共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Luteolin is an antioxidative, antitumor and anti-inflammatory flavone. It has been shown to reduce endothelial dysfunction, but the mechanism is not clear. We set out to explore the effects of luteolin on apoptosis and its mechanism of action in endothelial cells. The effect of luteolin on pyrogallol-induced superoxide stress and the subsequent apoptosis was studied in the mouse heart capillary endothelial cell line H5V and human umbilical vein endothelial cells, by the use of flow cytometry, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide, Hoechst staining, and western blot. Pyrogallol (0-400 μm) dose-dependently induced reactive oxygen species production, cytotoxicity, an annexin V-fluorescein isothiocyanate increase, mitochondrial transmembrane depolarization and DNA condensation in both H5V and human umbilical vein endothelial cells; these actions were reversed by luteolin (0.78-50 μm) in a concentration-dependent manner. Luteolin suppressed the poly (ADP-ribose) polymerase activation, caspase-8 cleavage and p38 mitogen-activated protein kinase activation triggered by pyrogallol, and stimulated the extracellular signal-regulated kinase signaling pathway to counteract the pyrogallol-induced apoptotic signals. Luteolin is an effective agent for the protection of endothelial cells from superoxide stress-induced apoptosis via the extracellular signal-regulated kinase signaling pathway. 相似文献
3.
Suppression of adriamycin-induced apoptosis by sustained activation of the phosphatidylinositol-3'-OH kinase-Akt pathway 总被引:2,自引:0,他引:2
The mechanisms by which growth factors trigger signal transduction pathways leading to protection against apoptosis are of great interest. In this study, we investigated the effect of hepatocyte growth factor (HGF/SF) and epidermal growth factor (EGF) on adriamycin (ADR)-induced apoptosis. Treatment of human epithelial MKN74 cells with ADR, a DNA topoisomerase IIalpha inhibitor, caused apoptosis. However, cells pretreated with HGF/SF, but not those pretreated with EGF, were resistant to this apoptosis. The protective effect of HGF/SF against the ADR-induced apoptosis was abolished in the presence of either LY294002, an inhibitor of phosphatidylinositol-3'-OH kinase (PI3-K) or 1L-6-hydroxymethyl-chiro-inositol 2-(R)-2-O-methyl-3-O-octadecylcarbonate, an inhibitor of Akt, thus implicating the activation of PI3-K-Akt signaling in the antiapoptotic action of HGF/SF. Immunoblotting analysis revealed that HGF/SF stimulated the sustained phosphorylation of Akt for several hours but that EGF stimulated the phosphorylation only transiently. Furthermore, ADR-induced activation of caspase-9, a downstream molecule of Akt, was inhibited for at least 24 h after HGF/SF stimulation, but it was not affected by EGF stimulation. Cell-surface biotin-labeling analysis showed that the HGF/SF receptor remained on the cell surface until at least 30 min after HGF/SF addition but that the EGF receptor level on the cell surface was attenuated at an earlier time after EGF addition. These results indicate that HGF/SF, but not EGF, transmitted protective signals against ADR-induced apoptosis by causing sustained activation of the PI3-K-Akt signaling pathway. Furthermore, the difference in antiapoptotic capacity between HGF/SF and EGF is explained, at least in part, by the delayed down-regulation of the HGF/SF receptor. 相似文献
4.
