首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The control of pyruvate dehydrogenase activity by inactivation and activation was studied in intact mitochondria isolated from rabbit heart. Pyruvate dehydrogenase could be completely inactivated by incubating mitochondria with ATP, oligomycin, and NaF. This loss in dehydrogenase activity was correlated with the incorporation of 32P from [gamma-32P]ATP into mitochondrial protein(s) and with a decrease in the mitochondrial oxidation of pyruvate. ATP may be supplied exogenously, generated from endogenous ADP during oxidative phosphorylation, or formed from exogenous ADP in carbonyl cyanid p-trifluoromethoxyphenylhydrazone-uncoupled mitochondria. With coupled mitochondria the concentration of added ATP required to half-inactivate the dehydrogenase was 0.24 mM. With uncoupled mitochondria the apparent Km was decreased to 60 muM ATP. Inactivation of pyruvate dehydrogenase by exogenous ATP was sensitive to atractyloside, suggesting that pyruvate dehydrogenase kinase acts internally to the atractyloside-sensitive barrier. The divalent cation ionophore, A23187, enhanced the loss of dehydrogenase activity. Pyruvate dehydrogenase activity is regulated additionally by pyruvate, inorganic phosphate, and ADP. Pyruvate, in the presence of rotenone, strongly inhibited inactivation. This suggests that pyruvate facilitates its own oxidation and that increases in pyruvate dehydrogenase activity by substrate may provide a modulating influence on the utilization of pyruvate via the tricarboxylate cycle. Inorganic phosphate protected the dehydrogenase from inactivation by ATP. ADP added to the incubation mixture together with ATP inhibited the inactivation of pyruvate dehydrogenase. This protection may result from a direct action on pyruvate dehydrogenase kinase, as ADP competes with ATP, and an indirect action, in that ADP competes with ATP for the translocase. It is suggested that the intramitochondrial [ATP]:[ADP] ratio effects the kinase activity directly, whereas the cytosolic [ATP]:[ADP] ratio acts indirectly. Mg2+ enhances the rate of reactivation of the inactivated pyruvate dehydrogenase presumably by accelerating the rate of dephosphorylation of the enzyme. Maximal activation is obtained with the addition of 0.5 mM Mg2+..  相似文献   

2.
1. The mechanism by which insulin activates pyruvate dehydrogenase in rat epididymal adipose tissue was further investigated. 2. When crude extracts, prepared from tissue segments previously exposed to insulin (2m-i.u/ml) for 2min, were supplemented with Mg-2+, Ca-2+, glucose and hexokinase and incubated at 30 degrees C, they displayed an enhanced rate of increase in pyruvate dehydrogenase activity compared with control extracts. 3. When similar extracts were instead supplemented with fluoride, ADP, creatine phosphate and creatine kinase, the rate of decrease in pyruvate dehydrogenase activity observed during incubation at 30 degrees C was unaffected by insulin treatment. 4. It is suggested that insulin increases the fraction of pyruvate dehydrogenase present in the tissue in the active dephospho form by increasing the activity of pyruvate dehydrogenase phosphate phosphatase.  相似文献   

3.
The overall reaction catalyzed by the pyruvate dehydrogenase complex from rat epididymal fat tissue is inhibited by glyoxylate at concentrations greater than 10 μm. The inhibition is competitive with respect to pyruvate; Ki was found to be 80 μm. Qualitatively similar results were observed using pyruvate dehydrogenase from rat liver, kidney, and heart. Glyoxylate also inhibits the pyruvate dehydrogenase phosphate phosphatase from rat epididymal fat, with the inhibition being readily detectable using 50 μm glyoxylate. These effects of glyoxylate are largely reversed by millimolar concentrations of thiols (especially cysteine) because such compounds form relatively stable adducts with glyoxylate. Presumably these inhibitions by low levels of glyoxylate had not been previously observed, because others have used high concentrations of thiols in pyruvate dehydrogenase assays. Since the inhibitory effects are seen with suspected physiological concentrations, it seems likely that glyoxylate partially controls the activity of pyruvate dehydrogenase in vivo.  相似文献   

