首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1. In situ exclosure experiments in the Mississippi and Ohio Rivers determined the importance of fish predation in regulating zebra mussels (Dreissena polymorpha), an increasingly important constituent of the benthic invertebrate assemblages in both rivers. 2. We evaluated the effects of predatory fish on the density, biomass and size distribution of zebra mussels in a floodplain reach of the upper Mississippi River and in a naturally constrained reach of the Ohio River. Fifty, six-sided, predator-exclusion cages and fifty ‘partial’ cages (mesh at the upstream end only) were deployed, with half the cages containing willow snags and half clay tiles suspended 12–16 cm above the bottom. A single snag or tile sample unit was removed from each cage at approximately monthly intervals from July to October 1994. Types and relative abundances of molluscivorous fish were evaluated by electrofishing near the cages in both rivers. Actual and potential recruitment of young zebra mussels on to the substrata were measured using benthic samples in both rivers and estimated (Ohio River only) from counts of planktonic veligers. 3. Zebra mussels were consumed by at least three fish species in the upper Mississippi River (mostly carp, Cyprinus carpio, and redhorse suckers, Moxostoma sp.) and five species in the Ohio River (primarily smallmouth buffalo, Ictiobus bubalus, and channel catfish, Ictalurus punctatus), but potential recruitment seemed adequate to replace consumed mussels, at least in the Ohio River. The number of juvenile benthic mussels showed no apparent link with the density of veligers soon after initiation of reproduction. Recruitment of juveniles on snags and tiles was not affected by cage type (thus eliminating a potentially confounding ‘cage effect’). 4. Fish significantly influenced mussel populations, but the impact was often greatest among low density populations in the upper Mississippi. Density and biomass differed in both rivers for cage type (higher inside cages), substratum (greater on tiles), and date (increased over time). Presumed size-selective predation was present in the Mississippi (greater on larger size classes) but was not evident in the Ohio. We hypothesize that fish in the Mississippi can more easily select larger prey from the low density populations; whereas size-selective predation on tightly packed zebra mussels in the Ohio would be difficult. 5. Although fish can reduce numbers of Dreissena polymorpha in the two rivers, current levels of fish predation seem insufficient to regulate zebra mussel densities because of its great reproductive capacity. The recent invasion of zebra mussels, however, could lead to larger fish populations while promoting greater carbon retention and overall ecosystem secondary production.  相似文献   

2.
1. Suspension feeding by bivalves exceeds that by other planktivores in many North American rivers, and food webs may be altered substantially by differences in feeding patterns between native unionid mussels and invading dreissenid mussels. 2. We conducted an experiment comparing zooplanktivory by one unionid and two dreissenid species that addressed several primary questions. Is benthic planktivory important in this river? Has this linkage been altered substantially by dreissenids? Do the two dreissenid species differ in planktivory, and is this ecologically important if quagga mussels extend their geographical range? 3. Our 12‐day experiment consisted of controls (no mussels) and treatments with unionid (Elliptio complanata), quagga (Dreissena bugensis) or zebra (D. polymorpha) mussels in 3500‐L, 80‐μm mesh enclosures placed in a slackwater area of the St Lawrence River. 4. The density of the most abundant calanoid copepod Eurytemora affinis increased in the presence of dreissenids, probably as an indirect food web response. By day 12, a cumulative effect was shown by the most overwhelmingly abundant rotifer, Polyarthra, whose density declined dramatically in dreissenid enclosures compared with control and unionid enclosures. Rotifer densities in unionid enclosures were not different from controls, nor were dreissenid treatments different from each other. The effects on rotifers were probably from predation, as Chl‐a did not vary among treatments. 5. We conclude that benthic‐pelagic coupling via planktivory is important in slackwater areas. Dreissenids have strengthened this linkage, but range extension of quaggas should not appreciably alter effects produced by a similar biomass of zebra mussels.  相似文献   

