首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
目的:探讨大鼠后足切割后脊髓ERK的表达情况。方法:以大鼠右后足切割作为急性疼痛模型;用免疫组织化学法测试脊髓磷酸化ERK(pERK)表达情况。ERK抑制剂U0126(1μg)在切割前20min或切割后20min鞘内注射。用von Frey纤维测试大鼠机械性痛敏。结果:大鼠后足切割后1min,在切割侧L4-L5脊髓浅层背侧角(板层Ⅰ和板层Ⅱ)ERK被迅速地激活,并在5min达到峰值,随后恢复到基础值。切割前鞘内给予U0126能显著减轻机械性痛敏,然而,切割后鞘内给予U0126对机械性痛敏的作用并不明显。结论:脊髓ERK在大鼠后足切割痛中产生机械性痛敏发挥了重要的作用。  相似文献   

2.
目的:观察脑内远位触液神经元内p-p38丝裂原活化蛋白激酶(MAPK)的分布及其在噪声应激时的表达。方法:用霍乱毒素亚单位B与辣根过氧化物酶复合物(CB-HRP)标记和免疫组织化学相结合的双重标记技术.观察SD大鼠脑实质内远位触液神经元中p-p38MAPK的分布:进一步制作噪声应激动物模型,观察噪声应激后该类神经元中p-p38MAPK的表达变化。结果:在脑干的特定部位恒定出现被CB-HRP标记的两组神经细胞簇,其他脑区未见CB-HRP标记神经细胞簇。不予应激刺激,该细胞簇内仅有个别神经元见有CB-HRP/p—p38MAPK;噪声应激刺激1d时,上述特定部位细胞簇的CB-HRP/p-p38MAPK双重标记神经元数目没有明显变化;噪音应激刺激5d时,CB-HRP/p—p38MAPK双重标记神经元数目较对照组显著增多(P〈0.05);噪音应激刺激10d时CB-HRP/p—p38MAPK双重标记神经元数目较对照组显著增多(P〈0.05);噪音应激刺激20d时,CB-HRP/p—p38MAPK双重标记神经元数目较对照组显著增多(P〈0.01):结论:在脑干特定部位恒定存在的两组被CBHRP标记的细胞团为远位触液神经元,其中少数触液神经元有p-p38MAPK表达,且当给予动物噪声应激刺激时,p-p38MAPK免疫阳性神经元和CB-HRP/p—p38MAPK双重标记神经元数量显著增加,提示脑实质内的这种远位触液神经元中的P—p38MAPK可能参与了机体对噪声应激的信息传递或调控,其作用随应激天数增加而日趋增强.  相似文献   

3.
Ha H  Kim MS  Park J  Huh JY  Huh KH  Ahn HJ  Kim YS 《Life sciences》2006,79(16):1561-1567
Mesangial cell (MC) proliferation and extracellular matrix (ECM) accumulation are major pathologic features of chronic renal disease including chronic allograft nephropathy (CAN). Mycophenolic acid (MPA), a potent immunosuppressant, has emerged as a treatment to prevent CAN because it inhibits MC proliferation and ECM synthesis, but the mechanism involved has not been clarified. The present study examined relative role of extracellular signal-regulated kinase 1/2 (ERK1/2) and p38 mitogen-activated protein kinase (p38 MAPK) activation in inhibitory effect of MPA on MC activation. Growth arrested and synchronized primary rat MC (passages 7-11) were stimulated by PDGF 10 ng/ml in the presence and absence of clinically attainable dose of MPA (0-10 microM). Cell proliferation was assessed by [(3)H]thymidine incorporation, fibronectin and the activation of ERK and p38 MAPK by Western blot analysis, and total collagen by [(3)H]proline incorporation. PDGF increased cell proliferation by 4.6-fold, fibronectin secretion by 3.2-fold, total collagen synthesis by 1.8-fold, and the activation of ERK and 38 MAPK by 5.6-fold and 3.1-fold, respectively, compared to control. MPA, at doses inhibiting PDGF-induced MC proliferation and ECM synthesis, effectively blocked p38 MAPK activation but reduced ERK activation by 23% at maximal concentration tested (10 microM). Exogenous guanosine partially reversed the inhibition of MPA on p38 MAPK activation. Inhibitor of ERK or p38 MAPK suppressed PDGF-induced MC proliferation and ECM synthesis. In conclusion, MPA inhibits p38 MAPK activation leading to inhibiting proliferation and ECM synthesis in MC. Guanosine reduction is partially responsible for inhibitory effect of MPA on p38 MAPK activation in MC.  相似文献   