4.
The phosphorylation of sites additional to an inactivating site inhibits the formation of active pig heart pyruvate dehydrogenase complex from inactive pyruvate dehydrogenase phosphate complex by pig heart pyruvate dehydrogenase phosphate phosphatase.  相似文献   

5.
Mechanisms regulating adipose tissue pyruvate dehydrogenase   总被引:21,自引:20,他引:1  
1. Isolated rat epididymal fat-cell mitochondria showed an inverse relationship between ATP content and pyruvate dehydrogenase activity consistent with competitive inhibition of pyruvate dehydrogenase kinase by ADP. At constant ATP concentration pyruvate rapidly activated pyruvate dehydrogenase in fat-cell mitochondria, an observation consistent with inhibition of fat-cell pyruvate dehydrogenase kinase by pyruvate. Pyruvate dehydrogenase in fat-cell mitochondria was also activated by nicotinate (100mum) and by extramitochondrial Na(+) (replacing K(+)) but not by ouabain or insulin. 2. In rat epididymal fat-pads incubated in vitro pyruvate dehydrogenase was activated by addition of insulin in the absence of substrate or in the presence of glucose (10mm) or fructose (10mm). Glucose and fructose activated the dehydrogenase in the absence or in the presence of insulin, and pyruvate also activated in the absence of insulin. It is concluded that extracellular glucose, fructose and pyruvate may activate the dehydrogenase by raising intracellular pyruvate and that insulin may activate the dehydrogenase by some other mechanism. 3. Ouabain (300mum) and medium in which K(+) was replaced by Na(+), activated pyruvate dehydrogenase in epididymal fat-pads. Prostaglandin E(1) (1mug/ml), 5-methylpyrazole-3-carboxylate (10mum) and nicotinate (10mum), which are as effective as insulin as inhibitors of lipolysis and which like insulin lower tissue concentration of cyclic AMP (adenosine 3':5'-cyclic monophosphate), did not activate pyruvate dehydrogenase. Higher concentrations of prostaglandin E(1) (10mug/ml) and nicotinate (100mum) produced some activation of the dehydrogenase. 4. It is concluded that the activation of pyruvate dehydrogenase by insulin is not due to the antilipolytic effect of the hormone and that the action of insulin in lowering adipose-cell concentrations of cyclic AMP does not afford an obvious explanation for the effect of the hormone on pyruvate dehydrogenase. The possibility that the effects of insulin, ouabain and K(+)-free medium may be mediated by Ca(2+) is discussed.  相似文献   

6.
N Papadakis  G G Hammes 《Biochemistry》1977,16(9):1890-1896
One sulfhydryl group per polypeptide chain of the pyruvate dehydrogenase component of the pyruvate dehydrogenase multienzyme complex from Escherichia coli was selectively labeled with N-[P-(2-benzoxazoyl)phenyl]-maleimide (NBM), 4-dimethylamino-4-magnitude of-maleimidostilbene (NSM), and N-(4-dimethylamino-3,5-dinitrophenyl)maleimide (DDPM) in 0.05 M potassium phosphate (pH 7). Modification of the sulfhydryl group did not alter the enzymatic activity or the binding of 8-anilino-1-naphthalenesulfonate (ANS) or thiochrome diphosphate to the enzyme. The fluorescence of the NBM or NSM coupled to the sulfhydryl group on the enzyme was quenched by binding to the enzyme of the substrate pyruvate the coenzyme thiamine diphosphate, the coenzyme analogue thiochrome diphosphate, the regulatory ligands acetyl-CoA, GTP, and phosphoenolpyruvate, and the acetyl-CoA analogue, ANS. Fluorescence energy transfer measurements were carried out for the enzyme-bound donor-acceptor pairs NBM-ANS, NBM-thiochrome diphosphate ANS-DDPM, and thiochrome diphosphate-DDM. The results indicate that the modified sulfhydryl group is more than 40 A from the active site and approximately 49 A from the acetyl-CoA regulatory site. Thus, a conformational change must accompany the binding of ligands to the regulatory and catalytic sites. Anisotropy depolarization measurements with ANS bound on the isolated pyruvate dehydrogenase in 0.05 M potassium phosphate (pH 7.0) suggest that under these conditions the enzyme is dimeric.  相似文献   