Kuo PL Hung JY Huang SK Chou SH Cheng DE Jong YJ Hung CH Yang CJ Tsai YM Hsu YL Huang MS 《Journal of immunology (Baltimore, Md. : 1950)》2011,186(3):1521-1530
Lung cancer, one of the leading causes of death worldwide, is often associated with a state of immune suppression, but the molecular and functional basis remains enigmatic. Evidence is provided in this paper supporting the role of lung cancer-derived soluble lectin, galectin-1, as a culprit in dendritic cell (DC) anergy. We have shown that galectin-1 is highly expressed in lung cancer cell lines, together with the serum and surgical samples from lung cancer patients. Functionally, lung cancer-derived galectin-1 has been shown to alter the phenotypes of monocyte-derived DCs (MdDCs) and impair alloreactive T cell response, concomitant with the increase of CD4(+)CD25(+)FOXP3(+) regulatory T cells. The regulatory effect of galectin-1 is mediated, in part, through its ability to induce, in an Id3 (inhibitor of DNA binding 3)-dependent manner, the expression of IL-10 in monocytes and MdDCs. This effect is inhibited by the addition of lactose, which normalizes the phenotypic and functional alterations seen in MdDCs. Of note, significant upregulation of IL-10 was seen in tumor-infiltrating CD11c(+) DCs in human lung cancer samples. This was also noted in mice transplanted with lung cancer cells, but not in those receiving tumor cells with galectin-1 knockdown. Furthermore, a significant reduction was noted in lung cancer incidence and in the levels of IL-10-expressing, tumor-infiltrating DCs, in mice receiving galectin-1-silenced tumor cells. These results thus suggest that the galectin-1/IL-10 functional axis may be crucial in lung cancer-mediated immune suppression, and that galectin-1 may serve as a target in the development of lung cancer immunotherapy. 相似文献
5.
Saxena M Busca A Pandey S Kryworuchko M Kumar A 《Journal of immunology (Baltimore, Md. : 1950)》2011,187(11):5865-5878
Monocytic cells survive HIV replication and consequent cytopathic effects because of their decreased sensitivity to HIV-induced apoptosis. However, the mechanism underlying this resistance to apoptosis remains poorly understood. Lymphocytic cells are exposed to microbial products because of their translocation from the gut in persons with chronic HIV infections or following coinfections. We hypothesized that activation of monocytic cells by such microbial products through interaction with corresponding TLRs may confer antiapoptotic signals. Using HIV-viral protein R (Vpr)(52-96) peptide as a model apoptosis-inducing agent, we demonstrated that unlike monocyte-derived macrophages, undifferentiated primary human monocytes and promonocytic THP-1 cells are highly susceptible to Vpr(52-96)-induced apoptosis. Interestingly, monocytes and THP-1 cells stimulated with TLR9 agonist CpG induced almost complete resistance to Vpr(52-96)-induced apoptosis, albeit through a TLR9-independent signaling pathway. Moreover, CpG selectively induced the antiapoptotic cellular inhibitor of apoptosis (c-IAP)-2 protein and inhibition of the c-IAP-2 gene by either specific small interfering RNA or synthetic second mitochondrial activator of caspases mimetic reversed CpG-induced resistance against Vpr(52-96)-mediated apoptosis. We demonstrated that c-IAP-2 is regulated by the JNK and calcium signaling pathway, in particular calmodulin-dependent protein kinase-II. Furthermore, inhibition of JNK and the calcium signaling including the calmodulin-dependent protein kinase-II by either pharmacological inhibitors or their specific small interfering RNAs reversed CpG-induced protection against Vpr(52-96)-mediated apoptosis. We also show that CpG induced JNK phosphorylation through activation of the calcium signaling pathway. Taken together, our results suggest that CpG-induced protection may be mediated by c-IAP-2 through the calcium-activated JNK pathway via what appeared to be TLR9-independent signaling pathways. 相似文献
6.
