首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ligand-stimulated degradation of receptor tyrosine kinase (RTK) is an important regulatory step of signal transduction. The vascular endothelial growth factor (VEGF) receptor Flk-1/KDR is responsible for the VEGF-stimulated nitric oxide (NO) production from endothelial cells. Cellular mechanisms mediating the negative regulation of Flk-1 signaling in endothelial cells have not been investigated. Here we show that Flk-1 is rapidly down-regulated following VEGF stimulation of bovine aortic endothelial cells (BAECs). Consequently, VEGF pretreatment of endothelial cells prevents any further stimulation of Flk-1, resulting in decreased NO production from subsequent VEGF challenges. Ubiquitination of RTKs targets them for degradation; we demonstrate that activation of Flk-1 by VEGF leads to its polyubiquitination in BAECs. Furthermore, VEGF stimulation of BAECs or COS-7 cells transiently transfected with Flk-1 results in the phosphorylation of the ubiquitin ligase Cbl, the enhanced association of Cbl with Flk-1, and the relocalization of Cbl to vesicular structures in BAECs. Overexpression of Cbl in COS-7 cells enhances VEGF-induced ubiquitination of Flk-1, whereas a Cbl mutant lacking the ubiquitin ligase RING finger domain, 70Z/3-Cbl, does not. Moreover, expression of Cbl in contrast to 70Z/3-Cbl inhibits the Flk-1-dependent activation of eNOS and, thus, NO release. In BAEC overexpressing Cbl, the degradation of Flk-1 upon VEGF stimulation is accelerated compared with cells transfected with a control vector (green fluorescent protein). Our findings demonstrate that Flk-1 is rapidly down-regulated following sustained VEGF stimulation and identify Cbl as a negative regulator of Flk-1 signaling to eNOS. Cbl thus plays a role in the regulation of VEGF signaling by mediating the stimulated ubiquitination and, consequently, degradation of Flk-1 in endothelial cells.  相似文献   

2.

Background

Urological complications associated with sickle cell disease (SCD), include nocturia, enuresis, urinary infections and urinary incontinence. However, scientific evidence to ascertain the underlying cause of the lower urinary tract symptoms in SCD is lacking.

Objective

Thus, the aim of this study was to evaluate urinary function, in vivo and ex vivo, in the Berkeley SCD murine model (SS).

Methods

Urine output was measured in metabolic cage for both wild type and SS mice (25-30 g). Bladder strips and urethra rings were dissected free and mounted in organ baths. In isolated detrusor smooth muscle (DSM), relaxant response to mirabegron and isoproterenol (1nM-10μM) and contractile response to (carbachol (CCh; 1 nM-100μM), KCl (1 mM-300mM), CaCl2 (1μM-100mM), α,β-methylene ATP (1, 3 and 10 μM) and electrical field stimulation (EFS; 1-32 Hz) were measured. Phenylephrine (Phe; 10nM-100μM) was used to evaluate the contraction mechanism in the urethra rings. Cystometry and histomorphometry were also performed in the urinary bladder.

Results

SS mice present a reduced urine output and incapacity to produce typical bladder contractions and bladder emptying (ex vivo), compared to control animals. In DSM, relaxation in response to a selective β3-adrenergic agonist (mirabegron) and to a non-selective β-adrenergic (isoproterenol) agonist were lower in SS mice. Additionally, carbachol, α, β-methylene ATP, KCl, extracellular Ca2+ and electrical-field stimulation promoted smaller bladder contractions in SS group. Urethra contraction induced by phenylephrine was markedly reduced in SS mice. Histological analyses of SS mice bladder revealed severe structural abnormalities, such as reductions in detrusor thickness and bladder volume, and cell infiltration.

