首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The effect of differentiation of the human neuronal progenitor cell line NTera 2 clone D1 (NT2/D1) by retinoic acid on components of the proteasome system was studied. The chymotrypsin-like and peptidylglutamyl peptide bond hydrolyzing activities of the proteasome increased five weeks after retinoic acid, and following treatment with mitotic inhibitors returned to levels detected in non-differentiated cells. A selective induction of the MHC class II region encoded LMP7 and LMP2 proteasome subunits occurred during differentiation, whereas there were no changes in the expression of the constitutive LMP2 counterpart (delta-subunit) or the constitutive C2 subunit. Immunofluorescence revealed marked LMP7 accumulation in fully differentiated cells, with no changes in the labeling pattern of the constitutive proteasome antigens. The expression of the alpha-subunit of the PA28 proteasome activator was down-regulated in fully differentiated neurons, but was not correlated with changes in enzymatic activity. Changes in proteasome activity and composition may contribute to the processes leading to differentiation of human neurons in vitro and to the properties of fully differentiated neurons.  相似文献   

2.
MicroRNAs (miRNAs) are small noncoding RNAs, with a length of 19-23 nucleotides, which appear to be involved in the regulation of gene expression by inhibiting the translation of messenger RNAs carrying partially or nearly complementary sequences to the miRNAs in their 3' untranslated regions. Expression analysis of miRNAs is necessary to understand their complex role in the regulation of gene expression during the development, differentiation and proliferation of cells. Here we report on the expression profile analysis of miRNAs in human teratocarcinoma NTere2D1, mouse embryonic carcinoma P19, mouse neuroblastoma Neuro2a and rat pheochromocytoma PC12D cells, which can be induced into differentiated cells with long neuritic processes, i.e., after cell differentiation, such that the resultant cells look similar to neuronal cells. The data presented here indicate marked changes in the expression of miRNAs, as well as genes related to neuronal development, occurred in the differentiation of NTera2D1 and P19 cells. Significant changes in miRNA expression were not observed in Neuro2a and PC12D cells, although they showed apparent morphologic change between undifferentiated and differentiated cells. Of the miRNAs investigated, the expression of miRNAs belonging to the miR-302 cluster, which is known to be specifically expressed in embryonic stem cells, and of miR-124a specific to the brain, appeared to be markedly changed. The miR-302 cluster was potently expressed in undifferentiated NTera2D1 and P19 cells, but hardly in differentiated cells, such that miR-124a showed an opposite expression pattern to the miR-302 cluster. Based on these observations, it is suggested that the miR-302 cluster and miR-124a may be useful molecular indicators in the assessment of degree of undifferentiation and/or differentiation in the course of neuronal differentiation.  相似文献   

3.
The transient receptor potential vanilloid subtype 1 (TRPV1) is a Ca2+-permeable channel primarily expressed in dorsal root ganglion neurons. Besides its function in thermogenic nociception and neurogenic inflammation, TRPV1 is involved in cell migration, cytoskeleton re-organisation and in neuronal guidance. To explore the TRPV1 level and activity during conditions for neuronal maturation, TRPV1-expressing SHSY5Y neuroblastoma cells were differentiated into a neuronal phenotype using all-trans-retinoic acid (RA). We show that RA highly up-regulated the total and cell surface TRPV1 protein expression but the TRPV1 mRNA level was unaffected. The up-regulated receptors were localised to the cell bodies and the developed neurites. Furthermore, RA increased both the basal intracellular free Ca2+ concentration by 30% as well as the relative capsaicin-induced Ca2+ influx. The results show that TRPV1 protein expression increases during RA-induced differentiation in vitro, which generates an altered intracellular Ca2+ homeostasis.  相似文献   