7.
1. Previous studies showed that the activation of pyruvate dehydrogenase within intact rat heart mitochondria of pyruvate is much diminished in mitochondria from starved or diabetic animals [see Kerbey, Randle, Cooper, Whitehouse, Pask & Denton (1976) Biochem. J. 154, 327-348]. In the present study, diminished responses to added Ca2+ and ADP were also found in these mitochondria. 2. Starvation or diabetes did not affect the mitochondrial respiratory control ratio of the ATP content. Moreover, starvation and diabetes did not alter the response of the intramitochondrial Ca2+-sensitive enzyme, 2-oxoglutarate dehydrogenase, to changes in the extramitochondrial concentration of Ca2+ and 2-oxoglutarate, thus indicating that there were no appreciable changes in the distribution of Ca2+ and H+ across the mitochondrial inner membrane. 3. Pyruvate, Ca2+ and ADP were found to have synergistic effects on pyruvate dehydrogenase activity, particularly in mitochondria from starved and diabetic rats. 4. The results suggest that the effects of diabetes and starvation on pyruvate dehydrogenase are not brought about by changes in the distribution of these effectors across the mitochondrial inner membrane or by changes in the intrinsic sensitivity of the kinase or phosphatase of the pyruvate dehydrogenase system to pyruvate, Ca2+ or ADP; rather it is probably that there is an increase in the maximum activity of kinase relative to that of the phosphatase. 6. The results also lend further support to the hypothesis that adrenaline may bring about the activation of pyruvate dehydrogenase in the rat heart by an increase in the intramitochondrial concentration of Ca2+.  相似文献   

8.
The regulatory effects of alpha-ketoisovalerate on purified bovine heart pyruvate dehydrogenase complex and endogenous pyruvate dehydrogenase kinase were investigated. Incubation of pyruvate dehydrogenase complex with 0.125 to 10 mM alpha-ketoisovalerate caused an initial lag in enzymatic activity, followed by a more linear but inhibited rate of NADH production. Incubation with 0.0125 or 0.05 mM alpha-ketoisovalerate caused pyruvate dehydrogenase inhibition, but did not cause the initial lag in pyruvate dehydrogenase activity. Gel electrophoresis and fluorography demonstrated the incorporation of acyl groups from alpha-keto[2-14C]isovalerate into the dihydrolipoyl transacetylase component of the enzyme complex. Acylation was prevented by pyruvate and by arsenite plus NADH. Endogenous pyruvate dehydrogenase kinase activity was stimulated specifically by K+, in contrast to previous reports, and kinase stimulation by K+ correlated with pyruvate dehydrogenase inactivation. Maximum kinase activity in the presence of K+ was inhibited 62% by 0.1 mM thiamin pyrophosphate, but was inhibited only 27% in the presence of 0.1 mM thiamin pyrophosphate and 0.1 mM alpha-ketoisovalerate. Pyruvate did not affect kinase inhibition by thiamin pyrophosphate at either 0.05 or 2 mM. The present study demonstrates that alpha-ketoisovalerate acylates heart pyruvate dehydrogenase complex and suggests that acylation prevents thiamin pyrophosphate-mediated kinase inhibition.  相似文献   