Epigallocatechin-3-gallate induces cell apoptosis of human chondrosarcoma cells through apoptosis signal-regulating kinase 1 pathway 总被引:1,自引:0,他引:1
Yang WH Fong YC Lee CY Jin TR Tzen JT Li TM Tang CH 《Journal of cellular biochemistry》2011,112(6):1601-1611
Chondrosarcoma is a malignant primary bone tumor that responds poorly to both chemotherapy and radiation therapy. (-)-Epigallocatechin-3-gallate (EGCG), the major polyphenol in green tea, has been shown to inhibit tumorigenesis and cancer cell growth in animal models. The aim of this study was to elucidate the mechanism of EGCG-induced apoptosis of human chondrosarcoma cells. EGCG induced cell apoptosis in human chondrosarcoma cell lines but not primary chondrocytes. EGCG induced upregulation of Bax and Bak, downregulation of Bcl-2 and Bcl-XL, and dysfunction of mitochondria in chondrosarcoma. We also found that the accumulation of reactive oxygen species (ROS) is a critical mediator in EGCG-induced cell death. EGCG induced apoptosis signal-regulating kinase 1 (ASK1) dephosphorylation and its dissociation from 14-3-3. Treatment of chondrosarcoma cells with EGCG induced p38 and c-jun-NH2-kinase (JNK) phosphorylation. Transfection with ASK1 siRNA or p38 and JNK mutant antagonized the EGCG-induced cell apoptosis. Therefore, EGCG triggered ROS and activated the ASK1-p38/JNK pathway, resulting chondrosarcoma cell death. Importantly, animal studies revealed a dramatic reduction in tumor volume after 24 days of treatment. Thus, EGCG may be a novel anti-cancer agent for the treatment of chondrosarcoma. 相似文献
7.
Peng Wang Xiaobin Peng Jingjing Zhang Zhen Wang Jiaxue Meng Bohong Cen Aimin Ji Shuai He 《Apoptosis : an international journal on programmed cell death》2018,23(11-12):651-666
Spontaneous tumor regression can be observed in many tumors, however, studies related to the altered expression of lncRNA in spontaneous glioma regression are limited, and the potential contributions of lncRNAs to spontaneous glioma regression remain unknown. To investigate the biological roles of lncRNA-135528 in spontaneous glioma regression. The cDNA fragment of lncRNA-135528 was obtained by rapid-amplification of cDNA ends (RACE) technology and cloned into the plvx-mcmv-zsgreen-puro vector. Additionally, we stably silenced or overexpressed lncRNA-135528 in G422 cells by transfecting with siRNA against lncRNA-135528 or lncRNA-135528 overexpression plasmid. Then, we examined lncRNA-135528 overexpressing and lncRNA-135528 silencing on glioma cells and its effects on CXCL10 and JAK/STAT pathways. The main findings indicated that lncRNA-135528 promoted glioma cell apoptosis, inhibited cell proliferation and arrested cell cycle progression; the up-regulation of lncRNA135528 led to significantly increased CXCL10 levels and the differential expression of mRNA associated with JAK/STAT pathway in glioma cells. lncRNA-135528 can inhibit tumor progression by up-regulating CXCL10 through the JAK/STAT pathway. 相似文献
8.
9.
Tumor necrosis factor (TNF) induced the phosphorylation of BAD at serine 136 in HeLa cells under conditions that are not cytotoxic. BAD phosphorylation by TNF was dependent on phosphatidylinositide-3-OH kinase (PI3K) and was accompanied by the translocation of BAD from the mitochondria to the cytosol. Blocking the phosphorylation of BAD and its translocation to the cytosol with the PI3K inhibitor wortmannin activated caspase-3 and markedly potentiated the cytotoxicity of TNF. Transient transfection with a PI3K dominant negative mutant or a dominant negative mutant of the serine-threonine kinase Akt, the downstream target of PI3K and the enzyme that phosphorylates BAD, similarly potentiated the cytotoxicity of TNF. By contrast, transfection with a constitutively active Akt mutant protected against the cytotoxicity of TNF in the presence of wortmannin. Phosphorylation of BAD prevents its interaction with the antiapoptotic protein Bcl-XL. Transfection with a Bcl-XL expression vector protected against the cytotoxicity of TNF in the presence of wortmannin. The mechanism by which the inhibition of the phosphorylation of BAD is likely linked to the induction of lethal mitochondrial damage in TNF-intoxicated cells is discussed. 相似文献
10.