4.
Neuropathic pain after spinal cord injury (SCI) is developed in about 80% of SCI patients and there is no efficient therapeutic drug to alleviate SCI-induced neuropathic pain. Here we examined the effect of estrogen on SCI-induced neuropathic pain at below-level and its effect on neuroinflammation as underlying mechanisms. Neuropathic pain is developed at late phase after SCI and a single dose of 17β-estradiol (100, 300?μg/kg) were administered to rats with neuropathic pain after SCI through intravenous injection. As results, both mechanical allodynia and thermal hyperalgesia were significantly reduced by 17β-estradiol compared to vehicle control. Both microglia and astrocyte activation in the lamina I and II of L4-5 dorsal horn was also inhibited by 17β-estradiol. In addition, the levels of p-p38MAPK and p-ERK known to be activated in microglia and p-JNK known to be activated in astrocyte were significantly decreased by 17β-estradiol. Furthermore, the mRNA expression of inflammatory mediators such as Il-1β, Il-6, iNos, and Cox-2 was more attenuated in 17β-estradiol-treated group than in vehicle-treated group. Particularly, we found that the analgesic effect by 17β-estradiol was mediated via estrogen receptors, which are expressed in dorsal horn neurons. These results suggest that 17β-estradiol may attenuate SCI-induced neuropathic pain by inhibiting microglia and astrocyte activation followed inflammation.  相似文献   

5.
Brain-derived neurotrophic factor (BDNF) is known to have important functions in neuronal survival, differentiation, and plasticity. In addition to its role as a survival-promoting factor, BDNF reportedly can enhance neuronal cell death in some cases, for example, the death caused by excitotoxicity or glucose deprivation. The cellular mechanism of the death-enhancing effect of BDNF remains unknown, in contrast to that of its survival-promoting effect. In this work, we found that BDNF markedly accelerated the nitric oxide (NO) donor-induced death of cultured embryonic cortical neurons. BDNF increased the number of cells with nuclear condensation and DNA fragmentation 24 h after treatment with the NO donor, but it did not change the number of those cells 36 h after the treatment. The BDNF-accelerated death of cortical neurons was inhibited by the addition of actinomycin D or cycloheximide. These results suggest that BDNF can accelerate apoptotic cell death elicited by NO donor. TrkB-IgG and K252a blocked the BDNF-induced acceleration of the death, indicating that the death-accelerating effect by BDNF is mediated by TrkB. In addition, the BDNF-accelerated apoptosis was inhibited by the addition of SB202190 and SB203580, specific inhibitors of p38 mitogen-activated protein kinase (MAPK), and U0126, a specific inhibitor of MAPK/ERK kinase 1, indicating that the activation of both p38 MAPK and ERK is involved in the signaling cascade of the BDNF-accelerated, NO donor-induced apoptosis.  相似文献   

6.
Heat and cold hyperalgesia is a common feature of inflammatory pain. To investigate whether activation of extracellular signal-regulated protein kinase 5 (ERK5), also known as big mitogen-activated protein kinase 1, in primary sensory neurons participates in inflammatory pain, we examined the phosphorylation of ERK5 in the dorsal root ganglion (DRG) after peripheral inflammation. Inflammation induced by complete Freund's adjuvant produced heat and cold hyperalgesia on the ipsilateral hind paw and induced an increase in the phosphorylation of ERK5, mainly in tyrosine kinase A-expressing small- and medium-size neurons. In contrast, there was no change in ERK5 phosphorylation in the spinal dorsal horn. ERK5 antisense, but not mismatch, oligodeoxynucleotide decreased the activation of ERK5 and suppressed inflammation-induced heat and cold hyperalgesia. Furthermore, the inhibition of ERK5 blocked the induction of transient receptor potential channel TRPV1 and TRPA1 expression in DRG neurons after peripheral inflammation. Our results show that ERK5 activated in DRG neurons contribute to the development of inflammatory pain. Thus, blocking ERK5 signaling in sensory neurons that has the potential for preventing pain after inflammation.  相似文献   