3.
Dreissena polymorpha population densities and biomass were followed in three Belarusian lakes with different trophic status over a 12-year period subsequent to initial colonization. In all three lakes zebra mussel population densities did not change once they reached a maximum. Application of the Ramcharan et al. [1992. Canadian Journal of Fisheries and Aquatic Sciences 49: 2611–2620] model for predicting population dynamics of zebra mussels was accurate for two of the three lakes studied. Population density appears to depend on the time since initial colonization, relative abundance of substrate available for colonization, lake morphometry and trophic type. Zebra mussel distribution within lakes was highly patchy, but the degree of dispersion decreased over time after initial colonization, which may be a result of saturation of suitable substrates by zebra mussels as populations increase and reach carrying capacity. In lakes where submerged macrophytes are the dominant substrate for zebra mussel attachment, populations may be less stable than in lakes with a variety of substrates, which will have a more balanced age distribution, and be less impacted by year to year variation in recruitment. Dreissena polymorpha usually reach maximum population density 7–12 years after initial introduction. However, the timing of initial introduction is often very difficult to determine. Both European and North American data suggest that zebra mussels reach maximum density in about 2–3 years after populations are large enough to be detected.  相似文献   

4.
SUMMARY 1. Exotic zebra mussels, Dreissena polymorpha, occur in southern U.S. waterways in high densities, but little is known about the interaction between native fish predators and zebra mussels. Previous studies have suggested that exotic zebra mussels are low profitability prey items and native vertebrate predators are unlikely to reduce zebra mussel densities. We tested these hypotheses by observing prey use of fishes, determining energy content of primary prey species of fishes, and conducting predator exclusion experiments in Lake Dardanelle, Arkansas. 2. Zebra mussels were the primary prey eaten by 52.9% of blue catfish, Ictalurus furcatus; 48.2% of freshwater drum, Aplodinotus grunniens; and 100% of adult redear sunfish, Lepomis microlophus. Blue catfish showed distinct seasonal prey shifts, feeding on zebra mussels in summer and shad, Dorosoma spp., during winter. Energy content (joules g−1) of blue catfish prey (threadfin shad, Dorosoma petenense; gizzard shad, D. cepedianum; zebra mussels; and asiatic clams, Corbicula fluminea) showed a significant species by season interaction, but shad were always significantly greater in energy content than bivalves examined as either ash-free dry mass or whole organism dry mass. Fish predators significantly reduced densities of large zebra mussels (>5 mm length) colonising clay tiles in the summers of 1997 and 1998, but predation effects on small zebra mussels (≤5 mm length) were less clear. 3. Freshwater drum and redear sunfish process bivalve prey by crushing shells and obtain low amounts of higher-energy food (only the flesh), whereas blue catfish lack a shell-crushing apparatus and ingest large amounts of low-energy food per unit time (bivalves with their shells). Blue catfish appeared to select the abundant zebra mussel over the more energetically rich shad during summer, then shifted to shad during winter when shad experienced temperature-dependent stress and mortality. Native fish predators can suppress adult zebra mussel colonisation, but are ultimately unlikely to limit population density because of zebra mussel reproductive potential.  相似文献   

5.
1. Abundant native predators, parasites and pathogens that switch to consuming a hyper‐successful exotic species may be able to control the invasive population. Native predators may, however, need time to adapt to feed effectively on an exotic resource. In this case, mortality on an exotic population from native predators could increase over time even without a numerical increase in the predator population. 2. We measured mortality of zebra mussels (Dreissena polymorpha) in the Hudson River both in controls open to predation and in exclosures that excluded large predators to estimate mortality of zebra mussels from large predators and other causes. 3. We found that predation by the blue crab (Callinectes sapidus), and perhaps other predators, causes high mortality on zebra mussels in the Hudson River estuary. This predation apparently led to increased mortality and altered population structure in the invader over time. 4. Long‐term data from the Hudson River suggest that components of the invaded ecosystem, like rotifers, are recovering through predator‐caused release from zebra mussel grazing. Increased mortality on hyper‐successful exotic populations over time may be a common phenomenon with both ecological and management implications.  相似文献   