Conclusions

Taken together, our data demonstrate, for the first time, that SS mice display features of urinary bladder dysfunction, leading to impairment in urinary continence, which may have an important role in the pathogenesis of the enuresis and infections observed the SCD patients.  相似文献   

3.
The use of DNA and protein subunit vaccines in animals provides an opportunity to introduce vaccines that are arguably the safest that can be developed. For that reason, considerable effort is under way to devise methods of enhancing the immunogenicity of such vaccines. Seven years ago it was shown that fusing complement fragment C3d to hen egg lysozyme (HEL) enhanced the immunogenicity of HEL 10,000-fold. Based on this observation, we decided to evaluate the effect of C3d on the immunogenicity of the E2 protein of bovine viral diarrhea virus (BVDV). E2 is the major target of neutralizing antibody during BVDV infection. To test the effect of C3d on E2 immunogenicity, expression cassettes encoding a secreted form of E2 alone (E2s) or E2 fused to three copies of murine C3d (E2s-C3d) were constructed. The proteins were purified from the supernatants of transfected cells and used to immunize mice. The immune response was monitored by an enzyme-linked immunosorbent assay (ELISA) for E2s-specific antibody and by a virus neutralization test. The ELISA results indicated that the E2s-C3d protein is 10,000-fold more immunogenic than the E2s protein alone. The maximum primary immune response was elicited with <0.1 microg of E2s-C3d protein without an adjuvant. In addition, we have shown for the first time that high levels of anti-E2s and neutralizing antibodies can be elicited when this same low concentration of E2s-C3d is used to both prime and boost the immune response. We conclude that the E2s-C3d fusion protein has significant potential as a subunit vaccine against BVDV infection.  相似文献   

4.
A region of pSG30 that complements the pyocin-derived gonococcal lipooligosaccharide (LOS) mutants 1291d and 1291e was characterized by DNA sequence analysis and an open reading frame of 1,380 bases was identified that is 89% similar and 56% identical over 452 amino acids to the algC gene product from Pseudomonas aeruginosa that encodes phosphomannomutase. Enzymatic analysis of gonococcal crude protein extracts demonstrated that pSG30 encodes phosphoglucomutase (PGM) and phosphomannomutase activity. This activity is absent in 1291d and 1291e but is restored upon introduction of pSG30. PGM encoded by pSG34, a subclone of pSG30, was able to complement Escherichia coli PGM1, a strain deficient in PGM, as determined by bacteriophage C21 plaque formation. A revertant of 1291d that binds monoclonal antibody 2-1-L8 (specific for a 3.6-kDa LOS component) was isolated. The construction of a site-specific deletion of this region in the chromosome of 1291 confirms the role of this open reading frame in LOS biosynthesis.  相似文献   

5.
We have demonstrated previously that the inoculation of murine mammary tumor cells genetically modified to express high levels of secretory leukocyte protease inhibitor (2C1) do not develop tumors in immunocompetent mice and these cells are more prone to apoptosis than control cells. The aim of the present study was to evaluate the role of the adaptive immune response in the lack of tumor growth of 2C1 cells and the possibility of using these cells for immunotherapy. The s.c. administration of mock transfected F3II cells induces tumor in BALB/c and Nude mice. However, the inoculation of 2C1 cells develops tumor in Nude but not in BALB/c mice. The inoculation of mock transfected F3II cells to 2C1 immunized BALB/c mice by repeated administration of 2C1 cells (once a week for 3 weeks) developed significantly smaller tumors than those observed in non-immunized mice. Remarkably, survival of tumor-bearing immunized mice was higher than non-immunized animals. Herein, we demonstrate that an immunotherapy with SLPI over-expressing non-irradiated tumor cells which do not develop tumor in immunocompetent mice, partially restrain the tumor growth induced by F3II cells and increase the survival of the mice.  相似文献   

