首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Serum opacity factor (SOF), a virulence determinant of Streptococcus pyogenes, converts plasma high-density lipoproteins (HDL) to three distinct species: lipid-free apolipoprotein (apo) A-I, neo HDL, a small discoidal HDL-like particle, and a large cholesteryl ester-rich microemulsion (CERM) that contains the cholesterol esters (CE) of up to ~400000 HDL particles and apo E as its major protein. Similar SOF reaction products are obtained with HDL, total plasma lipoproteins, and whole plasma. We hypothesized that hepatic uptake of CERM-CE via multiple apo E-dependent receptors would be faster than that of HDL-CE. We tested our hypothesis using human hepatoma cells and lipoprotein receptor-specific Chinese hamster ovary (CHO) cells. The uptake of [(3)H]CE by HepG2 and Huh7 cells from HDL after SOF treatment, which transfers >90% of HDL-CE to CERM, was 2.4 and 4.5 times faster, respectively, than from control HDL. CERM-[(3)H]CE uptake was inhibited by LDL and HDL, suggestive of uptake by both the LDL receptor (LDL-R) and scavenger receptor class B type I (SR-BI). Studies in CHO cells specifically expressing LDL-R and SR-BI confirmed CERM-[(3)H]CE uptake by both receptors. RAP and heparin inhibit CERM-[(3)H]CE but not HDL-[(3)H]CE uptake, thereby implicating LRP-1 and cell surface proteoglycans in this process. These data demonstrate that SOF treatment of HDL increases the rate of CE uptake via multiple hepatic apo E receptors. In so doing, SOF might increase the level of hepatic disposal of plasma cholesterol in a way that is therapeutically useful.  相似文献   

2.
Serum opacity factor from Streptococcus pyogenes transfers the cholesteryl esters (CE) of approximately 100,000 plasma high-density lipoprotein particles (HDL) to a CE-rich microemulsion (CERM) while forming neo HDL, a cholesterol-poor HDL-like particle. HDL, neo HDL, and CERM are distinct. Neo HDL is lower in free cholesterol and has lower surface and total microviscosities than HDL; the surface polarity of neo HDL and HDL are similar. CERM is much larger than HDL and richer in cholesterol and CE. Although the surface microviscosity of HDL is higher than that of CERM, they have similar total microviscosities because cholesterol partitions into the neutral lipid core. Because of its unique surface properties apo E preferentially associates with the CERM. In contrast, the composition and properties of neo HDL make it a potential acceptor of cellular cholesterol and its esterification. Thus, neo HDL and CERM are possible vehicles for improving cholesterol transport to the liver.  相似文献   

3.
Plasma high density lipoprotein-cholesterol (HDL-C) concentrations negatively correlate with atherosclerotic cardiovascular disease. HDL is thought to have several atheroprotective functions, which are likely distinct from the epidemiological inverse relationship between HDL-C levels and risk. Specifically, strategies that reduce HDL-C while promoting reverse cholesterol transport (RCT) may have therapeutic value. The major product of the serum opacity factor (SOF) reaction versus HDL is a cholesteryl ester (CE)-rich microemulsion (CERM), which contains apo E and the CE of ~ 400,000 HDL particles. Huh7 hepatocytes take up CE faster when delivered as CERM than as HDL, in part via the LDL-receptor (LDLR). Here we compared the final RCT step, hepatic uptake and subsequent intracellular processing to cholesterol and bile salts for radiolabeled HDL-, CERM- and LDL-CE by Huh7 cells and in vivo in C57BL/6J mice. In Huh7 cells, uptake from LDL was greater than from CERM (2–4X) and HDL (5–10X). Halftimes for [14C]CE hydrolysis were 3.0 ± 0.2, 4.4 ± 0.6 and 5.4 ± 0.7 h respectively for HDL, CERM and LDL-CE. The fraction of sterols secreted as bile acids was ~ 50% by 8 h for all three particles. HDL, CERM and LDL-CE metabolism in mice showed efficient plasma clearance of CERM-CE, liver uptake and metabolism, and secretion as bile acids into the gall bladder. This work supports the therapeutic potential of the SOF reaction, which diverts HDL-CE to the LDLR, thereby increasing hepatic CE uptake, and sterol disposal as bile acids.  相似文献   