6.
Freshwater fouling invertebrate zebra mussels (Dreissena polymorpha) harbor a diverse population of microorganisms in the Great Lakes of North America. Among the indigenous microorganisms, selective species are opportunistic pathogens to zebra mussels. Pathogenicity to zebra mussels by opportunistic bacteria isolated from the mussels was investigated in this study. Among the more than 30 bacteria isolated from temperature-stressed mussels, Aeromonas media, A. veronii, A. salmonicida subsp. salmonicida, and Shewanella putrefaciens are virulent pathogens to juvenile zebra mussels. Inoculation of a bacterial concentration of A. media, A. salmonicida subsp. salmonicida and S. putrefaciens at 107 cells per zebra mussel resulted in 100% mortality within 5 days, and only 64.9% for A. veronii. In contrast, mortality was less than 12.3% following inoculation of a sterile phosphate buffer solution as a control. In addition, mortality was dependent on the size of the pathogen population used in inoculation and the incubation temperature, indicating the close relationship between the bacterial population and subsequent death. On the mussel tissue, a dense microbial population was evident from the moribund mussels viewed with Scanning Electron Microscope (SEM). Opportunistic bacteria invaded and destroyed the D. polymorpha tissue after 7 days of incubation when the bacterial inoculation was larger than 105 per zebra mussel. Our results suggest that mussels are reservoirs of opportunistic pathogenic microorganisms to aquatic organisms and humans and a better understanding of the microbial ecology of the mussels will provide insights to the possible health hazards from these microorganisms.  相似文献   

7.
Invasive species represent a major threat with both direct and indirect effects on natural ecosystems, including effects on established and coevolved relationships. In a series of experiments, we examined how the interaction between two native species, a unionid mussel (Unio pictorum) and the European bitterling (Rhodeus amarus), a fish that parasitises unionids, was affected by the non-native zebra mussel (Dreissena polymorpha). The zebra mussel fouls hard substrates, including shells of living unionids, and its presence is often associated with a decrease in population density of native unionid mussels. Bitterling lay their eggs into live unionids and the embryos develop inside their gills. Using a range of zebra mussel densities, we demonstrated that zebra mussel fouling had a negative effect on the number of bitterling eggs inside the mussel host, with abundances of 5–10 zebra mussels (shell size 15–25 mm) per unionid critical for bitterling ability to utilise the host. In a further experiment, we found that bitterling did not discriminate between unfouled unionids and those fouled with five zebra mussels. Most ovipositions into fouled hosts, however, were unsuccessful as eggs failed to reach the unionid gills. We discuss implications of such unsuccessful ovipositions for bitterling recruitment and population dynamics.  相似文献   

8.
1. The zebra mussel (Dreissena polymorpha) is well known for its invasive success and its ecological and economic impacts. Of particular concern has been the regional extinction of North American freshwater mussels (Order Unionoida) on whose exposed shells the zebra mussels settle. Surprisingly, relatively little attention has been given to the fouling of European unionoids. 2. We investigated interspecific patterns in fouling at six United Kingdom localities between 1998 and 2008. To quantify the effect on two pan‐European unionoids (Anodonta anatina and Unio pictorum), we used two measures of physiological status: tissue mass : shell mass and tissue glycogen content. 3. The proportion of fouled mussels increased between 1998 and 2008, reflecting the recent, rapid increase in zebra mussels in the U.K. Anodonta anatina was consistently more heavily fouled than U. pictorum and had a greater surface area of shell exposed in the water column. 4. Fouled mussels had a lower physiological condition than unfouled mussels. Unlike tissue mass : shell mass ratio, tissue glycogen content was independent of mussel size, making it a particularly useful measure of condition. Unio pictorum showed a stronger decline in glycogen with increasing zebra mussel load, but had a broadly higher condition than A. anatina at the time of study (July). 5. Given the high conservation status and important ecological roles of unionoids, the increased spatial distribution and fouling rates by D. polymorpha in Europe should receive more attention.  相似文献   