CpG DNA activates survival in murine macrophages through TLR9 and the phosphatidylinositol 3-kinase-Akt pathway 总被引:1,自引:0,他引:1
Sester DP Brion K Trieu A Goodridge HS Roberts TL Dunn J Hume DA Stacey KJ Sweet MJ 《Journal of immunology (Baltimore, Md. : 1950)》2006,177(7):4473-4480
Bacterial CpG-containing (CpG) DNA promotes survival of murine macrophages and triggers production of proinflammatory mediators. The CpG DNA-induced inflammatory response is mediated via TLR9, whereas a recent study reported that activation of the Akt prosurvival pathway occurs via DNA-dependent protein kinase (DNA-PK) and independently of TLR9. We show, in this study, that Akt activation and survival of murine bone marrow-derived macrophages (BMM) triggered by CpG-containing phosphodiester oligodeoxynucleotides or CpG-containing phosphorothioate oligodeoxynucleotides was completely dependent on TLR9. In addition, survival triggered by CpG-containing phosphodiester oligodeoxynucleotides was not compromised in BMM from SCID mice that express a catalytically inactive form of DNA-PK. CpG DNA-induced survival of BMM was inhibited by the PI3K inhibitor, LY294002, but not by the MEK1/2 inhibitor, PD98059. The effect of LY294002 was specific to survival, because treatment of BMM with LY294002 affected CpG DNA-induced TNF-alpha production only modestly. Therefore, CpG DNA activates macrophage survival via TLR9 and the PI3K-Akt pathway and independently of DNA-PK and MEK-ERK. 相似文献
11.
12.
Yang S Luo A Hao X Lai Z Ding T Ma X Mayinuer M Shen W Wang X Lu Y Ma D Wang S 《Biology of reproduction》2011,84(6):1182-1189
Peroxiredoxin 2 (PRDX2) has been known to act as an antioxidant enzyme whose main function is H(2)O(2) reduction in cells. We aimed to study the expression patterns of PRDX2 in mouse ovaries and explore the function of this protein in apoptosis of granulosa cells (GCs). We found that the expression of the PRDX2 protein in atretic follicle GCs was markedly higher than in healthy follicle GCs. In vitro, the transfection of siRNA targeting the Prdx2 gene inhibited the proliferation and induced the apoptosis of primary cultured GCs. Furthermore, suppression of PRDX2 resulted in the augmentation of endogenous H(2)O(2), and the ability to eliminate the exogenous H(2)O(2) was attenuated. The expression of PRDX2 and nuclear factor kappa-light-chain-enhancer of activated B cells (NFKB), whose activity was inhibited by binding to IKB, increased in GCs treated with various concentrations of H(2)O(2) for 30 min. However, no significant change in cytoplasmic IKB expression was observed. At 2 h after treatment with H(2)O(2), nuclear NFKB expression level was reduced, cytoplasmic IKB expression was increased, and PRDX2 expression was unchanged. Silencing of the Prdx2 gene caused early changes in NFKB and IKB expression in the primary cultured GCs compared to that in control cells. Taken together, these data suggest that PRDX2 plays an important role in inhibiting apoptosis in GCs and that PRDX2 actions may be related to the expression of NFKB and IKB. 相似文献
13.