4.
The distribution of apolipoprotein (apo) A-I between human high-density lipoproteins (HDL) and water is an important component of reverse cholesterol transport and the atheroprotective effects of HDL. Chaotropic perturbation (CP) with guanidinium chloride (Gdm-Cl) reveals HDL instability by inducing the unfolding and transfer of apo A-I but not apo A-II into the aqueous phase while forming larger apo A-I deficient HDL-like particles and small amounts of cholesteryl ester-rich microemulsions (CERMs). Our kinetic and hydrodynamic studies of the CP of HDL species separated according to size and density show that (1) CP mediated an increase in HDL size, which involves quasi-fusion of surface and core lipids, and release of lipid-free apo A-I (these processes correlate linearly), (2) >94% of the HDL lipids remain with an apo A-I deficient particle, (3) apo A-II remains associated with a very stable HDL-like particle even at high levels of Gdm-Cl, and (4) apo A-I unfolding and transfer from HDL to water vary among HDL subfractions with the larger and more buoyant species exhibiting greater stability. Our data indicate that apo A-I's on small HDL (HDL-S) are highly dynamic and, relative to apo A-I on the larger more mature HDL, partition more readily into the aqueous phase, where they initiate the formation of new HDL species. Our data suggest that the greater instability of HDL-S generates free apo A-I and an apo A-I deficient HDL-S that readily fuses with the more stable HDL-L. Thus, the presence of HDL-L drives the CP remodeling of HDL to an equilibrium with even larger HDL-L and more lipid-free apo A-I than with either HDL-L or HDL-S alone. Moreover, according to dilution studies of HDL in 3 M Gdm-Cl, CP of HDL fits a model of apo A-I partitioning between HDL phospholipids and water that is controlled by the principal of opposing forces. These findings suggest that the size and relative amount of HDL lipid determine the HDL stability and the fraction of apo A-I that partitions into the aqueous phase where it is destined for interaction with ABCA1 transporters, thereby initiating reverse cholesterol transport or, alternatively, renal clearance.  相似文献   

5.
Serum opacity factor (SOF) is a virulence determinant of group A streptococci that opacifies mammalian sera. We analyzed the specificity and mechanism of the opacity reaction using a recombinant form of the amino-terminal opacification domain of SOF, rSOF. Our data indicate that rSOF is neither a protease nor a lipase, but rather it is the binding of rSOF to high density lipoprotein (HDL) that triggers the opacity reaction. rSOF did not opacify plasma from apoA-I(-/-) mice or purified low or very low density lipoproteins but readily opacified HDL. rSOF binding to HDL was characterized by two high affinity binding sites; it bound to apoA-I (K(d) = 6 nm) and apoA-II (K(d) = 30 nm), and both apoA-I and apoA-II blocked the binding of rSOF to HDL. Electron microscopic examination and biochemical analyses of HDL treated with rSOF revealed the formation of lipid droplets devoid of apolipoproteins. Thus, SOF interacts with HDL in human blood by binding to apoA-I and apoA-II and causing the release of HDL lipid cargo, which coalesces to form lipid droplets, resulting in opacification. The disruption of HDL may attenuate its anti-inflammatory functions and contribute to the pathogenesis of group A streptococcal infections.  相似文献   

6.
The pre-β HDL fraction constitutes a heterogeneous population of discoid nascent HDL particles. They transport from 1 to 25 % of total human plasma apo A-I. Pre-β HDL particles are generated de novo by interaction between ABCA1 transporters and monomolecular lipid-free apo A-I. Most probably, the binding of apo A-I to ABCA1 initiates the generation of the phospholipid-apo A-I complex which induces free cholesterol efflux. The lipid-poor nascent pre-β HDL particle associates with more lipids through exposure to the ABCG1 transporter and apo M. The maturation of pre-β HDL into the spherical α-HDL containing apo A-I is mediated by LCAT, which esterifies free cholesterol and thereby forms a hydrophobic core of the lipoprotein particle. LCAT is also a key factor in promoting the formation of the HDL particle containing apo A-I and apo A-II by fusion of the spherical α-HDL containing apo A-I and the nascent discoid HDL containing apo A-II. The plasma remodelling of mature HDL particles by lipid transfer proteins and hepatic lipase causes the dissociation of lipid-free/lipid-poor apo A-I, which can either interact with ABCA1 transporters and be incorporated back into pre-existing HDL particles, or eventually be catabolized in the kidney. The formation of pre-β HDL and the cycling of apo A-I between the pre-β and α-HDL particles are thought to be crucial mechanisms of reverse cholesterol transport and the expression of ABCA1 in macrophages may play a main role in the protection against atherosclerosis.  相似文献   