9.
The impact of Dreissena polymorpha settlement on recruitment of juvenile mussels and density of other macroinvertebrates was studied in field experiments using blank concrete blocks and tiles (control), blocks and tiles with attached empty zebra mussel shells, and blocks and tiles with attached living mussels. On blocks, dominant invertebrate taxa showed colonization patterns coinciding with increased habitat complexity owing to zebra mussel settlement or the biodeposition of faeces and pseudofaeces. Adult and especially juvenile zebra mussels preferred blocks with empty shells to blank blocks and blocks with living mussels; this might possibly be caused by a chemical cue that induces gregarious settlement. Lower recruitment on blocks with attached living mussels compared to blocks with only shells could be the consequence of ingestion of larvae by adult mussels and of competition for food. On tiles, the sediments deposited and the organic content of the sediment were investigated. Sedimentation was significantly higher on shell‐only and live‐mussel tiles compared to blank tiles. Organic matter differed significantly between blank and live‐mussel tiles.  相似文献   

10.
1. Dreissena polymorpha is an extraordinarily successful invasive species that shows high recruitment of small juvenile mussels on established mussel banks. Such juvenile settlement on, and overgrowth of, large adult mussels; however, leads to competition with adults, and often at high densities and low‐food concentrations. 2. The concept of food thresholds for zero growth has been a powerful approach to explaining size‐related exploitative competition in different zooplankton species. We applied it to investigate whether food threshold concentrations for zero growth (C0) differ between juvenile and adult zebra mussels. 3. By determining body mass growth at various concentrations of a diet mixture (Nannochloropsis limnetica and Isochrysis aff. galbana) we demonstrate that the threshold food concentration for growth of juvenile mussels (C0 = 0.08 mg C L−1) is substantially lower than that for adults (C0 = 0.36 mg C L−1). 4. This indicates that, at low food availability, juvenile zebra mussels are competitively superior to their larger conspecifics. Within zebra mussel banks plankton food is substantially depleted and so the observed mechanism might ensure juvenile success and therefore the regeneration of mussel banks in nature.  相似文献   

11.
The paper includes data on species composition of chironomid larvae which were encountered in the mantle cavity of zebra mussels (Dreissena polymorpha) within 7 waterbodies in the Republic of Belarus. All were found to be free‐living species commonly present in periphyton and/or benthos. A long‐term study of the seasonal dynamics of these larvae in Dreissena did not reveal any typical pattern. Our data suppose that chironomids do not have an obligate association with zebra mussels and possibly enter their mantle cavity inadvertently. (© 2005 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

12.
Non-indigenous crayfish often have major ecological impacts on invaded water bodies, and have contributed to the decline of native crayfish species throughout Europe. The American signal crayfish, Pacifastacus leniusculus, is the most widespread invasive crayfish in Great Britain, where the zebra mussel, Dreissena polymorpha, is similarly an invasive pest species. The potential for the American signal crayfish to regulate zebra mussel populations was investigated through a series of laboratory experiments. Crayfish were found to be highly size selective, consuming significantly more of the smallest size class of zebra mussels offered (7–12 mm), over medium (16–21 mm) and large (25–30 mm). Crayfish feeding rate on zebra mussels was not altered when mussels were presented clumped together in natural druses compared with mussels in a disassembled druse. Crayfish spent significantly more time foraging when mussels were unattached, and a greater proportion of attacks were on medium and large than on small mussels (83% of attacks were on medium and large mussels when unattached as opposed to 47% when on druses). Individual crayfish feeding rate decreased significantly at densities of > ~5 crayfish m−2. Signal crayfish are, therefore, unlikely to be able to significantly impact established populations of zebra mussels in the wild, although zebra mussels have the potential to provide crayfish with a substantial food source.  相似文献   

13.
14.
Following acclimation to 5°, 15° or 25°C for 14days, samples of 30 Dreissena polymorpha (zebra mussels) andCorbicula fluminea (Asian clams) were held in either aerated(control) or extremely hypoxic N2 gassed water (PO2 < 3%of full air saturation). Mortality was negligible in all aeratedcontrols. Mean hypoxia tolerance in D. polymorpha ranged from3–4 days at 25°C to 38–42 days at 5°C. Hypoxiatolerance time of zebra mussels increased significantly withdeclining test temperature (P < 0.001) and increasing acclimationtemperature (P < 0.001). Larger zebra mussels were more tolerantthan smaller individuals. Asian clams were 2–7 times moretolerant of hypoxia than zebra mussels, surviving a mean of11.8 and 35.1 days at 25°C and 15°C, respectively, andwithout mortality for 84 days at 5°C, and were not influencedby temperature acclimation. At 25°C, larger specimens ofAsian clams were less tolerant of hypoxia than smaller individuals.Both species are amongst the least hypoxia tolerant freshwaterbivalve molluscs, reflecting their prevalence in well-oxygenatedshallow water habitats. Prolonged exposure to extreme hypoxiamay provide an efficacious control strategy, particularly forD. polymorpha (Received 12 January 1998; accepted 30 September 1998)  相似文献   