6.
Glioblastoma (GBM) is extremely aggressive and essentially incurable. Its malignancy is characterized by vigorous microvascular proliferations. Recent evidence has shown that tumor cells display the ability to drive blood-perfused vasculogenic mimicry (VM), an alternative microvascular circulation independent of endothelial cell angiogenesis. However, molecular mechanisms underlying this vascular pathogenesis are poorly understood. Here, we found that vascular channels of VM in GBM were composed of mural-like tumor cells that strongly express VEGF receptor 2 (Flk-1). To explore a potential role of Flk-1 in the vasculogenesis, we investigated two glioblastoma cell lines U87 and GSDC, both of which express Flk-1 and exhibit a vascular phenotype on Matrigel. Treatment of both cell lines with either Flk-1 gene knockdown or Flk-1 kinase inhibitor SU1498 abrogated Flk-1 activity and impaired vascular function. Furthermore, inhibition of Flk-1 activity suppressed intracellular signaling cascades, including focal adhesion kinase and mitogen-activated protein kinase ERK1/2. In contrast, blockade of VEGF activity by the neutralizing antibody Bevacizumab failed to recapitulate the impact of SU1498, suggesting that Flk-1-mediated VM is independent of VEGF. Xenotransplantation of SCID/Beige mice with U87 cells and GSDCs gave rise to tumors harboring robust mural cell-associated vascular channels. Flk-1 shRNA restrained VM in tumors and subsequently inhibited tumor development. Collectively, all the data demonstrate a central role of Flk-1 in the formation of VM in GBM. This study has shed light on molecular mechanisms mediating tumor aggressiveness and also provided a therapeutic target for patient treatment.  相似文献   

7.
Pituitary tumor transforming gene 1 (PTTG1), recently cloned from human testis, is a potent oncogene that is expressed in most tumors. However, assessment of its potential value as a prognostic marker is dependent on the development of a suitable antibody. We have developed a rabbit polyclonal antibody, SK601, that is highly specific for the PTTG1 gene product using recombinant PTTG1 protein (24 kD) containing an N-terminal His(6) tag as the immunogen. The antiserum is capable of detecting recombinant PTTG1 protein in ELISA assays at a titer of 1:100,000. Use of the antibody as the probe in Western blotting analyses revealed a single band with the anticipated relative molecular weights of 52 kD from E. coli expressing the GST-PTTG1 recombinant protein, and 56 kD from COS-7 cells transfected with the PTTG1-GFP chimeric construct. A single band with a relative molecular weight of 28 kD was observed in extract of COS-7 cells transfected with PTTG1 cDNA. The antiserum immunoprecipitated a protein of relative molecular weight of 56 kD from the extracts of COS-7 cells transfected with the PTTG1-GFP chimeric construct. Immunohistochemical analysis of COS-7 cells transfected with this construct confirmed that the antibody detected and was specific for expressing the PTTG1-GFP recombinant protein. Screening of various normal human tissues (testis, ovary, and breast) by immunohistochemistry indicated that these tissues did not exhibit staining with the exception of testis, a tissue that had previously been shown to express PTTG1 mRNA. In contrast all of the tumor tissues (testicular tumor, ovarian tumor, and breast tumor) that were assessed exhibited intense staining. The results suggest that antiserum SK601 is highly specific for the PTTG1 protein and therefore should prove useful in further analysis of the expression and interactions of this protein, including its potential application as an immunohistochemical marker of human tumors.  相似文献   

8.
整合了乙肝表面抗原嵌合基因SS1和SS2的毕赤酵母工程菌株GS115-SS1S2经高密度发酵培养,甲醇诱导,抗原表达量达到300~600mg/L发酵液。SS1S2抗原经细胞破碎、硅胶吸附、疏水层析和凝胶过滤纯化,纯度达99%以上,每升培养物可收获纯化抗原82mg。纯化的SS1S2抗原经Al(OH)3吸附,在NIH小鼠中进行免疫效果评价。三组NIH雌性小鼠,分别腹腔接种2.5μg、0.625μg和0.156μgSS1S2疫苗或商品化的单S疫苗。部分小鼠在30天时采血,测定各疫苗组的ED50值。在SS1S2疫苗组,前S1、前S2和S抗原的ED50值分别为0.46、0.29和0.84μg,而S疫苗组S抗原的ED50为0.99μg。另一部分小鼠分别在7天和14天时采血,考察抗体阳转率与时间的关系。SS1S2疫苗前S1、前S2抗体阳转率在7d和14d时比S抗体的阳转率为高,提示前S抗体出现的时间较早。上述结果显示SS1S2疫苗比单S疫苗具有更好的免疫原性。  相似文献   