7.
Apolipoprotein A-I (apo A-I), the major protein component of high density lipoprotein (HDL), plays a key role in reverse cholesterol transport from peripheral tissues to liver or steroidogenic organs. Class B, type 1 scavenger receptor (SR-BI) is abundantly expressed in these target tissues and recognizes apo A-I of HDL for selective cholesteryl ester uptake. Recently, we reported the liver-targeting potential of plasma-derived apo A-I and the efficient delivery of therapeutic small interfering RNAs (siRNA) assembled with cationic liposome and apo A-I. In this study, we expressed and purified recombinant human apo A-I (rhapo A-I), low endotoxin grade, from an Escherichia coli expression system. The liver-targeting property of rhapo A-I was compared to that of plasma-derived apo A-I. Using a hepatitis C virus mouse model, intravenous administration of virus-specific siRNA with liposome and rhapo A-I significantly inhibited viral protein expression, demonstrating great promise for its use in clinical applications.  相似文献   

8.
Probucol is a widely prescribed lipid-lowering agent, the major effects of which are to lower cholesterol in both low- and high-density lipoproteins (LDL and HDL, respectively). The mechanism of action of probucol on HDL apolipoprotein (apo) A-I kinetics was investigated in rabbits, with or without cholesterol feeding. 125I-labeled HDL was injected intravenously, and blood samples were taken periodically for 6 days. Kinetic parameters were calculated from the apo A-I-specific radioactivity decay curves. Fractional catabolic rate (FCR) and synthetic rate (SR) of apo A-I in rabbits fed a normal chow and normal chow with 1% probucol were similar. Apo A-I FCR of the rabbits fed 0.5% cholesterol was significantly increased but there were no changes in SR, compared to findings in the normal chow-fed group. Apo A-I FCR of the rabbits fed 1% probucol with 0.5% cholesterol (both 1 month and 2 months) was significantly increased compared to findings in rabbits fed the normal chow as well as 0.5% cholesterol diet group, while SR of apo A-I was significantly reduced in the former groups. Kinetics at 1 month after discontinuation of 1% probucol (under cholesterol feeding) showed a similar FCR of HDL-apo A-I to that of the rabbits fed 0.5% cholesterol, but the SR of apo A-I remained lower. Apo A-I isoproteins kinetics assessed by autoradiography of isoelectric focusing slab gels showed that the synthesis of proapo A-I was significantly reduced in the 1% probucol with 0.5% cholesterol administered, compared to the 0.5% cholesterol group. Thus, the action of probucol on HDL apo A-I kinetics was only prominent in case of higher serum cholesterol levels. The decreased HDL or apo A-I seen with probucol was apparently the result of an increase in FCR and a decrease in SR of HDL-apo A-I. A decreased synthesis of apo A-I remained evident even 1 month after discontinuing probucol. The action of probucol on the intracellular synthetic processes of apo A-I was revealed by the reduced synthesis of proapo A-I.  相似文献   

9.
Apolipoprotein A-I Zaragoza (L144R) (apo A-I Z), has been associated with severe hypoalphalipoproteinemia and an enhanced effect of high density lipoprotein (HDL) reverse cholesterol transport. In order to perform further studies with this protein we have optimized an expression and purification method of recombinant wild-type apo A-I and apo A-I Z and produced mimetic HDL particles with each protein. An pET-45 expression system was used to produce N-terminal His-tagged apo A-I, wild-type or mutant, in Escherichia coli BL21 (DE3) which was subsequently purified by affinity chromatography in non-denaturing conditions. HDL particles were generated via a modified sodium cholate method. Expression and purification of both proteins was verified by SDS-PAGE, MALDI-TOF MS and immunochemical procedures. Yield was 30mg of purified protein (94% purity) per liter of culture. The reconstituted HDL particles checked via non-denaturing PAGE showed high homogeneity in their size when reconstituted both with wild-type apo A-I and apo A-I Z. An optimized system for the expression and purification of wild-type apo A-I and apo A-I Z with high yield and purity grade has been achieved, in addition to their use in reconstituted HDL particles, as a basis for further studies.  相似文献   