15.
  1. Freshwater mussels are in decline worldwide, with the depressed river mussel Pseudanodonta complanata being one of the rarest and most endangered species in Europe. Invasive mussels are suspected to be an important factor of decline, but there is little information on their interaction with native species.
  2. This study analyzed densities, depth distribution, and individual sizes and weights in one of the largest known populations of P. complanata in Europe in relation to the co‐occurring invasive zebra mussel Dreissena polymorpha and other mussel species, using a systematic transect analysis.
  3. Pseudanodonta complanata was the dominant unionid species in Lake Siecino reaching densities of up to 26 ind/m2, with half of the specimens found at a water depth of 2.0–4.0 m. Densities were highest on sandy substrates in areas of underwater currents. In contrast, 67% of native Unio tumidus were found at depths < 1 m, indicating different habitat preference.
  4. In the study area, 91% of P. complanata, 92% of U. tumidus, and all Anodonta individuals were fouled by D. polymorpha. The dreissenid:unionid mass ratio (mean ± SD; maximum) was 0.43 ± 0.56; 4.22 and 0.86 ± 1.87; 8.76 in P. complanata and U. tumidus, respectively. Pseudanodonta complanata fouled with D. polymorpha were impaired in their anchoring capability and had shell deformations potentially affecting shell closing and filtration activity. Fouling intensity was negatively correlated with unionid density, potentially leading to accelerated population declines.
  5. The observed adverse effects of invasive zebra mussels on the depressed river mussel and the difficulties in eradicating established populations of invasive mussels suggest that D. polymorpha should be considered a serious threat to P. complanata. Therefore, the further spread of zebra mussels into habitats with native unionids needs to be avoided by all means.
  相似文献   

16.
1. Since zebra mussel invaded Lake Constance in the 1960s the number of wintering waterbirds increased fourfold. We studied the impact of predation by waterbirds (tufted duck Aythya fuligula, pochard Aythya ferina and coot Fulica atra) on the population of Dreissena polymorpha in winter 2001/2002. These three species, with monthly peak numbers of approximately 230 000 individuals, currently comprise up to 80% of the waterbird population wintering at Lake Constance. 2. Four different study sites and four depths, that represent typical and characteristic habitats of mussels in Upper Lake Constance, were chosen. 3. Zebra mussels were sampled before, during and after predation by waterbirds. Their biomass in shallow areas decreased by >90%; the biomass reduction in deeper areas was highly variable and dependent on the substratum. With one exception, no changes could be detected at the greatest depth (11 m). 4. Concurrent exclosure studies revealed that the decrease in zebra mussels was caused by waterbird predation. A GIS‐based approximation revealed that in an area of 1 km2 a total of approximately 750 t mussel fresh mass was removed by birds, which is equivalent to 1390 g mussels per bird per day. 5. Wintering waterbirds have a strong structural impact on the littoral community of Lake Constance and could be the key predator of zebra mussels.  相似文献   

17.
Suppression of microzooplankton by zebra mussels: importance of mussel size   总被引:3,自引:0,他引:3  
1. The zebra mussel (Dreissena polymorpha) is amongst the most recent species to invade the Great Lakes. We explored the suppressive capabilities of mussels 6–22-mm in size on Lake St Clair microzooplankton (< 240)μm) in laboratory experiments. 2. Absolute suppression of rotifers and Dreissena veliger larvae was proportional to mussel shell length for individuals larger than 10 mm; larger zooplankton, mainly copepod nauplii and Cladocera, were not affected. Mussel clearance rates on rotifers generally exceeded those on veligers, although rates for both increased with increasing mussel size. Rotifer-based clearance rates of large (22 mm) mussels approached published values for phytoplankton food. 3. Most zooplankton taxa, particularly rotifers, declined significantly in western Lake Erie during the late 1980s concomitant with the establishment and population growth of zebra mussels in the basin. Densities of some taxa subsequently increased, although rotifers and copepod nauplii densities remained suppressed through 1993. Available evidence indicates that direct suppression by Dreissena coupled with food limitation provides the most parsimonious explanation for these patterns.  相似文献   

18.