7.
Abstract

The generic mitogen-activated protein kinases (MAPK) signaling pathway is shared by four distinct cascades, including the extracellular signal-related kinases (ERK1/2), Jun amino-terminal kinases (JNK1/2/3), p38-MAPK and ERK5. Mitogen-activated protein kinases/extracellular signal-regulated kinase (MAPK/ERK) pathway is reported to be associated with the cell proliferation, differentiation, migration, senescence and apoptosis. The literatures were searched extensively and this review was performed to review the role of MAPK/ERK signaling pathway in cell proliferation, differentiation, migration, senescence and apoptosis.  相似文献   

8.
Interleukin (IL)-1 beta is a pro-inflammatory cytokine that has been shown to play a pivotal role in the onset of inflammatory bowel disease (IBD), however, the molecular mechanisms underlying the production of IL-1 beta in IBD are not fully understood. We investigated dextran sulfate sodium (DSS)-induced IL-1 beta production and caspase-1 activities in murine peritoneal macrophages (pM phi). Further, the activation status of p38 mitogen-activated protein kinase (MAPK), extracellular signal-regulated kinase 1/2 (ERK1/2), and c-Jun NH(2)-terminal kinase (JNK1/2), as well as their upstream target kinases, were examined by Western blotting. In addition, mRNA expression was assessed by RT-PCR and CXC chemokine ligand 16 (CXCL16) protein was detected by immunocytochemistry. DSS-treated pM phi released IL-1 beta protein in a time-dependent manner without affecting mRNA levels during 3-24 h, and caspase-1 activity peaked at 5 min (29-fold). IL-1 beta release and caspase-1 activity induced by DSS were significantly inhibited by a MAPK kinase 1/2 inhibitor, a p38 MAPK inhibitor, and NAC, however, not by JNK1/2 or a protein kinase C inhibitor. In addition, DSS strikingly induced the phosphorylation of p38 MAPK and ERK1/2 within 2 and 10 min, respectively. DSS also induced intracellular generation of reactive oxygen species (ROS). Pre-treatment with anti-CXCL16 for 24 h, but not anti-scavenger receptor-A, anti-CD36, or anti-CD68 antibodies, significantly suppressed DSS-induced IL-1 beta production. Our results suggest that DSS triggers the release of IL-1 beta protein from murine pM phi at a post-translational level through binding with CXCL16, ROS generation, and resultant activation of both p38 MAPK and ERK1/2 pathways, and finally caspase-1 activation.  相似文献   

9.
Zhang FE  Cao JL  Zhang LC  Zeng YM 《生理学报》2005,57(5):545-551
本研究旨在观察脊髓p38丝裂原活化蛋白激酶(p38 mitogen-activated protein kinase,p38 MAPK)在坐骨神经压迫性损伤所致神经病理性痛中的作用。雄性Sprague-Dawley大鼠鞘内置管后,4-0丝线松结扎左侧坐骨神经制作慢性压迫性损伤(chronic constriction injury,CCI)模型。CCI后第5天,鞘内注射不同剂量的p38 MAPK特异性抑制剂SB203580,并在给药前及给药后不同时间点,分别用von Frey机械痛敏监测仪和热辐射刺激仪监测大鼠损伤侧后爪机械和热刺激反应闽值,用免疫印迹技术(Western blot)观察给药前后脊髓磷酸化p38 MAPK(p-p38 MAPK)和磷酸化环磷酸腺苷反应元件结合蛋白(phosphorylated cAMP response element binding protein,pCREB)表达变化。结果发现:坐骨神经压迫性损伤引起脊髓p-p38 MAPK蛋白表达明显增加;鞘内注射SB203580能剂量依赖性逆转CCI引起的机械性痛觉异常和热痛觉过敏及脊髓水平p-p38 MAPK表达的增加,也明显抑制CCI引起的脊髓pCREB表达的增加。结果提示,脊髓水平p38 MAPK激活参与坐骨神经压迫性损伤所致神经病理性痛的发展,其作用可能通过pCREB介导。  相似文献   

10.
We have previously demonstrated that calcineurin and p38 mitogen-activated protein kinase (MAPK) are up-regulated in the hearts of mdx mice. However, the degree of up-regulation observed was variable, which may reflect variable levels of daily physical activities among the mice. To investigate whether or not exercise affects dystrophic features and activates intracellular signaling molecules in mdx hearts, we subjected mdx and C57BL/10 mice to treadmill exercise and examined intracellular signaling molecules in cardiac muscles, at the protein level. The heart to body weight ratio was significantly increased in exercised mdx mice. Histopathology in exercised mdx hearts showed extensive infiltration of inflammatory cells, together with increases in interstitial fibrosis and adipose tissues, all of which were not observed either in exercised C57BL/10 or non-exercised mdx hearts. Phosphorylated p38 MAPK, phosphorylated extracellular signal-regulated kinase 1/2 and calcineurin, but not phosphorylated c-Jun N-terminal kinase 1, were up-regulated in exercised mdx hearts compared to exercised C57BL/10 or non-exercised mdx hearts. These data suggest that physical exercise accelerates the dystrophic process through activation of intracellular signaling molecules in dystrophin-deficient hearts.  相似文献   