10.
Whereas hepatocytes secrete the major human plasma high density lipoproteins (HDL)-protein, apo A-I, as lipid-free and lipidated species, the biogenic itineraries of apo A-II and apo E are unknown. Human plasma and HepG2 cell-derived apo A-II and apo E occur as monomers, homodimers and heterodimers. Dimerization of apo A-II, which is more lipophilic than apo A-I, is catalyzed by lipid surfaces. Thus, we hypothesized that lipidation of intracellular and secreted apo A-II exceeds that of apo A-I, and once lipidated, apo A-II dimerizes. Fractionation of HepG2 cell lysate and media by size exclusion chromatography showed that intracellular apo A-II and apo E are fully lipidated and occur on nascent HDL and VLDL respectively, while only 45% of intracellular apo A-I is lipidated. Secreted apo A-II and apo E occur on small HDL and on LDL and large HDL respectively. HDL particles containing both apo A-II and apo A-I form only after secretion from both HepG2 and Huh7 hepatoma cells. Apo A-II dimerizes intracellularly while intracellular apo E is monomeric but after secretion associates with HDL and subsequently dimerizes. Thus, HDL apolipoproteins A-I, A-II and E have distinct intracellular and post-secretory pathways of hepatic lipidation and dimerization in the process of HDL formation. These early forms of HDL are expected to follow different apolipoprotein-specific pathways through plasma remodeling and reverse cholesterol transport.  相似文献   

11.
The ATP-binding cassette transporter A1 (ABCA1) plays a critical role in the biogenesis of high density lipoprotein (HDL) particles and in mediating cellular cholesterol efflux. The mechanism by which ABCA1 achieves these effects is not established, despite extensive investigation. Here, we present a model that explains the essential features, especially the effects of ABCA1 activity in inducing apolipoprotein (apo) A-I binding to cells and the compositions of the discoidal HDL particles that are produced. The apo A-I/ABCA1 reaction scheme involves three steps. First, there is binding of a small regulatory pool of apo A-I to ABCA1, thereby enhancing net phospholipid translocation to the plasma membrane exofacial leaflet; this leads to unequal lateral packing densities in the two leaflets of the phospholipid bilayer. Second, the resultant membrane strain is relieved by bending and by creation of exovesiculated lipid domains. The formation of highly curved membrane surface promotes high affinity binding of apo A-I to these domains. Third, this pool of bound apo A-I spontaneously solubilizes the exovesiculated domain to create discoidal nascent HDL particles. These particles contain two, three, or four molecules of apo A-I and a complement of membrane phospholipid classes together with some cholesterol. A key feature of this mechanism is that membrane bending induced by ABCA1 lipid translocase activity creates the conditions required for nascent HDL assembly by apo A-I. Overall, this mechanism is consistent with the known properties of ABCA1 and apo A-I and reconciles many of the apparently discrepant findings in the literature.  相似文献   

12.
The kinetics of sterol efflux from human aortic smooth muscle cells equilibrated with a [(3)H]benzophenone-modified photoactivable free cholesterol analogue ((3)H-FCBP) did not differ significantly from those labeled with free cholesterol ((3)H-FC). Trypsin digestion of caveolin cross-linked by photoactivation of FCBP led to association of radiolabel in a single low molecular weight fraction, indicating relative structural homogeneity of caveolin-bound sterol. These findings were used to investigate the organization of sterols in caveolae and the ability of these domains to transfer sterols to apolipoprotein A-I (apo A-I), the major protein of human plasma high-density lipoproteins (HDL). During long-term (4-5 h) incubation with apo A-I, caveolin-associated (3)H-FC and (3)H-FCBP decreased, in parallel with an increase in apo A-I-associated sterol. Assay of caveolin-associated labeled sterols indicated that caveolae were a major source of sterol lost from the cells during HDL formation. Short-term changes of sterol distribution in caveolae were assayed using platelet-derived growth factor (PDGF). PDGF was without effect on FC efflux in the absence of apo A-I, but when apo A-I was present, PDGF increased FC efflux approximately 3-fold beyond the efflux rate catalyzed by apo A-I alone. At the same time, caveolin-associated FC decreased, and PDGF-dependent protein kinase activity was stimulated. Parallel results were obtained with (3)H-FCBP-equilibrated cells, in which apo A-I potentiated a PDGF-mediated reduction of radiolabel cross-linked to caveolin following photoactivation. These results suggest that sterols within caveolae are mobile and selectively transferred to apo A-I. They also suggest a novel role for sterol efflux in amplifying PDGF-mediated signal transduction.  相似文献   