4.
5.
Retinoic acid (RA), a derivative of vitamin A, is essential for normal patterning and neurogenesis during development. Until recently, studies have been focused on the physiological roles of RA receptors (RARs), one of the two types of nuclear receptors, whereas the functions of the other nuclear receptors, retinoid X receptors (RXRs), have not been explored. Accumulating evidence now suggests that RXRalpha is a critical receptor component mediating the effects of RA during embryonic development. In this study, we have examined the expression profiles of RXRalpha and RARs during the RA-induced neuronal differentiation in a human embryonal carcinoma cell line, NT2. Distinct expression profiles of RXRalpha, RARalpha, RARbeta, and RARgamma were observed following treatment with RA. In particular, we found that RA treatment resulted in a biphasic up-regulation of RXRalpha expression in NT2 cells. The induced RXRalpha was found to bind specifically to the retinoid X response element based on gel mobility retardation assays. Furthermore, immunocytochemical analysis revealed that RXRalpha expression could be localized to the somatoaxonal regions of the NT2 neurons, including the tyrosine hydroxylase- and vasoactive intestinal peptide-positive neurons. Taken together, our findings provide the first demonstration of the cellular localization and regulation of RXRalpha expression in NT2 cells and suggest that RXRalpha might play a crucial role in the cellular functions of human CNS neurons.  相似文献   

6.

Background

Dominant mutations in the leucine-rich repeat kinase 2 (LRRK2) gene are the most prevalent cause of Parkinson''s disease, however, little is known about the biological function of LRRK2 protein. LRRK2 is expressed in neural precursor cells suggesting a role in neurodevelopment.

Methodology/Principal Findings

In the present study, differential gene expression profiling revealed a faster silencing of pluripotency-associated genes, like Nanog, Oct4, and Lin28, during retinoic acid-induced neuronal differentiation of LRRK2-deficient mouse embryonic stem cells compared to wildtype cultures. By contrast, expression of neurotransmitter receptors and neurotransmitter release was increased in LRRK2+/− cultures indicating that LRRK2 promotes neuronal differentiation. Consistently, the number of neural progenitor cells was higher in the hippocampal dentate gyrus of adult LRRK2-deficient mice. Alterations in phosphorylation of the putative LRRK2 substrates, translation initiation factor 4E binding protein 1 and moesin, do not appear to be involved in altered differentiation, rather there is indirect evidence that a regulatory signaling network comprising retinoic acid receptors, let-7 miRNA and downstream target genes/mRNAs may be affected in LRRK2-deficient stem cells in culture.

Conclusion/Significance

Parkinson''s disease-linked LRRK2 mutations that associated with enhanced kinase activity may affect retinoic acid receptor signaling during neurodevelopment and/or neuronal maintenance as has been shown in other mouse models of chronic neurodegenerative diseases.  相似文献   

7.
Gap-junctional coupling among neurons is subject to regulation by a number of neurotransmitters including nitric oxide. We studied the mechanisms by which NO regulates coupling in cells expressing Cx35, a connexin expressed in neurons throughout the central nervous system. NO donors caused potent uncoupling of HeLa cells stably transfected with Cx35. This effect was mimicked by Bay 21-4272, an activator of guanylyl cyclase. A pharmacological analysis indicated that NO-induced uncoupling involved both PKG-dependent and PKG-independent pathways. PKA was involved in both pathways, suggesting that PKG-dependent uncoupling may be indirect. In vitro, PKG phosphorylated Cx35 at three sites: Ser110, Ser276, and Ser289. A mutational analysis indicated that phosphorylation on Ser110 and Ser276, sites previously shown also to be phosphorylated by PKA, had a significant influence on regulation. Ser289 phosphorylation had very limited effects. We conclude that NO can regulate coupling through Cx35 and that regulation is indirect in HeLa cells.  相似文献   

