共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
Differential phosphorylation of the signal-responsive domain of I kappa B alpha and I kappa B beta by I kappa B kinases 总被引:1,自引:0,他引:1
NF-kappa B activity is regulated by its association with the inhibitory I kappa B proteins, among which I kappa B alpha and I kappa B beta are the most abundant. I kappa B proteins are widely expressed in different cells and tissues and bind to similar combinations of NF-kappa B proteins. The degradation of I kappa B proteins allows nuclear translocation of NF-kappa B and hence plays a critical role in NF-kappa B activation. Previous studies have demonstrated that, although both I kappa B proteins are phosphorylated by the same I kappa B kinase (IKK) complex, and their ubiquitination and degradation following phosphorylation are carried out by the same ubiquitination/degradation machinery, their kinetics of degradation are quite different. To better understand the underlying mechanism of the differences in degradation kinetics, we have carried out a systematic, comparative analysis of the ability of the IKK catalytic subunits to phosphorylate I kappa B alpha and I kappa B beta. We found that, whereas IKK alpha is a weak kinase for the N-terminal serines of both I kappa B isoforms, IKK beta is an efficient kinase for those residues in I kappa B alpha. However, IKK beta phosphorylates the N-terminal serines of I kappa B beta far less efficiently, thereby providing an explanation for the slower rate of degradation observed for I kappa B beta. Mutational analysis indicated that the regions around the two N-terminal serines collectively influence the relative phosphorylation efficiency, and no individual residue is critical. These findings provide the first systematic analysis of the ability of I kappa B alpha and I kappa B beta to serve as substrates for IKKs and help provide a possible explanation for the differential degradation kinetics of I kappa B alpha and I kappa B beta. 相似文献
5.
Phelps CB Sengchanthalangsy LL Huxford T Ghosh G 《The Journal of biological chemistry》2000,275(38):29840-29846
X-ray crystal structures of the NF-kappa B.I kappa B alpha complex revealed an extensive and complex protein-protein interface involving independent structural elements present in both I kappa B alpha and NF-kappa B. In this study, we employ a gel electrophoretic mobility shift assay to assess and quantitate the relative contributions of the observed interactions toward overall complex binding affinity. I kappa B alpha preferentially binds to the p50/p65 heterodimer and p65 homodimer, with binding to p50 homodimer being significantly weaker. Our results indicate that the nuclear localization sequence and the region C-terminal to it of the NF-kappa B p65 subunit is a major contributor to NF-kappa B. I kappa B alpha complex formation. Additionally, there are no contacts between the corresponding nuclear localization signal tetrapeptide of p50 and I kappa B alpha. A second set of interactions involving the acidic C-terminal/PEST-like region of I kappa B alpha and the NF-kappa B p65 subunit N-terminal domain also contributes binding energy toward formation of the complex. This interaction is highly dynamic and nonspecific in nature, as shown by oxidative cysteine cross-linking. Phosphorylation of the C-terminal/PEST-like region by casein kinase II further enhances binding. 相似文献
6.
Zhang J Ping P Vondriska TM Tang XL Wang GW Cardwell EM Bolli R 《American journal of physiology. Heart and circulatory physiology》2003,285(4):H1753-H1758
Previous studies indicated that activation of PKC and Src tyrosine kinases by ischemic preconditioning (PC) may participate in the activation of NF-kappa B. However, the molecular mechanisms underlying activation of NF-kappa B during ischemic PC remain unknown. In the hearts of conscious rabbits, it was found that ischemic PC (6 cycles of 4-min coronary occlusion and 4-min reperfusion) significantly induced both tyrosine (+226.9 +/- 42%) and serine (+137.0 +/- 36%) phosphorylation of the NF-kappa B inhibitory protein I kappa B-alpha, concomitant with increased activation of the I kappa B-alpha kinases IKK alpha (+255.0 +/- 46%) and IKK beta (+173.1 +/- 35%). Furthermore, both tyrosine and serine phosphorylation of I kappa B-alpha were blocked by pretreatment with either the nonreceptor tyrosine kinase inhibitor lavendustin-A (LD-A) or the PKC inhibitor chelerythrine (Che) (both given at doses previously shown to block ischemic PC). Interestingly, Che completely abolished PC-induced activation of IKK alpha/beta, whereas LD-A had no effect. In addition, I kappa B-alpha protein level did not change during ischemic PC. Together, these data indicate that ischemic PC-induced activation of NF-kappa B occurs through both tyrosine and serine phosphorylation of I kappa B-alpha and is regulated by nonreceptor tyrosine kinases and PKC. 相似文献
7.
8.
9.
10.
11.
12.
13.
14.
Takada Y Mukhopadhyay A Kundu GC Mahabeleshwar GH Singh S Aggarwal BB 《The Journal of biological chemistry》2003,278(26):24233-24241
15.
16.
17.
18.
19.
Potentiation of tumor necrosis factor-induced NF-kappa B activation by deacetylase inhibitors is associated with a delayed cytoplasmic reappearance of I kappa B alpha 下载免费PDF全文
Adam E Quivy V Bex F Chariot A Collette Y Vanhulle C Schoonbroodt S Goffin V Nguyên TL Gloire G Carrard G Friguet B De Launoit Y Burny A Bours V Piette J Van Lint C 《Molecular and cellular biology》2003,23(17):6200-6209
20.
Proteolytic degradation of MAD3 (I kappa B alpha) and enhanced processing of the NF-kappa B precursor p105 are obligatory steps in the activation of NF-kappa B. 总被引:23,自引:3,他引:23 下载免费PDF全文
We have studied the role of protein turnover in the induction of NF-kappa B DNA binding activity. Treatment of cells with tumour necrosis factor (TNF), double-stranded RNA (dsRNA), or phorbol esters is shown to be associated with an increase in the rate of p105 to p50 processing, and the loss of immunologically detectable MAD3/I kappa B alpha. Phosphate-labelling experiments indicate that these events are preceded by the phosphorylation of MAD3 and p105. The protease inhibitors TLCK (N alpha-p-Tosyl-L-Lysine Chloromethyl Ketone) and TPCK (N alpha-p-Tosyl-L-Phenylalanine Chloromethyl Ketone) inhibit both p105 to p50 processing and MAD3 degradation, and also cause a complete block to NF-kappa B activation. These data suggest a model for NF-kappa B activation in which phosphorylation destabilises the NF-kappa B/MAD3 complex but that, in vivo, this is insufficient to lead to activation in the absence of an obligatory mechanism that degrades MAD3. 相似文献