11.
Peripheral tissue injury causes the release of various mediators from damaged and inflammatory cells, which in turn activates and sensitizes primary sensory neurons and thereby produces persistent pain. The present study investigated the role of platelet-activating factor (PAF), a phospholipid mediator, in pain signaling using mice lacking PAF receptor (pafr-/- mice). Here we show that pafr-/- mice displayed almost normal responses to thermal and mechanical stimuli but exhibit attenuated persistent pain behaviors resulting from tissue injury by locally injecting formalin at the periphery as well as capsaicin pain and visceral inflammatory pain without any alteration in cytoarchitectural or neurochemical properties in dorsal root ganglion (DRG) neurons and a defect in motor function. However, pafr-/- mice showed no alterations in spinal pain behaviors caused by intrathecally administering agonists for N-methyl-d-aspartate (NMDA) and neurokinin(1) receptors. A PAFR agonist evoked an intracellular Ca(2+) response predominantly in capsaicin-sensitive DRG neurons, an effect was not observed in pafr-/- mice. By contrast, the PAFR agonist did not affect C- or Adelta-evoked excitatory post-synaptic currents in substantia gelatinosa neurons in the dorsal horn. Interestingly, mice lacking PAFR showed reduced phosphorylation of extracellular signal-related protein kinase (ERK), an important kinase for the sensitization of primary sensory neurons, in their DRG neurons after formalin injection. Furthermore, U0126, a specific inhibitor of the ERK pathway suppressed the persistent pain by formalin. Thus, PAFR may play an important role in both persistent pain and the sensitization of primary sensory neurons after tissue injury.  相似文献   

12.
Cheng JK  Ji RR 《Neurochemical research》2008,33(10):1970-1978
During evolution, living organisms develop a specialized apparatus called nociceptors to sense their environment and avoid hazardous situations. Intense stimulation of high threshold C- and Aδ-fibers of nociceptive primary sensory neurons will elicit pain, which is acute and protective under normal conditions. A further evolution of the early pain system results in the development of nociceptor sensitization under injury or disease conditions, leading to enhanced pain states. This sensitization in the peripheral nervous system is also called peripheral sensitization, as compared to its counterpart, central sensitization. Inflammatory mediators such as proinflammatory cytokines (TNF-α, IL-1β), PGE2, bradykinin, and NGF increase the sensitivity and excitability of nociceptors by enhancing the activity of pronociceptive receptors and ion channels (e.g., TRPV1 and Nav1.8). We will review the evidence demonstrating that activation of multiple intracellular signal pathways such as MAPK pathways in primary sensory neurons results in the induction and maintenance of peripheral sensitization and produces persistent pain. Targeting the critical signaling pathways in the periphery will tackle pain at the source. Special issue article in honor of Dr. Ji-Sheng Han.  相似文献   

13.
Neuropathic pain that occurs after peripheral nerve injury is poorly controlled by current therapies. Increasing evidence shows that mitogen-activated protein kinase (MAPK) play an important role in the induction and maintenance of neuropathic pain. Here we show that activation of extracellular signal-regulated protein kinases 5 (ERK5), also known as big MAPK1, participates in pain hypersensitivity caused by nerve injury. Nerve injury increased ERK5 phosphorylation in spinal microglia and in both damaged and undamaged dorsal root ganglion (DRG) neurons. Antisense knockdown of ERK5 suppressed nerve injury-induced neuropathic pain and decreased microglial activation. Furthermore, inhibition of ERK5 blocked the induction of transient receptor potential channels and brain-derived neurotrophic factor expression in DRG neurons. Our results show that ERK5 activated in spinal microglia and DRG neurons contributes to the development of neuropathic pain. Thus, blocking ERK5 signaling in the spinal cord and primary afferents has potential for preventing pain after nerve damage.  相似文献   