8.
Human NT cells derived from the NTera2/D1 cell line express a dopaminergic phenotype making them an attractive vehicle to supply dopamine to the depleted striatum of the Parkinsonian patient. In vitro, hNT neurons express tyrosine hydroxylase (TH), depending on the length of time they are exposed to retinoic acid. This study compared two populations of hNT neurons that exhibit a high yield of TH+ cells, MI-hNT and DA-hNT. The MI-hNT and DA-hNT neurons were intrastriatally transplanted into the 6-OHDA hemiparkinsonian rat. Amelioration in rotational behavior was measured and immunohistochemistry was performed to identify surviving hNT and TH+ hNT neurons. Results indicated that both MI-hNT and DA-hNT neurons can survive in the striatum, however, neither maintained their dopaminergic phenotype in vivo. Other strategies used in conjunction with hNT cell replacement are likely needed to enhance and maintain the dopamine expression in the grafted cells.  相似文献   

9.
For better understanding of functions of the Calcyclin Binding Protein (CacyBP) and exploring its possible roles in neuronal differentiation, the subcellular localization of human CacyBP was examined in retinoic acid(RA)-induced and uninduced neuroblastoma SH-SY5Y cells. Immunostaining indicated that CacyBP was present in the cytoplasm of uninduced SH-SY5Y cells, in which the resting Ca(2+) concentration was relatively lower than that of RA-induced cells. After the RA induction, immunostaining was seen in both the nucleus and cytoplasm. In the RA-induced differentiated SH-SY5Y cells, CacyBP was phosphorylated on serine residue(s), while it existed in a dephosphorylated form in normal (uninduced) cells. Thus, the phosphorylation of CacyBP occurs when it is translocated to the nuclear region. The translocation of CacyBP during the RA-induced differentiation of SH-SY5Y cells suggested that this protein might play a role in neuronal differentiation.  相似文献   

10.
11.
12.
The rat mast cell line RBL-2H3 contains both phospholipase D (PLD)1 and PLD2. Previous studies with this cell line indicated that expressed PLD1 and PLD2 are both strongly activated by stimulants of secretion. We now show by use of PLDs tagged with enhanced green fluorescent protein that PLD1, which is largely associated with secretory granules, redistributes to the plasma membrane in stimulated cells by processes reminiscent of exocytosis and fusion of granules with the plasma membrane. These processes and secretion of granules are suppressed by expression of a catalytically inactive mutant of PLD1 or by the presence of 50 mM 1-butanol but not tert-butanol, an indication that these events are dependent on the catalytic activity of PLD1. Of note, cholera toxin induces translocation of PLD1-labeled granules to the plasma membrane but not fusion of granules with plasma membrane or secretion. Subsequent stimulation of calcium influx with Ag or thapsigargin leads to rapid redistribution of PLD1 to the plasma membrane and accelerated secretion. Also of note, PLD1 is recycled from plasma membrane back to granules within 4 h of stimulation. PLD2, in contrast, is largely confined to the plasma membrane, but it too participates in the secretory process, because expression of catalytically inactive PLD2 also blocks secretion. These data indicate a two-step process: translocation of granules to the cell periphery, regulated by granule-associated PLD1, and a calcium-dependent fusion of granules with the plasma membrane, regulated by plasma membrane-associated PLD2 and possibly PLD1.  相似文献   

13.
We demonstrate that global induction of apoptosis in primary bovine lens epithelial (LEC) or fibroblastic mouse NIH-3T3 cells by staurosporine, puromycin, cycloheximide, or etoposide is accompanied by a decrease in coupling by gap junctions. Cell coupling as tested by neurobiotin spreading was maintained when the LEC or NIH-3T3 cells were pre-incubated with the pan-caspase inhibitor zVAD or the caspase-3 inhibiting tetrapeptide DEVD. Immunohistochemistry using anti-connexin-43 antibodies showed a reduction of plasma membrane integrated connexin-43 in both cell lines when undergoing apoptosis. Western blotting indicated degradation of connexin-43 that was inhibited by zVAD or DEVD. Cell coupling at single cell level was tested by direct microinjecting into LEC apoptosis-inducing agents of low molecular mass like staurosporine, etoposide and puromycin or the high molecular mass proteins caspase-3 and -8 in activated state. Microinjection of puromycin or etoposide induced apoptotic morphological changes of only the injected cell within 90 or 180 min, but did not affect adjacent cells. In contrast, microinjection of staurosporine led to a rapid induction of apoptosis of the injected and a number of adjacent cells suggesting spreading of staurosporine most probably through gap junction pores held open by dephosphorylation of connexin-43 as verified by immunoblotting and staining using a phospho-serine368-specific anti-connexin-43 antibody. Microinjection of active caspase-8 led after 3 h to morphological apoptotic alterations of only the injected cell, but did not inhibit spreading of co-injected neurobiotin to neighboring cells during the first hour. In contrast, microinjection of active caspase-3-induced apoptosis only of the injected cell after 60 min and rapidly and completely suppressed coupling to neighboring cells.  相似文献   