13.
Administration of alpha-naphthylisothiocyanate (ANIT) to rats induces changes to plasma lipids consistent with cholestasis. We have previously shown (J. Lipid Res. 37 (1996) 1086) that animals treated with ANIT accumulate large amounts of free cholesterol (FC) and phospholipid (PL)-rich cholestatic lipoproteins in the LDL density range by 48 h. This lipid was cleared by 120 h through apparent movement into HDL with concomitant cholesteryl ester (CE) production. It was hypothesised that the clearance was mediated through the movement of the PL and FC into apolipoprotein A-I (apo A-I) containing lipoproteins followed by LCAT esterification to form CE. To test this hypothesis, rats overexpressing various amounts of human apo A-I (TgR[HuAI] rats) were treated with ANIT (100 mg/kg) and the effect of plasma apo A-I concentration on plasma lipids and lipoprotein distribution was examined. In untreated TgR[HuAI] rats, human apo A-I levels were strongly correlated to plasma PL (r(2)=0. 94), FC (r(2)=0.93) and CE (r(2)=0.90), whereas in ANIT-treated TgR[HuAI] rats, human apo A-I levels were most strongly correlated to CE levels (r(2)=0.80) and an increased CE/FC ratio (r(2)=0.62) and the movement of cholestatic lipid in the LDL to HDL. Since LCAT activity was not affected by ANIT treatment, these results demonstrate that the ability of LCAT to esterify the plasma FC present in cholestatic liver disease is limited by in vivo apo A-I activation of the cholestatic lipid and not by the catalytic capacity of LCAT.  相似文献   

14.
Two monoclonal antibodies, A17 and A30, were raised against human apolipoprotein A-I (apo A-I). They were studied by competitive inhibition of 125I-labeled HDL3 with HDL subfractions, delipidated apo A-I, and complexes of dimyristoylphosphatidylcholine (DMPC) containing apo A-I and apo A-II. Immunoblotting located the A17 antibody on CNBr fragment 4 of apo A-I and the A30 antibody on CNBr fragment 1. The A17 antigenic determinant was expressed identically in all HDL subclasses, on delipidated apo A-I as well as all on the DMPC-apo A-I and DMPC-apo A-I/apo A-II complexes. In contrast, the apparent affinity constant of the A30 antibody for delipidated apo A-I was about 30-times less than for HDL3 or for apo A-I/apo A-II-phospholipid complexes. These data suggest that the association of apo A-I with phospholipids improves the reactivity of the A30 monoclonal antibody towards apo A-I, and that this antigenic determinant has a different conformation in delipidated apo A-I compared to apo A-I complexed with phospholipids. Turbidimetric and fluorescence experiments monitoring the phospholipid-apo A-I association in the presence and in the absence of the A17 and A30 antibodies were consistent with the competition experiments carried out by solid phase radioimmunoassay (RIA). After reaction of apo A-I with the A30 antibody, we observed an enhancement of the degradation kinetics of large multilamellar vesicles (LMV), while the A17 antibody did not have a significant effect. Calcein leakage experiments carried out below the transition temperature of DPPC showed an enhancement of the degradation kinetics with both monoclonal antibodies, while the phase-transition release was independent of the reaction of apo A-I with the monoclonal antibodies. These data therefore suggest the existence of at least two different types of epitope on apo A-I, which might account for the differences in immunological reactivity of apo A-I that is either delipidated or present on HDL.  相似文献   