14.
The formation of glucose-derived methylglyoxal (MG), a highly reactive dicarbonyl compound, is accelerated under diabetic conditions. We examined whether MG was capable of inducing apoptosis in Schwann cells (SCs), since recent studies have suggested a potential involvement of apoptotic cell death in the development of diabetic neuropathy. MG induced apoptosis in SCs in a dose-dependent manner, accompanied by a reduction of intracellular glutathione content and activation of the p38 MAPK. Inhibiting the p38 MAPK activation by SB203580 successfully suppressed the MG-induced apoptosis in SCs. Aminoguanidine and N-acetyl-l-cysteine also inhibited the MG-induced p38 MAPK activation and apoptosis along with restoration of the intracellular glutathione content. These results suggest a potential role for MG in SC injury through oxidative stress-mediated p38 MAPK activation under diabetic conditions, and it may serve as a novel insight into therapeutic strategies for diabetic neuropathy.  相似文献   

15.
Neuropeptide Y (NPY) was immunohistochemically investigated in the frog spinal cord and dorsal root ganglia after axotomy. In normal ganglia, moderate NPY-like immunoreactivity (NPY-IR) prevailed in large and medium cells. In the spinal cord, the NPY-IR was densest in the dorsal part of the lateral funiculus. Other fibers and neurons NPY-IR were observed in the dorsal and ventral terminal fields and mediolateral band. NPY-IR fibers were also found in the ventral horn and in the ventral and lateral funiculi. The sciatic nerve transection increased the NPY-IR in large and medium neurons of the ipsilateral and contralateral dorsal root ganglia at 3 and 7 days, but no clear change was found at 15 days. In the spinal cord, there was a bilateral increase in the NPY-IR of the dorsal part of the lateral funiculus. In the ipsilateral side, the NPY-IR was increased at 3 and 7 days but was decreased at 15 days. In the contralateral side, a significant reduction at 15 days occurred. These findings seem to favor the role of NPY in the modulation of pain-related information in frogs, suggesting that this role of NPY may have appeared early in vertebrate evolution.  相似文献   

16.
Huang YF  Gong KZ  Zhang ZG 《生理学报》2003,55(4):454-458
建立培养乳鼠心肌细胞的缺氧/复氧(A/R)损伤模型和缺氧预处理(APC)模型,以细胞存活率、细胞内超氧化物趋化酶(SOD)活性、丙二醛(MDA)含量、培养上清液乳酸脱氢酶(LDH)活性作为反映心肌细胞损伤的指标。采用细胞外信号调节蛋白激酶(ERK1/2)抑制剂PD98059及丝裂素活化蛋白激酶p38α/β(p38α/β)阻滞剂SB203580干预模型,并以胶内原位磷酸化法测定ERK1/2和p38活性,借以探讨ERK1/2和p38α/β在缺氧预处理保护机制中的作用。结果表明:(1)在APC组,于预处理的缺氧时相给予PD98059,可以完全消除APC的延迟保护作用;在A/R组的缺氧时相加入PD98059对细胞损伤无影响;(2)在APC组的预处理缺氧时相给予p38α/β抑制剂SB203580并不能消除APC的保护作用,而在A/R组的持续缺氧时相给予SB203580则可显著减轻缺氧对细胞的损伤;(3)ERK1/2和p38总活性测定表明,缺氧可激活ERK1/2和p38,它们的活性在缺氧后4h时达到高峰,而经过APC处理后,两者活性高峰提前于缺氧后3h时出现,且峰值显著降低。上述结果提示,预处理过程中ERK1/2的激活可能是缺氧预处理延迟保护机制中细胞信号传递的重要环节,预处理阶段p38α/β的活化不参与APC诱导的延迟保护信号传递过程,p38的过度激活可能是缺氧/复氧损伤过程中的一个致损伤参与因素,而预处理抑制随后持续缺氧阶段p38的过度激活可能是其保护机制的一个环节。  相似文献   