9.
Regulation of heart muscle pyruvate dehydrogenase kinase   总被引:31,自引:25,他引:6       下载免费PDF全文
1. The activity of pig heart pyruvate dehydrogenase kinase was assayed by the incorporation of [(32)P]phosphate from [gamma-(32)P]ATP into the dehydrogenase complex. There was a very close correlation between this incorporation and the loss of pyruvate dehydrogenase activity with all preparations studied. 2. Nucleoside triphosphates other than ATP (at 100mum) and cyclic 3':5'-nucleotides (at 10mum) had no significant effect on kinase activity. 3. The K(m) for thiamin pyrophosphate in the pyruvate dehydrogenase reaction was 0.76mum. Sodium pyrophosphate, adenylyl imidodiphosphate, ADP and GTP were competitive inhibitors against thiamin pyrophosphate in the dehydrogenase reaction. 4. The K(m) for ATP of the intrinsic kinase assayed in three preparations of pig heart pyruvate dehydrogenase was in the range 13.9-25.4mum. Inhibition by ADP and adenylyl imidodiphosphate was predominantly competitive, but there was nevertheless a definite non-competitive element. Thiamin pyrophosphate and sodium pyrophosphate were uncompetitive inhibitors against ATP. It is suggested that ADP and adenylyl imidodiphosphate inhibit the kinase mainly by binding to the ATP site and that the adenosine moiety may be involved in this binding. It is suggested that thiamin pyrophosphate, sodium pyrophosphate, adenylyl imidodiphosphate and ADP may inhibit the kinase by binding through pyrophosphate or imidodiphosphate moieties at some site other than the ATP site. It is not known whether this is the coenzyme-binding site in the pyruvate dehydrogenase reaction. 5. The K(m) for pyruvate in the pyruvate dehydrogenase reaction was 35.5mum. 2-Oxobutyrate and 3-hydroxypyruvate but not glyoxylate were also substrates; all three compounds inhibited pyruvate oxidation. 6. In preparations of pig heart pyruvate dehydrogenase free of thiamin pyrophosphate, pyruvate inhibited the kinase reaction at all concentrations in the range 25-500mum. The inhibition was uncompetitive. In the presence of thiamin pyrophosphate (endogenous or added at 2 or 10mum) the kinase activity was enhanced by low concentrations of pyruvate (25-100mum) and inhibited by a high concentration (500mum). Activation of the kinase reaction was not seen when sodium pyrophosphate was substituted for thiamin pyrophosphate. 7. Under the conditions of the kinase assay, pig heart pyruvate dehydrogenase forms (14)CO(2) from [1-(14)C]pyruvate in the presence of thiamin pyrophosphate. Previous work suggests that the products may include acetoin. Acetoin activated the kinase reaction in the presence of thiamin pyrophosphate but not with sodium pyrophosphate. It is suggested that acetoin formation may contribute to activation of the kinase reaction by low pyruvate concentrations in the presence of thiamin pyrophosphate. 8. Pyruvate effected the conversion of pyruvate dehydrogenase phosphate into pyruvate dehydrogenase in rat heart mitochondria incubated with 5mm-2-oxoglutarate and 0.5mm-l-malate as respiratory substrates. It is suggested that this effect of pyruvate is due to inhibition of the pyruvate dehydrogenase kinase reaction in the mitochondrion. 9. Pyruvate dehydrogenase kinase activity was inhibited by high concentrations of Mg(2+) (15mm) and by Ca(2+) (10nm-10mum) at low Mg(2+) (0.15mm) but not at high Mg(2+) (15mm).  相似文献   