15.
Copper deficiency in rats produces a hypercholesterolemia with a marked increase in HDL fraction. This study investigated changes in the plasma distribution and composition of HDL subclasses as affected by copper deficiency. Plasma HDL were separated into the following three subclasses by heparin-affinity chromatography: HDL containing no apo E but high in apo A-I (HDL-E0); HDL with an intermediate level of apo E (HDL-E1); and HDL highly enriched in apo E but low in apo A-I (HDL-E2). The compositional analysis showed that the hypercholesterolemia observed in copper-deficient rats was due specifically to an increase in plasma cholesterol carried by HDL-E0. Copper deficiency did not alter the percent distribution of apo A-I in HDL-E0, but lowered the apo A-I content in HDL-E1 and HDL-E2, with an increase in apo E in these subclasses. The total plasma concentration of apo A-I was, however, significantly elevated in Cu-deficient rats, which was attributable to an increase in the total number of circulating HDL particles. No difference was noted between Cu-deficient and control groups in the distribution of free cholesterol or the ratio of free cholesterol to esterified cholesterol in any of the HDL subclasses. The present results and earlier observations suggest that copper deficiency may produce a defect in the plasma clearance or tissue uptake of the HDL subclass high in apo A-I but devoid of apo E (HDL-E0), which may be mediated by the specific apo A-I receptor or non-endocytotic transfer of HDL-E0 cholesterol to the liver. Such metabolic defects may partly explain the simultaneous increases in both plasma HDL cholesterol and apo A-I and altered cholesterol homeostasis observed in copper deficiency.  相似文献   

16.
High density lipoproteins (HDL) are considered athero-protective, primarily due to their role in reverse cholesterol transport, where they transport cholesterol from peripheral tissues to the liver for excretion. The current study was designed to determine the impact of HDL modification by acrolein, a highly reactive aldehyde found in high abundance in cigarette smoke, on the cholesterol transport functions of HDL. HDL was chemically-modified with acrolein and immunoblot and mass spectrometry analyses confirmed apolipoprotein crosslinking, as well as acrolein adducts on apolipoproteins A-I and A-II. The ability of acrolein-modified HDL (acro-HDL) to serve as an acceptor of free cholesterol (FC) from COS-7 cells transiently expressing SR-BI was significantly decreased. Further, in contrast to native HDL, acro-HDL promotes higher neutral lipid accumulation in murine macrophages as judged by Oil Red O staining. The ability of acro-HDL to mediate efficient selective uptake of HDL-cholesteryl esters (CE) into SR-BI-expressing cells was reduced compared to native HDL. Together, the findings from our studies suggest that acrolein modification of HDL produces a dysfunctional particle that may ultimately promote atherogenesis by impairing functions that are critical in the reverse cholesterol transport pathway.  相似文献   

17.
The methods for isolation of pure apolipoproteins A-I, A-II and E from the blood plasma of donors for preparation of monospecific rabbit antisera against these apolipoproteins and their estimation in human blood plasma using immunoelectrophoresis are described. It was found that the average content of apolipoprotein A-I (apo A-I) in the blood plasma of healthy males is 126.6 mg%, that of apolipoprotein A-II (apo A-II) is 56.8 mg%, that of apolipoprotein E (apo E) is 10.2 mg%. The apo A-I content in blood plasma is increased in hyper-alpha-lipoproteinemic patients and is decreased in hypo-alpha-lipoproteinemic ones, i. e. there is a direct relationship between the changes in concentration of high density lipoproteins (HDL) and apo A-I. The concentration of apo A-II in dis-alpha-lipoproteinemias varies within a narrow range. A considerable increase of the alpha-cholesterol/apo A-I ratio suggesting an increased capacity of HDL to transport cholesterol in hyper-alpha-lipoproteinemic patients is observed. There exists an indirect correlation between the changes in the contents of apo A-I and apo E in dis-alpha-lipoproteinemic patients.  相似文献   