Hemangiopoietin inhibits apoptosis of MO7e leukemia cells through phosphatidylinositol 3-kinase-AKT pathway 总被引:2,自引:0,他引:2
Hemangiopoietin (HAPO) is a growth factor that significantly stimulates proliferation and survival of the primitive cells of hematopoietic and endothelial lineages. To determine the mechanism of action of HAPO, the anti-apoptotic activity and signal transduction pathway of HAPO were investigated using a factor-dependent leukemia cell line, the MO7e cells. Recombinant human HAPO (rhHAPO) was produced in Escherichia coli and purified by a series of column chromatography with a purity of more than 95%. rhHAPO significantly supported the survival of MO7e cells after deprivation of granulocyte-macrophage colony stimulating factor and activated phosphatidylinositol 3-kinase (PI3K). When the MO7e cells were treated with two specific inhibitors to PI3K (LY294002 or wortmannin), a significant loss of cell viability with evidence of apoptosis was observed. Moreover, the protein kinase B (Akt), one of the downstream effectors of PI3K-dependent survival signaling, was activated in HAPO-stimulated MO7e cells. Phosphorylation of Akt at serine 473 and its downstream molecular Bad at serine 136 was induced by HAPO, but was blocked by two PI3K inhibitors, LY294002 and wortmannin. In addition, HAPO inhibited caspase-3 activities and poly(ADP-ribose) polymerase degradation. Such an effect of HAPO was also significantly blocked by either LY294002 or wortmannin. These results indicate that HAPO protects MO7e cells from apoptotic death through a PI3K-Akt pathway. 相似文献
14.
Ichikawa H Nakata N Abo Y Shirasawa S Yokoyama T Yoshie S Yue F Tomotsune D Sasaki K 《Cryobiology》2012,64(1):12-22
Cryopreservation is an essential technique in basic research and clinical applications of human embryonic stem (hES) cells. Cryopreserved hES cells are fragile and undergo post-thaw apoptosis. We performed gene pathway analysis on cryopreserved and thawed hES cells to examine the effect of Y-27632, a Rho-associated kinase (ROCK) inhibitor, on apoptosis and associated molecular events. Y-27632 was added to the cryopreservation solution and/or the post-thaw medium of two hES cell lines (KhES-1, KhES-3). Post-thaw apoptosis was recorded as a function of time using Giemsa staining and the terminal deoxynucleotidyl transferase dUTP nick end labeling assay. Apoptosis plateaued 12h after the untreated hES cells were thawed. Gene pathway analysis showed the activation of IL-1β, TGF-β, and their respective receptors (IL-1R, ACVR1C) in the mitogen-activated protein kinase (MAPK) pathway, which resulted in the upregulation of caspase-8 and -10. Quantitative RT-PCR confirmed the upregulation of IL-1β, TGF-β, their respective receptors, and caspase-10 and -3. As these molecules were suppressed by Y-27632, gene pathways involving these molecules probably depend on ROCK activation. The TGF-β receptor antagonist, SB-431542, and an inhibitor of p38MAPK, SB-203580, did not affect apoptosis. Combining Y-27632 with SB-203580, however, resulted in an increase in the survival rate compared with the control. This suggests that the initiation of apoptosis depends on cytokine interactions and multiple ways exist to reduce post-thaw apoptosis in hES cells. Y-27632 can suppress cytokine interactions and the MAPK pathway, thereby reducing the occurrence of apoptosis, and is an effective cryoprotectant for hES cells. 相似文献
15.
Sarkar C Das S Chakroborty D Chowdhury UR Basu B Dasgupta PS Basu S 《Journal of immunology (Baltimore, Md. : 1950)》2006,177(11):7525-7529
The neurotransmitter dopamine (DA) is an important regulator of human T cell functions. Although it has been observed that DA, by acting through the D1/D5, D2, and D3 receptors, can activate resting T cells by stimulating the release of cytokines and the expression of surface integrins and also inhibit the proliferation of activated T cells by down-regulating nonreceptor tyrosine kinases, there is not yet a report indicating the functional significance of the D4 DA receptors present in these cells. The present work, for the first time, demonstrates that the stimulation of D4 DA receptors in human T cells induces T cell quiescence by up-regulating lung Krüppel-like factor-2 expression through the inhibition of ERK1/ERK2 phosphorylation. These results reveal a new link between the nervous system and T cell quiescence and indicate that D4 DA receptor agonists may have a therapeutic value in diseases with uncontrolled T cell proliferation. 相似文献
16.
