首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Microbial degradation of the oil soluble corrosion inhibitor (OSCI) Baker NC 351 contributed to a decrease in inhibitor efficiency. Corrosion inhibition efficiency was studied by the rotating cage and flow loop methods. The nature of the biodegradation of the corrosion inhibitor was also analysed using Fourier transform infrared spectroscopy, nuclear magnetic resonance spectroscopy and gas chromatography-mass spectrometry. The influence of bacterial activity on the degradation of the corrosion inhibitor and its influence on corrosion of API 5LX were evaluated using a weight loss technique and impedance studies. Serratia marcescens ACE2 and Bacillus cereus ACE4 can degrade aromatic and aliphatic hydrocarbons present in the corrosion inhibitor. The present study also discusses the demerits of the oil soluble corrosion inhibitors used in petroleum product pipeline.  相似文献   

2.
Abstract

Microbial degradation of the oil soluble corrosion inhibitor (OSCI) Baker NC 351 contributed to a decrease in inhibitor efficiency. Corrosion inhibition efficiency was studied by the rotating cage and flow loop methods. The nature of the biodegradation of the corrosion inhibitor was also analysed using Fourier transform infrared spectroscopy, nuclear magnetic resonance spectroscopy and gas chromatography-mass spectrometry. The influence of bacterial activity on the degradation of the corrosion inhibitor and its influence on corrosion of API 5LX were evaluated using a weight loss technique and impedance studies. Serratia marcescens ACE2 and Bacillus cereus ACE4 can degrade aromatic and aliphatic hydrocarbons present in the corrosion inhibitor. The present study also discusses the demerits of the oil soluble corrosion inhibitors used in petroleum product pipeline.  相似文献   

3.
A model artificial biofilm was developed and evaluated for ranking the performance of biocides for application in oil production pipelines. The biofilm consisted of an alginate gel matrix into which were incorporated bacteria, scrapings from the inner surfaces of oil production pipelines and some crude oil.
The viability and sulphide-respiration rates of sulphate-reducing bacteria (SRB) within freshly-prepared artificial biofilm remained largely unchanged during a 2-week storage period. Furthermore, storage of the model biofilm did not alter the susceptibility of the incorporated SRB to a biocide. These findings showed that artificial biofilm may be produced in advance of a biocide assessment study and stored for at least 2 weeks over the course of the study without the model system undergoing changes which affected the relative performance of the biocides assessed. Artificial biofilms were found to be more resistant to biocides than planktonic bacteria and the addition of oil pipeline scrapings and crude oil to the artificial biofilm was found to increase further the resistance of biofilm to biocides.  相似文献   

4.
Surface and near-surface soil arsenic levels were measured at a former crude oil storage facility within the greater Los Angeles area of Southern California. Arsenic was present in soil within some portions of the site at concentrations defined as being hazardous by both the State of California and the United States Environmental Protection Agency. The elevated soil total arsenic concentrations ranged from about 30 to 2300?mg/kg and generally occurred in, and adjacent to, the former washing and storage tank locations and along piping runs. In contrast, background concentrations of arsenic in soil at the site ranged from less than the analytical method detection limits (0.5?mg/kg) to approximately 8.0?mg/kg. The elevated soil arsenic concentrations are believed to be the result of the use of arsenical corrosion inhibitors within production wells and possibly the use of arsenical biocides in washing and skimmer tanks. Flow lines from production wells within the oil field to the crude oil storage facility contained crude oil and produced (formation) water. Arsenical corrosion inhibitors placed into the oil wells may have flowed with the crude oil/produced-water streams into the washing and skimmer tanks. Over the course of approximately 55 years of operation, tankage and piping leaks at the facility may have contributed to the elevated soil arsenic concentrations encountered at the site. A site-specific cleanup goal of 22?mg/kg total arsenic was established by the regulatory agency with oversight for the site. Remediation of the arsenic-impacted soil was accomplished by excavation and on site treatment using a chemical fixation process. Confirmatory samples collected after the fixation process was completed verified that the treatment reduced the concentrations of arsenic that could by leached from the soil to nonhazardous levels. The treated soil was subsequently transported offsite to an asphalt recycling facility for incorporation into asphalt paving products.  相似文献   