10.
The metal-ion requirement of extracted and partially purified pyruvate dehydrogenase phosphate phosphatase from rat epididymal fat-pads was investigated with pig heart pyruvate dehydrogenase [(32)P]phosphate as substrate. The enzyme required Mg(2+) (K(m) 0.5mm) and was activated additionally by Ca(2+) (K(m) 1mum) or Sr(2+) and inhibited by Ni(2+). Isolated fat-cell mitochondria, like liver mitochondria, possess a respiration- or ATP-linked Ca(2+)-uptake system which is inhibited by Ruthenium Red, by uncouplers when linked to respiration, and by oligomycin when linked to ATP. Depletion of fat-cell mitochondria of 75% of their total magnesium content and of 94% of their total calcium content by incubation with the bivalent-metal ionophore A23187 leads to complete loss of pyruvate dehydrogenase phosphate phosphatase activity. Restoration of full activity required addition of both MgCl(2) and CaCl(2). SrCl(2) could replace CaCl(2) (but not MgCl(2)) and NiCl(2) was inhibitory. The metal-ion requirement of the phosphatase within mitochondria was thus equivalent to that of the extracted enzyme. Insulin activation of pyruvate dehydrogenase in rat epididymal fat-pads was not accompanied by any measurable increase in the activity of the phosphatase in extracts of the tissue when either endogenous substrate or (32)P-labelled pig heart substrate was used for assay. The activation of pyruvate dehydrogenase in fat-pads by insulin was inhibited by Ruthenium Red (which may inhibit cell and mitochondrial uptake of Ca(2+)) and by MnCl(2) and NiCl(2) (which may inhibit cell uptake of Ca(2+)). It is concluded that Mg(2+) and Ca(2+) are cofactors for pyruvate dehydrogenase phosphate phosphatase and that an increased mitochondrial uptake of Ca(2+) might contribute to the activation of pyruvate dehydrogenase by insulin.  相似文献   

11.
1. The regulation of glycolysis and pyruvate oxidation under varying conditions of ATP and oxygen consumption was studied in isolated perfused rat hearts. Potassium-induced arrest was employed to inhibit the ATP consumption of the heart. 2. Under the experimental conditions, the beating heart used solely glucose as the oxidisable substrate. The glycolytic flux through the aldolase step decreased in pace with the decreasing oxygen consumption during the potassium-induced arrest of the heart. The decrease in glucose oxidation was larger than the inhibition of the oxygen consumption, suggesting that the arrested heart switches to fatty acid oxidation. The time course and percentage changes of the inhibition of pyruvate oxidation and the decrease in the amount of the active form of pyruvate dehydrogenase suggest that the amount of active pyruvate dehydrogenase is the main regulator of pyruvate oxidation in the perfused heart. 3. To test the relative significance of the possible mechanisms regulating covalent interconversions of pyruvate dehydrogenase, the following parameters were measured in response to the potassium-induced cardiac arrest: concentrations of pyruvate, acetyl-CoA, CoA-SH, citrate, alpha-oxoglutarate, ATP, ADP, AMP, creatine, creatine phosphate and inorganic phosphate and the mitochondrial NADH/NAD+ ratio. In cardiac tissue the adenylate system is not a good indicator of the energy state of the mitochondrion, even when the concentrations of AMP and free cytosolic ADP are calculated from the adenylate kinase and creatine kinase equilibria. Only creatine phosphate and inorganic phosphate undergo significant changes, but evidence of the participation of the latter compounds in the regulation of the pyruvate dehydrogenase interconversions is lacking. The potassium-induced arrest of the heart resulted in a decrease in pyruvate, a slight increase in acetyl-CoA, a large increase in the concentration of citrate and an increase in the mitochondrial NADH/NAD+. The results can be interpreted as showing that in the heart, the pyruvate dehydrogenase interconversions are mainly regulated by the pyruvate concentration and the mitochondrial redox state. Concentrations of all the regulators tested shifted to directions which one would expect to result in a decrease in the amount of active pyruvate dehydrogenase, but the changes were quite small. Therefore, the energy-linked regulation of pyruvate dehydrogenase in intact tissue is possibly mediated by the equilibrium relations between the cellular redox state and the phosphorylation potential recently confirmed in cardiac tissue.  相似文献   