14.
Induced pluripotent stem cell (iPSC)-based technologies offer an unprecedented opportunity to perform high-throughput screening of novel drugs for neurological and neurodegenerative diseases. Such screenings require a robust and scalable method for generating large numbers of mature, differentiated neuronal cells. Currently available methods based on differentiation of embryoid bodies (EBs) or directed differentiation of adherent culture systems are either expensive or are not scalable. We developed a protocol for large-scale generation of neuronal stem cells (NSCs)/early neural progenitor cells (eNPCs) and their differentiation into neurons. Our scalable protocol allows robust and cost-effective generation of NSCs/eNPCs from iPSCs. Following culture in neurobasal medium supplemented with B27 and BDNF, NSCs/eNPCs differentiate predominantly into vesicular glutamate transporter 1 (VGLUT1) positive neurons. Targeted mass spectrometry analysis demonstrates that iPSC-derived neurons express ligand-gated channels and other synaptic proteins and whole-cell patch-clamp experiments indicate that these channels are functional. The robust and cost-effective differentiation protocol described here for large-scale generation of NSCs/eNPCs and their differentiation into neurons paves the way for automated high-throughput screening of drugs for neurological and neurodegenerative diseases.  相似文献   

15.
Mutations in the presenilin 1 and 2 (PS1 and PS2) genes cause most cases of early onset Alzheimer's disease. The genes encode two homologous multipass membrane proteins. Since the endogenous expression of PS2 has been poorly analyzed to date, we studied PS2 expression and localization in cultured human neuroblastoma cells and mouse neuronal cells. PS2 was mainly detected as a full-length protein of about 52 kDa in these cells and in brain, in contrast to PS1 that is mainly detected as endoproteolytic N-terminal and C-terminal fragments. Using immunofluorescence we found that like PS1, PS2 colocalized with markers of the endoplasmic reticulum-Golgi intermediate compartment, ERGIC-53 and beta-COP. Double labeling for PS1 and PS2 indicated that both proteins are colocalized in neuroblastoma SH-SY5Y cells. To study PS2 expression during differentiation, mouse embryonic carcinoma P19 cells were treated with retinoic acid. We found minimal PS2 expression in undifferentiated cells, an increase from day 2, and a maximum at day 8 after treatment. PS1 expression remained constant during this period. The differential expression of PS1 and PS2 within the P19 cells following retinoic acid treatment indicates different utilization or temporal requirements for these proteins during neuronal differentiation.  相似文献   

16.
The very lysine-rich replacement histone variant H10 is found to be present in different murine (C1003, PC13, P19) and human (Tera-2) embryonal carcinoma cell lines. The proportion of H10 increases upon induction of differentiation of the different cell lines by various treatments. In undifferentiated PC13 EC cells H10 mRNA is present at a low level. During retinoic acid induced differentiation of mitotically synchronized PC13 EC cells, accumulation of H10 mRNA starts in the first cell cycle. The H10 protein level starts to increase in the second synchronous cycle preceding changes in the cycle parameters that become apparent in the third cycle. The results provide further support for an important role of H10 in the control of cellular differentiation in early mammalian development.Abbreviations EC embryonal carcinoma - RA retinoic acid - DAPT 4-6-diamino-2-phenylindole - SDS sodium dodecylsulphate - DMSO dimethyl sulfoxide - TCA trichloro acetic acid  相似文献   