9.
Guanylyl cyclase C (GUCY2C) is the index cancer mucosa antigen, an emerging class of immunotherapeutic targets for the prevention of recurrent metastases originating in visceral epithelia. GUCY2C is an autoantigen principally expressed by intestinal epithelium, and universally by primary and metastatic colorectal tumors. Immunization with adenovirus expressing the structurally unique GUCY2C extracellular domain (GUCY2CECD; Ad5-GUCY2C) produces prophylactic and therapeutic protection against GUCY2C-expressing colon cancer metastases in mice, without collateral autoimmunity. GUCY2C antitumor efficacy is mediated by a unique immunological mechanism involving lineage-specific induction of antigen-targeted CD8+ T cells, without CD4+ T cells or B cells. Here, the unusual lineage specificity of this response was explored by integrating high-throughput peptide screening and bioinformatics, revealing the role for GUCY2C-directed CD8+ T cells targeting specific epitopes in antitumor efficacy. In BALB/c mice vaccinated with Ad5-GUCY2C, CD8+ T cells recognize the dominant GUCY2C254–262 epitope in the context of H-2Kd, driving critical effector functions including interferon gamma secretion, cytolysis ex vivo and in vivo, and antitumor efficacy. The ability of GUCY2C to induce lineage-specific responses targeted to cytotoxic CD8+ T cells recognizing a single epitope mediating antitumor efficacy without autoimmunity highlights the immediate translational potential of cancer mucosa antigen–based vaccines for preventing metastases of mucosa-derived cancers.  相似文献   

10.
目的探讨并建立可供药物评价或生物学功能研究的表达人PSCA抗原的小鼠肿瘤模型。方法克隆人PSCA基因,构建pcDNA-PSCA质粒,稳定转染RM-1细胞,用RT-PCR和流式检测的方法筛选稳定表达人PSCA抗原的RM-PSCA细胞株;再将RM-PSCA细胞接种C57BL/6小鼠,观察其致瘤性,并寻找能够稳定致瘤的细胞数量;进而观测RM-PSCA所致肿瘤的生长情况及小鼠存活状况。结果筛选到了表达人PSCA抗原的RM-PSCA细胞,且1×105个肿瘤细胞能够保证10只实验小鼠全部成瘤;所致肿瘤生长迅速,接种后小鼠的平均存活时间为37 d。结论该研究成功的建立了稳定表达人PSCA抗原的小鼠肿瘤模型。  相似文献   

11.
RTX leukotoxins are a diverse family of prokaryotic virulence factors that are secreted by the type 1 secretion system (T1SS) and target leukocytes to subvert host defenses. T1SS substrates all contain a C-terminal RTX domain that mediates recruitment to the T1SS and drives secretion via a Brownian ratchet mechanism. Neutralizing antibodies against the Bordetella pertussis adenylate cyclase toxin, an RTX leukotoxin essential for B. pertussis colonization, have been shown to target the RTX domain and prevent binding to the αMβ2 integrin receptor. Knowledge of the mechanisms by which antibodies bind and neutralize RTX leukotoxins is required to inform structure-based design of bacterial vaccines, however, no structural data are available for antibody binding to any T1SS substrate. Here, we determine the crystal structure of an engineered RTX domain fragment containing the αMβ2-binding site bound to two neutralizing antibodies. Notably, the receptor-blocking antibodies bind to the linker regions of RTX blocks I–III, suggesting they are key neutralization-sensitive sites within the RTX domain and are likely involved in binding the αMβ2 receptor. As the engineered RTX fragment contained these key epitopes, we assessed its immunogenicity in mice and showed that it elicits similar neutralizing antibody titers to the full RTX domain. The results from these studies will support the development of bacterial vaccines targeting RTX leukotoxins, as well as next-generation B. pertussis vaccines.  相似文献   