Cells infected with the protozoan parasite Toxoplasma gondii are resistant to diverse apoptotic stimuli. In this study, we perform a detailed analysis of the manipulation of the mitochondrial arm of the apoptotic cascade by the parasite. Apoptosis was induced using irradiation with ultraviolet light (UV), and the kinetics of caspase activation, cytochrome c release and activation of the upstream signalling pathways were examined. The evidence clearly points to T. gondii targeting multiple steps in the transmission [inhibition of c-Jun N-terminal kinase (JNK) activation in response to UV], triggering (inhibition of cytochrome c release by affecting the balance of pro- and anti-apoptotic BCL-2 family members) and execution (inhibition of caspase 9 and caspase 3) phases of the apoptotic cascade. Interestingly, the multilevel pattern of inhibition that emerges suggests that the global inhibition of the mitochondrial arm of apoptosis is not likely to be contributed to by the small subset of mitochondria recruited to the T. gondii parasitophorous vacuole membrane. 相似文献
17.
The effects of phorbol 12-myristate 13-acetate (PMA) on DNA damage-induced apoptosis were examined in promyelocytic leukemia cells, U937, in comparison with other differentiation-inducing agents to clarify the role of protein kinase C (PKC) vis-a-vis cellular differentiation in apoptosis. The apoptosis of U937 cells was observed at as early as 1-1.5 h following UV irradiation, with most cells being in apoptotic state at 3 h. Pretreatment with PMA for as short as 5 min was sufficient to inhibit apoptosis induced by UV irradiation, whereas apparent changes in cell cycle distributions and expression of differentiation markers by PMA were not observed until 12 h and 48 h, respectively. The inhibition of apoptosis by PMA was completely abolished by the pretreatment with calphostin C, a PKC inhibitor, and 4 alpha-phorbor 12,13-didecanoate, which is unable to activate PKC, did not protect U937 cells against apoptosis induced by UV irradiation. Other differentiation inducers, such as cyclic AMP and active vitamin D3, did not affect the UV-induced apoptosis of U937 cells. Taken together, it was suggested that PMA inhibits DNA damage-induced apoptosis through the activation of PKC rather than as a result of differentiation of U937 cells. 相似文献
18.
Respiratory syncytial virus inhibits apoptosis and induces NF-kappa B activity through a phosphatidylinositol 3-kinase-dependent pathway. 总被引:12,自引:0,他引:12
Karl W Thomas Martha M Monick Janice M Staber Timor Yarovinsky A Brent Carter Gary W Hunninghake 《The Journal of biological chemistry》2002,277(1):492-501
19.
20.
目的:PI3K/Akt信号通路是与胶质瘤发生发展密切相关的核心通路之一,LY294002是该通路的特异性抑制剂。本研究通过探讨PI3K通路抑制剂LY294002对U87胶质瘤细胞系细胞衰老及凋亡的影响,从而为胶质瘤患者治疗的新策略奠定理论基础。方法:将体外培养的人脑胶质瘤U87细胞株分为DMSO处理的对照组和LY294002(100μM)处理的实验组,采用β-半乳糖苷酶染色和流式细胞术的方法,分别检测并比较两组肿瘤细胞衰老和凋亡的情况。结果:LY294002处理组U87胶质瘤细胞的衰老指数(32.20±4.46%)显著高于DMSO对照组(3.40±1.61%,t=6.254,P0.001)。另外,与DMSO对照组相比,凋亡蛋白caspase-3mRNA的表达在LY294002处理组胶质瘤细胞中显著上调(t=8.923,P0.05)。LY294002处理组肿瘤细胞的凋亡指数(80.10±4.832%)明显高于DMSO对照组(4.260±1.073%,t=8.923,P0.05)。结论:LY294002既能够诱导肿瘤细胞衰老,又能够诱导肿瘤细胞凋亡,然而其诱导胶质瘤细胞凋亡的能力占据主导地位,为其发挥抗胶质瘤效应的主要途径。另外,在LY294002的持续作用下,部分衰老的肿瘤细胞或许会发生凋亡。这些结论为为临床增强胶质瘤患者的联合化疗奠定了理论基础。 相似文献