5.
Little B  Lee J  Ray R 《Biofouling》2007,23(1-2):87-97
Two approaches to control microbiologically influenced corrosion (MIC) have been developed that do not require the use of biocides. These strategies include the following: i) use of biofilms to inhibit or prevent corrosion, and ii) manipulation (removal or addition) of an electron acceptor, (e.g. oxygen, sulphate or nitrate) to influence the microbial population. In both approaches the composition of the microbial community is affected by small perturbations in the environment (e.g. temperature, nutrient concentration and flow) and the response of microorganisms cannot be predicted with certainty. The following sections will review the literature on the effectiveness of these environmentally friendly, "green," strategies for controlling MIC.  相似文献   

6.
Microbially influenced corrosion (MIC) has long been implicated in the deterioration of carbon steel in oil and gas pipeline systems. The authors sought to identify and characterize sessile biofilm communities within a high-temperature oil production pipeline, and to compare the profiles of the biofilm community with those of the previously analyzed planktonic communities. Eubacterial and archaeal 16S rRNA sequences of DNA recovered from extracted pipeline pieces, termed ‘cookies,’ revealed the presence of thermophilic sulfidogenic anaerobes, as well as mesophilic aerobes. Electron microscopy and elemental analysis of cookies confirmed the presence of sessile cells and chemical constituents consistent with corrosive biofilms. Mass spectrometry of cookie acid washes identified putative hydrocarbon metabolites, while surface profiling revealed pitting and general corrosion damage. The results suggest that in an established closed system, the biofilm taxa are representative of the planktonic eubacterial and archaeal community, and that sampling and monitoring of the planktonic bacterial population can offer insight into biocorrosion activity. Additionally, hydrocarbon biodegradation is likely to sustain these communities. The importance of appropriate sample handling and storage procedures to oilfield MIC diagnostics is highlighted.  相似文献   

7.
Samples were obtained from the Obigbo field, located onshore in the Niger delta, Nigeria, from which oil is produced by injection of low-sulfate groundwater, as well as from the offshore Bonga field from which oil is produced by injection of high-sulfate (2,200 ppm) seawater, amended with 45 ppm of calcium nitrate to limit reservoir souring. Despite low concentrations of sulfate (0–7 ppm) and nitrate (0 ppm), sulfate-reducing bacteria (SRB) and heterotrophic nitrate-reducing bacteria (NRB) were present in samples from the Obigbo field. Biologically active deposits (BADs), scraped from corrosion-failed sections of a water- and of an oil-transporting pipeline (both Obigbo), had high counts of SRB and high sulfate and ferrous iron concentrations. Analysis of microbial community composition by pyrosequencing indicated anaerobic, methanogenic hydrocarbon degradation to be a dominant process in all samples from the Obigbo field, including the BADs. Samples from the Bonga field also had significant activity of SRB, as well as of heterotrophic and of sulfide-oxidizing NRB. Microbial community analysis indicated high proportions of potentially thermophilic NRB and near-absence of microbes active in methanogenic hydrocarbon degradation. Anaerobic incubation of Bonga samples with steel coupons gave moderate general corrosion rates of 0.045–0.049 mm/year, whereas near-zero general corrosion rates (0.001–0.002 mm/year) were observed with Obigbo water samples. Hence, methanogens may contribute to corrosion at Obigbo, but the low general corrosion rates cannot explain the reasons for pipeline failures in the Niger delta. A focus of future work should be on understanding the role of BADs in enhancing under-deposit pitting corrosion.  相似文献   

8.
Aims:  In vitro experiments were undertaken to evaluate biocide formulations commonly used in cooling water systems against protozoa previously isolated from cooling towers. The investigations evaluated the efficacy of these formulations against amoebic cysts and trophozoites.
Methods and Results:  Laboratory challenges against protozoa isolated from cooling towers using chlorine, bromine and isothiazolinone biocides showed that all were effective after 4 h. The presence of molybdate and organic phosphates resulted in longer kill times for bromine and isothiazolinones. All treatments resulted in no detectable viable protozoa after 4 h of exposure.
Conclusions:  The chemical disinfection of planktonic protozoa in cooling water systems is strongly influenced by the residence time of the formulation and less so by its active constituent. Bromine and isothiazolinone formulations may require higher dosage of concentrations than currently practiced if used in conjunction with molybdate- and phosphate-based scale/corrosion inhibitors.
Significance and Impact of the Study:  Cooling water systems are complex microbial ecosystems in which predator–prey relationships play a key role in the dissemination of Legionella . This study demonstrated that at recommended dosing concentrations, biocides had species-specific effects on environmental isolates of amoebae that may act as reservoirs for Legionella multiplication in cooling water systems.  相似文献   