12.
Dengue is the leading cause of mosquito-borne viral infections and no vaccine is available now. Envelope protein domain III (ED3) is the major target for the binding of dengue virus neutralizing antibodies; however, the ED3-specifc T-cell response is less well understood. To investigate the T-cell responses to four serotypes of dengue virus (DENV-1 to 4), we immunized mice using either a tetravalent ED3-based DNA or protein vaccine, or combined both as a DNA prime-protein boost strategy (prime-boost). A significant serotype-dependent IFN-γ or IL-4 response was observed in mice immunized with either the DNA or protein vaccine. The IFN-γ response was dominant to DENV-1 to 3, whereas the IL-4 response was dominant to DENV-4. Although the similar IgG titers for the four serotypes were observed in mice immunized with the tetravalent vaccines, the neutralizing antibody titers varied and followed the order of 2 = 3>1>4. Interestingly, the lower IFN-γ response to DENV-4 is attributable to the immunodominance change between two CD4+ T-cell epitopes; one T-cell epitope located at E349-363 of DENV-1 to 3 was more immunogenic than the DENV-4 epitope E313-327. Despite DENV-4 specific IFN-γ responses were suppressed by immunodominance change, either DENV-4-specific IFN-γ or neutralizing antibody responses were still recalled after DENV-4 challenge and contributed to virus clearance. Immunization with the prime-boost elicited both IFN-γ and neutralizing antibody responses and provided better protection than either DNA or protein immunization. Our findings shed light on how ED3-based tetravalent dengue vaccines sharpen host CD4 T-cell responses and contribute to protection against dengue virus.  相似文献   

13.
Candidate foot-and-mouth disease (FMD) DNA vaccines designed to produce viral capsids lacking infectious viral nucleic acid were evaluated. Plasmid DNAs containing a portion of the FMDV genome coding for the capsid precursor protein (P1-2A) and wild-type or mutant viral proteinase 3C (plasmids P12X3C or P12X3C-mut, respectively) were constructed. Cell-free translation reactions programmed with pP12X3C (wild-type 3C) and pP12X3C-mut produced a capsid precursor, but only the reactions programmed with the plasmid encoding the functional proteinase resulted in P1-2A processing and capsid formation. Baby hamster kidney (BHK) cells also produced viral capsid proteins when transfected with these plasmids. Plasmid P12X3C was administered to mice by intramuscular, intradermal, and epithelial (gene gun) inoculations. Anti-FMD virus (FMDV) antibodies were detected by radioimmunoprecipitation (RIP) and plaque reduction neutralization assays only in sera of mice inoculated by using a gene gun. When pP12X3C and pP12X3C-mut were inoculated into mice by using a gene gun, both plasmids elicited an antibody response detectable by RIP but only pP12X3C elicited a neutralizing antibody response. These results suggest that capsid formation in situ is required for effective immunization. Expression and stimulation of an immune response was enhanced by addition of an intron sequence upstream of the coding region, while addition of the FMDV internal ribosome entry site or leader proteinase (L) coding region either had no effect or reduced the immune response.  相似文献   

14.
Survivin is a member of the inhibitor of apoptosis protein family. Gliomas and many other tumors express survivin at high levels; whereas, normal fully differentiated cells generally do not. Therefore, survivin represents a tumor-specific target for cancer vaccine therapy. It has been shown that it is possible to produce a MHC-I-restricted cellular immunologic response to survivin vaccines. To study differences in immunogenicity between murine and human survivin proteins, we vaccinated C57BL/6 mice with bone marrow dendritic cells (BMDC) transfected with expression vectors containing the murine and human survivin genes. Mice vaccinated with BMDCs expressing a truncated human survivin protein developed cytotoxic T lymphocyte to subcutaneous GL261 glioma cells and exhibited prolonged tumor-free survival compared to mice vaccinated with BMDCs transfected with vector alone (P<0.01). While mice challenged with intracerebral GL261 cells had increased survival, no cures were observed. In contrast, vaccinated mice that fully resisted subcutaneous tumor challenge were rendered resistant to intracerebral GL261 re-challenge. BMDCs transfected with the full-length human survivin molecule were significantly more effective at prolonging survival than BMDCs expressing the full-length murine survivin gene (P=0.0175). Therefore, xenogeneic differences between human and murine sequences might be exploited to develop more immunogenic tumor vaccines.  相似文献   