Predicting the ecosystem effects of invasive species and the best control strategies requires understanding population dynamics and population regulation. Invasive bivalves zebra and quagga mussels (Dreissena spp.) are considered the most aggressive invaders in freshwaters and have become major drivers of ecosystem processes in the Laurentian Great Lakes. Combining all lake-wide studies of Dreissena spp. conducted in the Great Lakes, we found that invasion dynamics are largely governed by lake morphometry. Where both species are present, quagga mussels generally become dominant in 8–13 years. Thereafter, zebra mussels remain common in shallow lakes and embayments and lake-wide Dreissena density may remain similar, while in deep lakes quagga led to a near-complete displacement of zebra mussels and an ensuing dramatic increase in overall dreissenid density. In deep lakes, overall Dreissena biomass peaked later and achieved?~?threefold higher levels than in shallow lakes. Comparison with 21 waterbodies in North America and Europe colonized by both dreissenids confirmed that patterns of invasion dynamics found in the Great Lakes are very consistent with other waterbodies, and thus can be generalized to other lakes. Our biophysical model predicted that the long-term reduction in primary producers by mussel grazing may be fourfold less in deep compared to shallow lakes due to thermal stratification and a smaller proportion of the epilimnion in contact with the bottom. While this impact remains greatest in shallow areas, we show that when lakes are vertically well-mixed, dreissenid grazing impact may be greatest offshore, revealing a potentially strong offshore carbon and phosphorus sink.

  相似文献   

19.
1. Recent increases in phytoplankton biomass and the recurrence of cyanobacterial blooms in western Lake Erie, concomitant with a shift from a community dominated by zebra mussels (Dreissena polymorpha) to one dominated by quagga mussels (D. bugensis), led us to test for differences in ammonia‐nitrogen and phosphate‐phosphorus excretion rates of these two species of invasive molluscs. 2. We found significant differences in excretion rate both between size classes within a taxon and between taxa, with zebra mussels generally having greater nutrient excretion rates than quagga mussels. Combining measured excretion rates with measurements of mussel soft‐tissue dry weight and shell length, we developed nutrient excretion equations allowing estimation of nutrient excretion by dreissenids. 3. Comparing dreissenid ammonia and phosphate excretion with that of the crustacean zooplankton, we demonstrated that the mussels add to nitrogen and phosphorus remineralisation, shortening nitrogen and phosphorus turnover times, and, importantly, modify the nitrogen and phosphorus cycles in Lake Erie. The increased nutrient flux from dreissenids may facilitate phytoplankton growth and cyanobacterial blooms in well‐mixed and/or shallow areas of western Lake Erie.  相似文献   

20.
Invasive species can drive native organisms to extinction by limiting movement and accessibility to essential resources. The purpose of this study was to determine if zebra mussels (Dreissena polymorpha) affect the burrowing ability and growth rate of a native snail, Campeloma decisum. Snails with and without zebra mussels were collected from Douglas Lake, MI, and burrowing depths were studied in both the laboratory and Douglas Lake. Growth rates were calculated as the amount of shell growth from 2004 to 2005. Both the tendency of snails to burrow and the depth to which they burrowed into the substrate were significantly decreased by the presence of zebra mussels on snail shells in both laboratory and lake experiments. There was no difference in the percentage of snails that exhibited growth as a function of zebra mussel presence. However, for those snails that grew, there was a 50% higher growth rate for snails without zebra mussels compared to snails with zebra mussels. These negative effects of zebra mussels on growth and burrowing ability will likely lead to decreases in snail population densities in the future. Handling editor: S. Wellekens  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号