9.
Both water consumption and discharge in industrial water systems are currently minimised. The circulation of such water results in concentration of dissolved and suspended substances, promoting the growth of waterborne microbes, biofouling and subsequent macrofouling of the system and concomitant microbially induced corrosion.A number of reviews have been published on the mechanisms of microbially induced corrosion and the organisms involved. The subject of biofilm formation has also been well covered in the literature. A lack of information on the community structure and physiology is, however, apparent. Many advances have, nevertheless, been made in biofouling control. Probably the most important is the shift in emphasis from planktonic bacterial monitoring to sessile bacterial monitoring. This led to the introduction of a variety of different sessile monitoring techniques. Much experience has since been obtained on the use and limitations of these techniques and, to date, one of the main problem areas remaining is the monitoring of biofouling.Research has also indicated the problem of microbial resistance to nonoxidising biocides. This has suggested that some of these compounds may be mutagens. From an environmental point of view, it has become very important to verify this. This has also indicated the need to develop biocides which do not induce resistance in micro-organisms, and to investigate whether oxidising biocides are also capable of inducing resistance in micro-organisms. Recent studies have indicated that biofilm ecosystems respond to stress (i.e. biocides) in ways similar to macro-ecosystems. Generally, there is a decline in species diversity and a selection of more tolerant isolates.These developments have placed the spotlight on alternative technologies, like biodispersants, which have shown potential as biofouling control agents, and which should be investigated further. Physical control measures are currently still limited to pigging, although a number of other technologies show promise. Although fluid dynamics and their effect on biofouling control programmes have been well reported in the literature, it remains an aspect which is neglected by industry in terms of practical applications.  相似文献   

10.
The present study enlightens the role of Bacillus cereus ACE4 on biodegradation of commercial corrosion inhibitors (CCI) and the corrosion process on API 5LX steel. Bacillus cereus ACE4, a dominant facultative aerobic species was identified by 16S rDNA sequence analysis, which was isolated from the corrosion products of refined diesel-transporting pipeline in North West India. The effect of CCI on the growth of bacterium and its corrosion inhibition efficiency were investigated. Corrosion inhibition efficiency was studied by rotating cage test and the nature of biodegradation of corrosion inhibitors was also analyzed. This isolate has the capacity to degrade the aromatic and aliphatic hydrocarbon present in the corrosion inhibitors. The degraded products of corrosion inhibitors and bacterial activity determine the electrochemical behavior of API 5LX steel.  相似文献   

11.
A model flow cell system was designed to investigate pitting corrosion in pipelines associated with microbial communities. A microbial inoculum producing copious amounts of H2S was enriched from an oil pipeline biofilm sample. Reservoirs containing a nutrient solution and the microbial inoculum were pumped continuously through six flow cells containing mild steel corrosion coupons. Two cells received corrosion inhibitor “A”, two received corrosion inhibitor “B”, and two (“untreated”) received no additional chemicals. Coupons were removed after 1 month and analyzed for corrosion profiles and biofilm microbial communities. Coupons from replicate cells showed a high degree of similarity in pitting parameters and in microbial community profiles, as determined by 16S rRNA gene sequence libraries but differed with treatment regimen, suggesting that the corrosion inhibitors differentially affected microbial species. Viable microbial biomass values were more than 10-fold higher for coupons from flow cells treated with corrosion inhibitors than for coupons from untreated flow cells. The total number of pits >10 mils diameter and maximum pitting rate were significantly correlated with each other and the total number of pits with the estimated abundance of sequences classified as Desulfomicrobium. The maximum pitting rate was significantly correlated with the sum of the estimated abundance of Desulfomicrobium plus Clostridiales, and with the sum of the estimated abundance of Desulfomicrobium plus Betaproteobacteria. The lack of significant correlation with the estimated abundance of Deltaproteobacteria suggests not all Deltaproteobacteria species contribute equally to microbiologically influenced corrosion (MIC) and that it is not sufficient to target one bacterial group when monitoring for MIC.  相似文献   