15.
Summary The immune response of mice to a transplacentally induced alveolar cell tumor was studied with the leukocyte adherence inhibition (LAI) assay. The lung tumor, designated 85, was induced in a C3HfB/HeN (C3Hf) mouse by l-ethyl-l-nitrosourea (ENU). While a dose of 105 cells of this tumor does not grow in syngeneic C3Hf mice, it does grow readily in (A×C3Hf)F1 hybrid mice. The tumor possesses a tumor associated transplantation antigen (TATA) which cross-reacts with a normal tissue alloantigen in strain A/HeN (A) mice. Normal mice, tumor-immunized C3Hf mice, and tumor-bearing (A×C3Hf)F1 mice possessed peritoneal cells, the majority of which adhered rapidly to glass and resisted gentle washing. When incubated with an extract of the 85 tumor, peritoneal cells from tumor-immunized mice demonstrated marked inhibition of adherence (62.4%) compared to similarly incubated peritoneal cells of either normal mice (30.3%) or tumor bearing mice (37.1%). Specificity of the reactivity in the LAI assay was demonstrated with a neuroblastoma extract and peritoneal cells from neuroblastoma-immunized C3Hf mice. Peritoneal cells from lung tumor-immunized mice, but not tumor-bearing mice, responded to a lung extract from strain A mice. In contrast to the microcytotoxicity assay, the LAI assay is capable of distinguishing the effective anti-tumor response of tumor-immunized C3Hf mice from the ineffective immune response of tumor-bearing (A×C3Hf)F1 mice.  相似文献   

16.
Naturally occurring missense variants of G protein–coupled receptors with loss of function have been linked to metabolic disease in case studies and in animal experiments. The glucagon receptor, one such G protein–coupled receptor, is involved in maintaining blood glucose and amino acid homeostasis; however, loss-of-function mutations of this receptor have not been systematically characterized. Here, we observed fewer glucagon receptor missense variants than expected, as well as lower allele diversity and fewer variants with trait associations as compared with other class B1 receptors. We performed molecular pharmacological phenotyping of 38 missense variants located in the receptor extracellular domain, at the glucagon interface, or with previously suggested clinical implications. These variants were characterized in terms of cAMP accumulation to assess glucagon-induced Gαs coupling, and of recruitment of β-arrestin-1/2. Fifteen variants were impaired in at least one of these downstream functions, with six variants affected in both cAMP accumulation and β-arrestin-1/2 recruitment. For the eight variants with decreased Gαs signaling (D63ECDN, P86ECDS, V96ECDE, G125ECDC, R2253.30H, R3085.40W, V3686.59M, and R3787.35C) binding experiments revealed preserved glucagon affinity, although with significantly reduced binding capacity. Finally, using the UK Biobank, we found that variants with wildtype-like Gαs signaling did not associate with metabolic phenotypes, whereas carriers of cAMP accumulation-impairing variants displayed a tendency toward increased risk of obesity and increased body mass and blood pressure. These observations are in line with the essential role of the glucagon system in metabolism and support that Gαs is the main signaling pathway effecting the physiological roles of the glucagon receptor.  相似文献   