18.
The large HDL particles generated by administration of cholesteryl ester transfer protein inhibitors (CETPi) remain poorly characterized, despite their potential importance in the routing of cholesterol to the liver for excretion, which is the last step of the reverse cholesterol transport. Thus, the effects of the CETPi dalcetrapib and anacetrapib on HDL particle composition were studied in rabbits and humans. The association of rabbit HDL to the LDL receptor (LDLr) in vitro was also evaluated. New Zealand White rabbits receiving atorvastatin were treated with dalcetrapib or anacetrapib. A subset of patients from the dal-PLAQUE-2 study treated with dalcetrapib or placebo were also studied. In rabbits, dalcetrapib and anacetrapib increased HDL-C by more than 58% (P < 0.01) and in turn raised large apo E-containing HDL by 66% (P < 0.001) and 59% (P < 0.01), respectively. Additionally, HDL from CETPi-treated rabbits competed with human LDL for binding to the LDLr on HepG2 cells more than control HDL (P < 0.01). In humans, dalcetrapib increased concentrations of large HDL particles (+69%, P < 0.001) and apo B-depleted plasma apo E (+24%, P < 0.001), leading to the formation of apo E-containing HDL (+47%, P < 0.001) devoid of apo A-I. Overall, in rabbits and humans, CETPi increased large apo E-containing HDL particle concentration, which can interact with hepatic LDLr. The catabolism of these particles may depend on an adequate level of LDLr to contribute to reverse cholesterol transport.  相似文献   

19.
Although human plasma high density lipoproteins (HDL) concentrations negatively correlate with atherosclerotic cardiovascular disease, underlying mechanisms are unknown. Thus, there is continued interest in HDL structure and functionality. Numerous plasma factors disrupt HDL structure while inducing the release of lipid free apolipoprotein (apo) AI. Given that HDL is an unstable particle residing in a kinetic trap, we tested whether HDL could be stabilized by acylation with acetyl and hexanoyl anhydrides, giving AcHDL and HexHDL respectively. Lysine analysis with fluorescamine showed that AcHDL and HexHDL respectively contained 11 acetyl and 19 hexanoyl groups. Tests with biological and physicochemical perturbants showed that HexHDL was more stable than HDL to perturbant-induced lipid free apo AI formation. Like the reaction of streptococcal serum opacity factor against HDL, the interaction of HDL with its receptor, scavenger receptor class B member 1 (SR-B1), removes CE from HDL. Thus, we tested and validated the hypothesis that selective uptake of HexHDL-[3H]CE by Chinese Hamster Ovary cells expressing SR-B1 is less than that of HDL-[3H]CE; thus, selective SR-B1 uptake of HDL-CE depends on HDL instability. However, in mice, plasma clearance, hepatic uptake and sterol secretion into bile were faster from HexHDL-[3H]CE than from HDL-[3H]CE. Collectively, our data show that acylation increases HDL stability and that the reaction of plasma factors with HDL and SR-B1-mediated uptake are reduced by increased HDL stability. In vivo data suggest that HexHDL promotes charge-dependent reverse cholesterol transport, by a mechanism that increases hepatic sterol uptake via non SR-B1 receptors, thereby increasing bile acid output.  相似文献   

20.
The interaction of human serum high density lipoproteins (HDL) with mouse peritoneal macrophages and human blood monocytes was studied. Saturation curves for binding of apolipoprotein E-free [125I]HDL3 showed at least two components: non-specific binding and specific binding that saturated at approximately 40 micrograms HDL protein/ml. Scatchard analysis of specific binding of apo E-free [125I]-HDL3 to cultured macrophages yielded linear plots indicative of a single class of specific binding sites. Pretreatment of [125I]HDL3 with various apolipoprotein antibodies (anti apo A-I, anti apo A-II, anti apo C-II, anti apo C-III and anti apo E) and preincubation of the cells with anti-idiotype antibodies against apo A-I and apo A-II prior to the HDL binding studies revealed apolipoprotein A-I as the ligand involved in specific binding of HDL. Cellular cholesterol accumulation via incubation with acetylated LDL led to an increase in HDL binding sites as well as an increase in the activity of the cytoplasmic cholesterol esterifying enzyme acyl-CoA:cholesterol acyltransferase (ACAT). Incubation of the cholesterol-loaded cells in the presence of various ACAT inhibitors (Sandoz 58.035, Octimibate-Nattermann, progesterone) revealed a time- and dose-dependent amplification in HDL binding and HDL-mediated cholesterol efflux. It is concluded that the homeostasis of cellular cholesterol in macrophages is regulated in part by the number of HDL binding sites and that ACAT inhibitors enhance HDL-mediated cholesterol efflux from peripheral cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号