12.
The alpha-ketoglutarate dehydrogenase complex of Escherichia coli utilizes pyruvate as a poor substrate, with an activity of 0.082 units/mg of protein compared with 22 units/mg of protein for alpha-ketoglutarate. Pyruvate fully reduces the FAD in the complex and both alpha-keto[5-14C]glutarate and [2-14C]pyruvate fully [14C] acylate the lipoyl groups with approximately 10 nmol of 14C/mg of protein, corresponding to 24 lipoyl groups. NADH-dependent succinylation by [4-14C]succinyl-CoA also labels the enzyme with approximately 10 nmol of 14C/mg of protein. Therefore, pyruvate is a true substrate. However, the pyruvate and alpha-ketoglutarate activities exhibit different thiamin pyrophosphate dependencies. Moreover, 3-fluoropyruvate inhibits the pyruvate activity of the complex without affecting the alpha-ketoglutarate activity, and 2-oxo-3-fluoroglutarate inhibits the alpha-ketoglutarate activity without affecting the pyruvate activity. 3-Fluoro[1,2-14C]pyruvate labels about 10% of the E1 components (alpha-ketoacid dehydrogenases). The dihydrolipoyl transsuccinylase-dihydrolipoyl dehydrogenase subcomplex (E2E3) is activated as a pyruvate dehydrogenase complex by addition of E. coli pyruvate dehydrogenase, the E1 component of the pyruvate dehydrogenase complex. All evidence indicates that the alpha-ketoglutarate dehydrogenase complex purified from E. coli is a hybrid complex containing pyruvate dehydrogenase (approximately 10%) and alpha-ketoglutarate dehydrogenase (approximately 90%) as its E1 components.  相似文献   

13.
J.K. Hiltunen  I.E. Hassinen 《BBA》1976,440(2):377-390
1. The regulation of glycolysis and pyruvate oxidation under varying conditions of ATP and oxygen consumption was studied in isolated perfused rat hearts. Potassium-induced arrest was employed to inhibit the ATP consumption of the heart.2. Under the experimental conditions, the beating heart used solely glucose as the oxidisable substrate. The glycolytic flux through the aldolase step decreased in pace with the decreasing oxygen consumption during the potassium-induced arrest of the heart. The decrease in glucose oxidation was larger than the inhibition of the oxygen consumption, suggesting that the arrested heart switches to fatty acid oxidation.The time course and percentage changes of the inhibition of pyruvate oxidation and the decrease in the amount of the active form of pyruvate dehydrogenase suggest that the amount of active pyruvate dehydrogenase is the main regulator of pyruvate oxidation in the perfused heart.3. To test the relative significance of the possible mechanisms regulating covalent interconversions of pyruvate dehydrogenase, the following parameters were measured in response to the potassium-induced cardiac arrest: concentrations of pyruvate, acetyl-CoA, CoA-SH, citrate, α-oxoglutarate, ATP, ADP, AMP, creatine, creatine phosphate and inorganic phosphate and the mitochondrial NADH/NAD+ ratio.In cardiac tissue the adenylate system is not a good indicator of the energy state of the mitochondrion, even when the concentrations of AMP and free cytosolic ADP are calculated from the adenylate kinase and creatine kinase equilibria. Only creatine phosphate and inorganic phosphate undergo significant changes, but evidence of the participation of the latter compounds in the regulation of the pyruvate dehydrogenase interconversions is lacking.The potassium-induced arrest of the heart resulted in a decrease in pyruvate, a slight increase in acetyl-CoA, a large increase in the concentration of citrate and an increase in the mitochondrial NADH/NAD+.The results can be interpreted as showing that in the heart, the pyruvate dehydrogenase interconversions are mainly regulated by the pyruvate concentration and the mitochondrial redox state. Concentrations of all the regulators tested shifted to directions which one would expect to result in a decrease in the amount of active pyruvate dehydrogenase, but the changes were quite small. Therefore, the energy-linked regulation of pyruvate dehydrogenase in intact tissue is possibly mediated by the equilibrium relations between the cellular redox state and the phosphorylation potential recently confirmed in cardiac tissue.  相似文献   