12.
The global economic burden of microbial corrosion of metals is enormous. Microbial corrosion of iron-containing metals is most extensive under anaerobic conditions. Microbes form biofilms on metal surfaces and can directly extract electrons derived from the oxidation of Fe0 to Fe2+ to support anaerobic respiration. H2 generated from abiotic Fe0 oxidation also serves as an electron donor for anaerobic respiratory microbes. Microbial metabolites accelerate this abiotic Fe0 oxidation. Traditional strategies for curbing microbial metal corrosion include cathodic protection, scrapping, a diversity of biocides, alloys that form protective layers or release toxic metal ions, and polymer coatings. However, these approaches are typically expensive and/or of limited applicability and not environmentally friendly. Biotechnology may provide more effective and sustainable solutions. Biocides produced with microbes can be less toxic to eukaryotes, expanding the environments for potential application. Microbially produced surfactants can diminish biofilm formation by corrosive microbes, as can quorum-sensing inhibitors. Amendments of phages or predatory bacteria have been successful in attacking corrosive microbes in laboratory studies. Poorly corrosive microbes can form biofilms and/or deposit extracellular polysaccharides and minerals that protect the metal surface from corrosive microbes and their metabolites. Nitrate amendments permit nitrate reducers to outcompete highly corrosive sulphate-reducing microbes, reducing corrosion. Investigation of all these more sustainable corrosion mitigation strategies is in its infancy. More study, especially under environmentally relevant conditions, including diverse microbial communities, is warranted.  相似文献   

13.
传统金属防腐方法成本较高或者容易产生次生环境问题。微生物防腐蚀是一项新的绿色防腐技术,随着越来越多抗腐蚀微生物的发现,以及有益菌膜研究的开展,研究者们发现了微生物抑制金属腐蚀的众多机理,本文对此进行了归纳总结。微生物可以通过生物驱除、分泌腐蚀抑制剂、生成胞外多聚物、降低溶解氧、形成生物膜屏障、分泌生物表面活性剂、噬菌体控制、非生物膜屏障等过程控制和减缓金属腐蚀。金属的微生物腐蚀抑制作用通常不是由单一机制引起的,而是多种机制共同作用的结果。深入理解微生物抑制金属腐蚀的机理,有利于为减缓金属腐蚀行为提供借鉴。  相似文献   

14.
Seawater injection into oil reservoirs for purposes of secondary oil recovery is frequently accompanied by souring (increased sulfide concentrations). Production of hydrogen sulfide causes various problems, such as microbiologically influenced corrosion (MIC) and deterioration of crude oil. Sulfate-reducing bacteria (SRB) are considered to be major players in souring. Volatile fatty acids (VFAs) in oil-field water are believed to be produced by microbial degradation of crude oil. The objective of this research was to investigate mechanisms of souring, focusing specifically on VFA production via crude oil biodegradation. To this end, a microbial consortium collected from an oil–water separator was suspended in seawater; crude oil or liquid n-alkane mixture was added to the culture medium as the sole carbon source, and the culture was incubated under anaerobic conditions for 190 days. Physicochemical analysis showed that preferential toluene degradation and sulfate reduction occurred concomitantly in the culture containing crude oil. Sulfide concentrations were much lower in the alkane-supplemented culture than in the crude oil-supplemented culture. These observations suggest that SRB are related to the toluene activation and VFA consumption steps of crude oil degradation. Therefore, the electron donors for SRB are not only VFA, but many components of crude oil, especially toluene. Alkanes were also degraded by microorganisms, but did not contribute to reservoir souring.  相似文献   

15.
Five naphtha hydrocarbon-degrading bacteria including representative strains of the two classified species (Serratia marcescensAR1, Bacillus pumilusAR2, Bacillus carboniphilus AR3, Bacillus megaterium AR4, and Bacillus cereus AR5) were identified by 16S rDNA gene sequence in a naphtha-transporting pipeline. The naphtha-degrading strains were able to be involved in the corrosion process of API 5LX steel and also utilized the naphtha as the sole carbon source. The biodegradation of naphtha by the bacterial isolates was characterized by gas chromatography-mass spectrometry. Weight-loss measurement on the corrosion of API 5LX steel in the presence/absence of consortia grown in naphtha-water aqueous media was performed. The scanning electron microscope observation showed that the consortia were able to attack the steel API 5LX surface, creating localized corrosion (pit). The biodegradation of naphtha by the strains AR1, AR2, AR3, AR4, and AR5 showed biodegradation efficiency of about 76.21, 67.20, 68.78, 68.78, and 68.15, respectively. The role of degradation on corrosion has been discussed. This basic study will be useful for the development of new approaches for the detection, monitoring, and control of microbial corrosion in a petroleum product pipeline.  相似文献   