17.
Regulation of calbindin and calretinin expression by brain-derived neurotrophic factor (BDNF) was examined in primary cultures of cortical neurons using immunocytochemistry and northern blot analysis. Here we report that regulation of calretinin expression by BDNF is in marked contrast to that of calbindin. Indeed, chronic exposure of cultured cortical neurons for 5 days to increasing concentrations of BDNF (0.1-10 ng/ml) resulted in a concentration-dependent decrease in the number of calretinin-positive neurons and a concentration-dependent increase in the number of calbindin-immunoreactive neurons. Consistent with the immunocytochemical analysis, BDNF reduced calretinin mRNA levels and up-regulated calbindin mRNA expression, providing evidence that modifications in gene expression accounted for the changes in the number of calretinin- and calbindin-containing neurons. Among other members of the neurotrophin family, neurotrophin-4 (NT-4), which also acts by activating tyrosine kinase TrkB receptors, exerted effects comparable to those of BDNF, whereas nerve growth factor (NGF) was ineffective. As for BDNF and NT-4, incubation of cortical neurons with neurotrophin-3 (NT-3) also led to a decrease in calretinin expression. However, in contrast to BDNF and NT-4, NT-3 did not affect calbindin expression. Double-labeling experiments evidenced that calretinin- and calbindin-containing neurons belong to distinct neuronal subpopulations, suggesting that BDNF and NT-4 exert opposite effects according to the neurochemical phenotype of the target cell.  相似文献   

18.
Expression of brain-derived neurotrophic factor (BDNF) mRNA is increased in the dorsal root ganglion (DRG) in response to peripheral inflammation. Nerve growth factor (NGF) from inflammatory tissue is thought to induce expression of BDNF. Recently, it was reported that the BDNF gene has eight non-coding exons that are transcribed independently into several splice variants. Expression of these splice variants in DRG neurons stimulated with NGF has not been studied. We examined changes in expression of BDNF splice variants in a rat model of peripheral inflammation and in cultured DRG neurons exposed to NGF. Total BDNF mRNA was increased by inflammation in vivo and by NGF in vitro. Among all splice variants, exon 1-9 showed the greatest increase in expression in both experiments. Our results indicate that exon 1-9 contributes to changes in total BDNF levels and may play an important role in the acute response of DRG to NGF.  相似文献   

19.
In the present study we demonstrated that the flavonoid derivative trifolin acetate (TA), obtained by acetylation of naturally occurring trifolin, induces apoptosis. Associated downstream signaling events were also investigated. TA-induced cell death was prevented by the non-specific caspase inhibitor z-VAD-fmk and reduced by the presence of the selective caspase inhibitors z-LEHD-fmk (caspase-9), z-DEVD-fmk (caspase-3) and z-VEID-fmk (caspase-6). The apoptotic effect of TA was associated with (i) the release of cytochrome c from mitochondria which was not accompanied by dissipation of the mitochondrial membrane potential (ΔΨm), (ii) the activation of the mitogen-activated protein kinases (MAPKs) pathway and (iii) abrogated by the over-expression of Bcl-2 or Bcl-xL. TA-induced cell death was attenuated by inhibition of extracellular signal-regulated kinases (ERK) 1/2 with U0126 and inhibition of p38MAPK with SB203580. In contrast, inhibition of c-Jun NH2-terminal kinase (JNK) by SP600125 significantly enhanced apoptosis. Although reactive oxygen species (ROS) increased in response to TA, this did not seem to play a pivotal role in the apoptotic process since different anti-oxidants were unable to provide cell protection. The present study demonstrates that TA-induced cell death is mediated by an intrinsic-dependent apoptotic event involving mitochondria and MAPK, and through a mechanism independent of ROS generation.  相似文献   

20.
We examined the effect of p38 mitogen-activated protein kinase (MAPK) inhibitors in models of nociception and correlated this effect with localization and expression levels of p38 MAPK in spinal cord. There was a rapid increase in phosphorylated p38 MAPK in spinal cord following intrathecal administration of substance P or intradermal injection of formalin. Immunocytochemistry revealed that phosphorylated p38 MAPK-immunoreactive cells were predominantly present in laminae I-IV of the dorsal horn. Double-staining with markers for neurons, microglia, astrocytes and oligodendrocytes unexpectedly revealed co-localization with microglia but not with neurons or other glia. Pretreatment with p38 MAPK inhibitors (SB20358 or SD-282) had no effect on acute thermal thresholds. However, they attenuated hyperalgesia in several nociceptive models associated with spinal sensitization including direct spinal activation (intrathecal substance P) and peripheral tissue inflammation (intraplantar formalin or carrageenan). Spinal sensitization, manifested by enhanced expression of cyclo-oxygenase-2 and inflammation-induced appearance of Fos-positive neurons, was blocked by pretreatment, but not post-treatment, with p38 MAPK inhibitors. Taken together, these results indicate that spinal p38 MAPK is involved in inflammation-induced pain and that activated spinal microglia play a direct role in spinal nociceptive processing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号