17.
DNA vaccines expressing the envelope (Env) protein of the human immunodeficiency virus have been relatively ineffective at generating high-titer, long-lasting, neutralizing antibodies in a variety of animal models. In this study, the murine and human homologues of the complement component, C3d, were used in a DNA vaccine to enhance the titers of antibody to Env. Initially, plasmids expressing a secreted form of Env (sgp120) fused to one, two, or three copies of the murine homologue of C3d (mC3d) were constructed. Mice were inoculated with four vaccinations of DNA or two DNA vaccinations, followed by two boosts of affinity-purified gp120 protein. Analyses of titers demonstrated that multiple copies of mC3d coupled to sgp120 induced long-lasting, high-titer anti-Env antibody. Priming mice with sgp120-mC3d-DNA, followed by inoculation of purified gp120 protein, elicited the strongest antibody titers; however, the avidity maturation of the antibody was accelerated in the mice inoculated with sgp120-mC3d(3)-DNA. In addition, DNAs expressing sgp120 fused to three copies of the human homologue of C3d (hC3d(3)) efficiently enhanced the anti-Env antibody in rabbits. Lastly, antisera from both mice and rabbits vaccinated with DNA expressing sgp120-C3d(3) elicited higher titers of neutralizing antibody than did nonfused forms of Env. These results indicate that C3d, conjugated to sgp120, enhances the antibody responses to Env compared to non-C3d fused forms of Env, and this approach may be one way to overcome the poor ability of DNA vaccines to generate antibodies to Env.  相似文献   

18.
19.
 We have investigated the effect of interleukin-2 (IL-2) secretion by KHT sarcoma cells upon their vaccine potential in syngeneic C3Hf/He mice. Parental KHT tumor cells were transfected with the plasmid pBCMG-neo-mIL-2 to obtain a transfectant KHT-2-3-7 that secreted 20 units IL-2. KHT-2-3-7 cells elicited protective immunity in only 10% of the immunized mice, compared with 40% of mice immunized with irradiated parental KHT tumor colls. To minimize the contribution of potential antigenic differences between the KHT-2-3-7 transfectant and parental KHT cells, a clone of KHT cells (KHT-C21) was isolated and used in subsequent experiments. A number of transfectants secreting various amounts of IL-2, ranging from 2 units to 200 units, were obtained following transfection of KHT-C21 cells with plasmid pBCMG-neo-mIL-2. Two of the transfectants, C21-13-4 and C21-1, each secreting 200 units IL-2, elicited protective immunity in a significantly lower fraction of mice than did irradiated KHT-C21 parental tumor cells (P<0.0l). Two other transfectants C21-10 and C21-11, secreting 2 and 23 units IL-2 respectively, also showed lower vaccine potential compared with the parental KHT-C21 clone (P<0.05). To minimize further any role for potential antigenic or other molecular differences between the individual transfectants and the clonal KHT-C21 parental cells in lowering their vaccine efficacy, mice were immunized with a mixture of five transfectants, and the results again showed significantly lower vaccine efficacy of the mixture compared with the irradiated parental C21 cells (P<0.0l). In view of published studies showing enhanced or unchanged efficacy of IL-2-secreting tumor cell vaccines, our observation of the lower vaccine potential of IL-2-transduced tumor cells indicates that the vaccine efficacy of IL-2-secreting tumor cells depends on the individual tumor. Such variability/unpredictability would hamper the clinical use of IL-2-secreting tumor cells as vaccines. Received: 23 April 1996 / Accepted: 7 February 1997  相似文献   

20.
Correlation of hepatitis C virus (HCV) spontaneous resolution with Th1 and CD8+CTL responses during natural infection implies the potentiality of poly-CTL-epitopic HCV vaccines. We recently reported in silico design and construction of DNA vaccines (pcPOL-plasmids) harboring HCV CTL epitopes. Herein, we provide data of mice immunization by pcPOL, (encoding; core132-142 [C], E2405-414 [E4], E2614-622 [E6] and NS31406-1415 [N] CD8+CTL epitopes as CE4E6N polytope) and its HBsAg-fused counterpart (pcHPOL), compared to the adjuvant-formulated (Montanide + CpG) CE4E6N synthetic-peptide immunization. All vaccinated groups developed different levels of cellular responses, however, only the pcHPOL-immunized mice elicited strong CTLs and IFN-γ-secreting cells that were further augmented towards a Th1 response and partial tumor protection by DNA-prime/peptide-boosting regimen. Priming with HBsAg alone could not afford its augmenting effect indicating the importance of priming by polytope itself. Hence, fusion of immunocarriers like HBsAg conjoined with DNA-prime/peptide-boost immunization regimen seems a strategy to enhance the epitope-specific immune responses towards poly-CTL-epitopic vaccines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号