16.
The effects of elevated pressures and temperatures on the growth, morphology and metabolic activity of sulphate-reducing bacteria, isolated from the North Sea, are described. Pressure/temperature profiles, growth curves and sulphate reduction rates are presented for several isolates. The maximum pressure and temperature that supported growth were 65 000 KPa and 45°C respectively. The results are discussed in connection with water injection into oil-bearing reservoirs where there is a concern that generation of hydrogen sulphide by sulphate-reducing bacteria may lead to increased hydrogen sulphide levels (souring) in oil and gas, and to corrosion problems in production facilities. The bacteriostatic effects of a number of commercial biocides were enhanced at elevated hydrostatic pressures and temperatures.  相似文献   

17.
Five synergistic combinations of biocides were found, among which the combination of kathon + copper sulfate was the most efficient against Serratia marcescens. Depending on the ratio of these biocides, the synergistic effect of this pair allowed 4-20-fold decreases in the effective concentrations. Combinations of biocides with salts (carbonates and phosphates) that facilitate passivation of steel were found, which considerably decreased the corrosion losses of mild steel in comparison to isolated treatment with biocides or salts. The data showed that biocides must be added to corrosion-prone systems simultaneously with the beginning of their exploitation. Otherwise, considerably excessive amounts of biocides or their synergistic compositions are needed.  相似文献   

18.
We have generated a set of dual-reporter human cell lines and devised a chase protocol to quantify proteasomal degradation of a ubiquitin fusion degradation (UFD) substrate, a ubiquitin ligase CRL2(VHL) substrate, and a ubiquitin-independent substrate. Well characterized inhibitors that target different aspects of the ubiquitin-proteasome system can be distinguished by their distinctive patterns of substrate stabilization, enabling assignment of test compounds as inhibitors of the proteasome, ubiquitin chain formation or perception, CRL activity, or the UFD-p97 pathway. We confirmed that degradation of the UFD but not the CRL2(VHL) or ubiquitin-independent substrates depends on p97 activity. We optimized our suite of assays to establish conditions suitable for high-throughput screening and then validated their performance by screening against 160 cell-permeable protein kinase inhibitors. This screen identified Syk inhibitor III as an irreversible p97/vasolin containing protein inhibitor (IC(50) = 1.7 μM) that acts through Cys-522 within the D2 ATPase domain. Our work establishes a high-throughput screening-compatible pipeline for identification and classification of small molecules, cDNAs, or siRNAs that target components of the ubiquitin-proteasome system.  相似文献   

19.
Effect of the dc electric field of the corrosion protection of oil pipelines crossing the Ob River on the behavioral response of fish was investigated. It was shown by calculations and measurements that, at the bottom level, the electric field strength was 0.6 V/m, and at a depth of 2 m from the surface, it was 0.4-0.1 V/m and extended to a distance of 50-100 m from the oil pipeline. It was established that the electric field of oil pipelines lowered the migration activities of fish, resulting in a growth of fish number in regions of increased electric field strength.  相似文献   

20.
A facultative anaerobic species Serratia marcescens ACE2 isolated from the corrosion products of diesel transporting pipeline in North West, India was identified by 16S rDNA sequence analysis. The role of Serratia marcesens ACE2 on biodegradation of diesel and its influence on the corrosion of API 5LX steel has been elucidated. The degrading strain ACE2 is involved in the process of corrosion of steel API 5LX and also utilizes the diesel as an organic source. The quantitative biodegradation efficiency (BE) of diesel was 58%, calculated by gas-chromatography–mass spectrum analysis. On the basis of gas-chromatography–mass spectrum (GC–MS), Fourier Transform infrared spectroscopy (FTIR) and X-ray diffractometer (XRD), the involvement of Serratia marcescens on degradation and corrosion has been investigated. This basic study will be useful for the development of new approaches for detection, monitoring and control of microbial corrosion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号