14.
Branched-chain alpha-ketoacid dehydrogenase and pyruvate dehydrogenase in isolated rat pancreatic islets were shown to be regulated by a phosphorylation/dephosphorylation mechanism. Broad-specificity phosphoprotein phosphatase treatment stimulated and ATP addition inhibited their activities. The kinases responsible for inactivating these complexes were shown to be sensitive to inhibition by known inhibitors, alpha-chloroisocaproate and dichloroacetate. Total activity (nmol/min/islet / 37 degrees C) of branched-chain alpha-ketoacid dehydrogenase and pyruvate dehydrogenase was 0.86 and 5.09, with a % active form (activity before phosphatase treatment divided by activity after phosphatase treatment X 100) of 36% and 94%, respectively. Incubation of intact isolated islets with alpha-chloroisocaproate affected neither insulin release nor flux through branched-chain alpha-ketoacid dehydrogenase.  相似文献   

15.
Intracellular localization of pyruvate carboxylase in mammalian liver   总被引:1,自引:0,他引:1  
We propose that an adequate amount of extramitochondrial (soluble) pyruvate carboxylase exists in mammalian liver. It has been previously accepted that pyruvate carboxylase is localized in the mitochondria-containing glutamate dehydrogenase. The overall activity and distribution of pyruvate carboxylase and of phosphoenol-pyruvate carboxykinase in mammalian liver has been studied using an improved technique for the fractional extraction of isolated mitochondria. We found about 40% of the total pyruvate carboxylase and about 60 % of the total PEP-carboxykinase in the soluble fraction. Glutamate dehydrogenase was considered to be the ‘marker enzyme’ for mitochondria. Our results strongly support the view that in murine, porcine, bovine and chicken liver, the pyruvate involved in gluconeogenesis is not required to enter the mitochondria prior to its carboxylation to oxalacetate, because extramitochondrial carboxylation of pyruvate through the ‘soluble pyruvate carboxylase’ is possible.  相似文献   

16.
Immunochemical techniques have been utilized to study the effect of thyroid status on the content and rates of synthesis and degradation of pyruvate carboxylase and pyruvate dehydrogenase in rat liver. Liver from hyperthyroid rats had twice the pyruvate carboxylase activity of normal rats while thyroidectomized rats had about two-thirds of normal activity. Pyruvate dehydrogenase complex activity was unchanged in the hyperthyroid state but was significantly reduced (by a third) in hypothyroid rats. Changes in catalytic activity during altered thyroid status were by immunochemical means to be closely related to the amount of the hepatic enzymes present. Isotopic studies showed that the changes in the content of pyruvate carboxylase and pyruvate dehydrogenase reflected alterations in the rate of the synthesis of the enzymes with the degradation rates little affected by thyroid status. The half-life for pyruvate carboxylase was 4.6 days, and that for pyruvate dehydrogenase, 8.1 days. In both cases, the turnover time was slower than that of the average mitochondrial protein (t1/2 = 3.8 days) for the control animals.  相似文献   

17.
Mitochondria from rat epididymal white adipose tissue were made permeable to small molecules by toluene treatment and were used to investigate the effects of Mg2+ and Ca2+ on the re-activation of pyruvate dehydrogenase phosphate by endogenous phosphatase. Re-activation of fully phosphorylated enzyme after addition of 0.18 mM-Mg2+ showed a marked lag of 5-10 min before a maximum rate of reactivation was achieved. Increasing the Mg2+ concentration to 1.8 mM (near saturating) or the addition of 100 microM-Ca2+ resulted in loss of the lag phase, which was also greatly diminished if pyruvate dehydrogenase was not fully phosphorylated. It is concluded that, within intact mitochondria, phosphatase activity is highly sensitive to the degree of phosphorylation of pyruvate dehydrogenase and that the major effect of Ca2+ may be to overcome the inhibitory effects of sites 2 and 3 on the dephosphorylation of site 1. Apparent K0.5 values for Mg2+ and Ca2+ were determined from the increases in pyruvate dehydrogenase activity observed after 5 min. The K0.5 for Mg2+ was diminished from 0.60 mM at less than 1 nM-Ca2+ to 0.32 mM at 100 microM-Ca2+; at 0.18 mM-Mg2+, the K0.5 for Ca2+ was 0.40 microM. Ca2+ had little or no effect at saturating Mg2+ concentrations. Since effects of Ca2+ are readily observed in intact coupled mitochondria, it follows that Mg2+ concentrations within mitochondria are sub-saturating for pyruvate dehydrogenase phosphate phosphatase and hence less than 0.5 mM.  相似文献   