17.
All-trans-retinoic acid (RA) plays a crucial role in survival and differentiation of neurons. For elucidating signaling mechanisms involved in RA-induced neuronal differentiation, we have selected SH-SY5Y cells, which are an established in vitro cell model for studying RA signaling. Here we report that RA-induced neuronal differentiation of SH-SY5Y cells is coupled with increased expression/activation of TGase and in vivo transamidation and activation of RhoA. In addition, RA promotes formation of stress fibers and focal adhesion complexes, and activation of ERK1/2, JNK1, and p38alpha/beta/gamma MAP kinases. Using C-3 exoenzyme (RhoA inhibitor) or monodansylcadaverine (TGase inhibitor), we show that transamidated RhoA regulates cytoskeletal rearrangement and activation of ERK1/2 and p38gamma MAP kinases. Further, by using stable SH-SY5Y cell lines (overexpressing wild-type, C277S mutant, and antisense TGase), we demonstrate that transglutaminase activity is required for activation of RhoA, ERK1/2, JNK1, and p38gamma MAP kinases. Activated MAP kinases differentially regulate RA-induced neurite outgrowth and neuronal marker expression. The results of our studies suggest a novel mechanism of RA signaling, which involves activation of TGase and transamidation of RhoA. RA-induced activation of TGase is proposed to induce multiple signaling pathways that regulate neuronal differentiation.  相似文献   

18.
We have recently developed a rapid protocol involving NT2 cell aggregation and treatment with retinoic acid (RA) to produce terminally differentiated CNS neurons. As a first step to explore the functional roles of cell-cycle regulatory proteins in the process of neuronal differentiation, the expression profiles of cyclin-dependent kinases (Cdks) and their regulators were examined in NT2 cells following treatment with RA. One of the Cdks, Cdk5, has been demonstrated to affect the process of neuronal differentiation and suggested to play an important role in development of the nervous system. We found that the expression of Cdk5 was gradually increased, while its activators (p35 and p39) as well as Cdk5 kinase activity were induced in NT2 cells during the process of neuronal differentiation. Moreover, both p35 and p39 were localized along the axons and varicosity-like structures of differentiated NT2 neurons. Taken together, our results demonstrated that NT2 cells provide a good in vitro model system to examine signaling pathways involved in the regulation of Cdk5 activators and to elucidate the functional roles of Cdk5 in neuronal differentiation.  相似文献   

19.
20.
Glutamate-induced oxidative toxicity is mediated by glutathione depletion in the HT22 mouse hippocampal cell line. Previous results with pharmacological agents implicated the extracellular signal-regulated kinases-1/2 (ERK1/2) in glutamate toxicity in HT22 cells and immature embryonic rat cortical neurons. In this report, we definitively establish a role for ERK1/2 in oxidative toxicity using dominant negative MEK1 expression in transiently transfected HT22 cells to block glutamate-induced cell death. In contrast, chronic activation of ERK (i.e. brought about by transfection of constitutively active ERK2 chimera) is not sufficient to trigger HT22 cell death demonstrating that ERK1/2 activation is not sufficient for toxicity. Activation of ERK1/2 in HT22 cells has a distinct kinetic profile with an initial peak occurring between 30 min and 1 h of glutamate treatment and a second peak typically emerging after 6 h. We demonstrate here that the initial phase of ERK1/2 induction is because of activation of metabotropic glutamate receptor type I (mGluRI). ERK1/2 activation by mGluRI contributes to an HT22 cell adaptive response to oxidative stress as glutamate-induced toxicity is enhanced upon pharmacological inhibition of mGluRI. The protective effect of ERK1/2 activation at early times after glutamate treatment is mediated by a restoration of glutathione (GSH) levels that are reduced because of depletion of intracellular cysteine pools. Thus, ERK1/2 appears to play dual roles in HT22 cells acting as part of a cellular adaptive response during the initial phases of glutamate-induced oxidative stress and contributing to toxicity during later stages of stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号