+ -uptake by these cells, partly because of the enhanced plasma membrane permeability for Na+. Under these conditions the pumping activity of the Neuro-2A (Na+ +K+)-ATPase is optimally stimulated with respect to its various substrate ions. 3. External ATP significantly enhances the affinity of the Neuro-2A (Na+ +K+)-ATPase for ouabain, as measured by direct [3H]ouabain-binding studies and by inhibition studies of active K+ uptake. In the presence of 3.5 mM ATP and the absence of external K+ both techniques indicate an apparent dissociation constant for ouabain of 2 X 10(-6)M. Neuro-2A cells contain (3.5 +/- 0.7) X 10(5) ouabain-binding sites per cell, giving rise to an optimal pumping activity of (1.7 +/- 0.4) X 10(-20) mol K+/min per copy of (Na+ +K+)-ATPase at room temperature.  相似文献   

18.
Mammalian bronchial epithelium absorbs Na+ under basal conditions, but Cl- secretion can be induced. We studied the effects of several modes of metabolic inhibition on the bioelectric properties and solute permeability of dog bronchial epithelium mounted in Ussing chambers. Net Na+ absorption and short-circuit current were inhibited by approximately 75% by hypoxia or by 10(-3) M NaCN. The reduced net Na+ absorption was characterized by a decrease in absorptive flux and an increase in backflux. The latter change was proportional to an increase in permeability to [14C]mannitol, implying that solute flow through a paracellular shunt was increased. In contrast, the reduction of conductance expected from exposure to amiloride (0.94 +/- 0.15 ms/cm2 or 12%) was abolished by NaCN pretreatment. Metabolic inhibition also decreased epithelial conductance and unidirectional Cl- fluxes by approximately 25%. NaCN rapidly and reversibly inhibited the hyperpolarization of potential difference (PD) induced by low luminal bath [Cl-]. This effect was mimicked by the Cl- channel blocker, 5-nitro-2-(3-phenylpropylamino) benzoic acid. Because the transepithelial Cl- diffusion PD reflects, in part, the depolarization of the Cl- -conductive apical cell membrane, metabolic inhibition appears to affect this path. We conclude that metabolic inhibition not only decreased net ion transport by dog bronchial epithelium but also inhibited cellular Na+- and Cl- -conductive pathways and increased paracellular permeability.  相似文献   

19.
Mitochondrial dysfunction has been widely associated with programmed cell death. Studies of intact cells are important for the understanding of the process of cell death and its relation to mitochondrial physiology. Using cytofluorometric approaches we studied the mitochondrial behavior in an erythroleukemic cell line. The effects of protonophore carbonyl cyanide m-chlorophenylhydrazone (CCCP), potassium exchanger (nigericin), potassium ionophore (valinomycin), Na+K+-ATPase inhibitor (ouabain) and mitochondrial permeability transition pore inhibitor (cyclosporin A) were evaluated. Cyclosporin A (CSA) was very effective in attenuating the disruption of inner mitochondrial membrane potential induced by CCCP. However, CSA failed to protect the loss of inner mitochondrial membrane potential induced by potassium intracellular flux manipulation. Our findings suggest that mitochondrial cyclophilin is not involved in the cell events mediated by deregulation of potassium flux, underlining the need for further studies in intact tumor cells for a better understanding of the involvement of mitochondria physiology in cell death events.  相似文献   

20.
Palytoxin (PTX), isolated from the marine soft coral Palythoa tuberculosa, increases the cation conductance of human red cell membranes. In the presence of 10(-10) M PTX and 10(-5) M DIDS, the membrane potential approximates the equilibrium potential for Na+ or K+ rather than Cl-. Even in the absence of DIDS, the Na+ and K+ conductances were greater than the Cl- conductance. The selectivity of the PTX-induced cation conductance is K+ greater than Rb+ greater than Cs+ greater than Na+ greater than Li+ much greater than choline+ greater than TEA+ much greater than Mg2+. Measurements of K+ efflux revealed two apparent sites for activation by PTX, one with a Kal of 0.05 nM and a maximum flux, nu max1, of 1.4 mol/liter of cells per h and another with a Ka2 of 98 nM and a nu max2 of 24 mol/liter of cells per h. These effects of PTX are completely blocked by external ouabain (300 microM) and prevented by internal vanadate (100 microM). When the PTX channels are open, the Na,K pumps do not catalyze ATP hydrolysis. Upon thorough washout of cells exposed to about five molecules of PTX/pump, the Na,K pump of these cells operates normally. Blockage of the positively charged NH2 terminus of PTX with a p-bromobenzoyl group reduces the potency of the compound to induce Na and K fluxes by at least a factor of 100, and to compete with the binding of [3H]ouabain by at least a factor of 10. These data are consistent with the conclusion that PTX binds reversibly to the Na,K pumps in the red cell membrane and opens a (10-pS) channel equally permeable to Na and K at or near each pump site.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号