18.
Activity of the mammalian pyruvate dehydrogenase complex is regulated by phosphorylation-dephosphorylation of three specific serine residues (site 1, Ser-264; site 2, Ser-271; site 3, Ser-203) of the alpha subunit of the pyruvate dehydrogenase (E1) component. Phosphorylation is carried out by four pyruvate dehydrogenase kinase (PDK) isoenzymes. Specificity of the four mammalian PDKs toward the three phosphorylation sites of E1 was investigated using the recombinant E1 mutant proteins with only one functional phosphorylation site present. All four PDKs phosphorylated site 1 and site 2, however, with different rates in phosphate buffer (for site 1, PDK2 > PDK4 approximately PDK1 > PDK3; for site 2, PDK3 > PDK4 > PDK2 > PDK1). Site 3 was phosphorylated by PDK1 only. The maximum activation by dihydrolipoamide acetyltransferase was demonstrated by PDK3. In the free form, all PDKs phosphorylated site 1, and PDK4 had the highest activity toward site 2. The activity of the four PDKs was stimulated to a different extent by the reduction and acetylation state of the lipoyl moieties of dihydrolipoamide acetyltransferase with the maximum stimulation of PDK2. Substitution of the site 1 serine with glutamate, which mimics phosphorylation-dependent inactivation of E1, did not affect phosphorylation of site 2 by four PDKs and of site 3 by PDK1. Site specificity for phosphorylation of four PDKs with unique tissue distribution could contribute to the tissue-specific regulation of the pyruvate dehydrogenase complex in normal and pathophysiological states.  相似文献   

19.
The activity of pyruvate dehydrogenase in extracts of pig mesenteric lymphocytes was measured under different preincubation conditions. The mitogens concanavalin A and ionophore A23187 both increased pyruvate dehydrogenase activity. In both cases activation required extracellular Ca2+. Digitonin-permeabilized cells required 0.5 microM free Ca2+ for half-maximal activation of pyruvate dehydrogenase. The stimulation by concanavalin A in intact cells was probably not due to changes in effectors of pyruvate dehydrogenase kinase. This evidence suggests that activation of pyruvate dehydrogenase is by Ca2+ activation of pyruvate dehydrogenase phosphatase and supports the view that the cytoplasmic free [Ca2+] rises to something less than 1 microM on stimulation with mitogens.  相似文献   

20.
Hormonal control of pyruvate dehydrogenase activity in rat liver.   总被引:8,自引:7,他引:1       下载免费PDF全文
A detailed study of the control of liver pyruvate dehydrogenase activity by various hormones was carried out with perfused liver and isolated hepatocytes. Vasopressin produced a significant increase in the enzyme activity in fed rats, and the time course and sensitivity of the response was similar to that of glycogen phosphorylase a. The enzyme from starved animals was resistant to hormonal activation. The possible factors involved in the above effects are discussed. Angiotensin and phenylephrine also increased pyruvate dehydrogenase activity, and the magnitude of the response was of the same order as that to vasopressin by the liver enzyme. The effects of these hormones on pyruvate dehydrogenase activity were critically dependent on extracellular Ca2+, thus suggesting a role for this ion in the mechanism of action of the hormones. Insulin did not appear to have a role in the control of the enzyme activity, as shown by its lack of effect on the enzyme. Glucagon, in contrast with previous reports, produced a rapid, transient and significant increase in pyruvate dehydrogenase activity. The physiological importance of the above effects is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号