首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
The role of Stat3 in the maintenance of pulmonary homeostasis following adenoviral-mediated lung injury was assessed in vivo. Stat3 was selectively deleted from bronchiolar and alveolar epithelial cells in Stat3(DeltaDelta) mice. Although lung histology and function were unaltered by deletion of Stat3 in vivo, Stat3(DeltaDelta) mice were highly susceptible to lung injury caused by intratracheal administration of AV1-GFP, an early (E) region 1- and E3-deleted, nonproliferative adenovirus. Severe airspace enlargement, loss of alveolar septae, and sloughing of the bronchiolar epithelium were observed in Stat3(DeltaDelta) mice as early as 1 day after exposure to the virus. Although surfactant protein A, B, and C content and surfactant protein-B mRNA expression in Stat3(DeltaDelta) mice were similar, TUNEL staining and caspase-3 were increased in alveolar type II epithelial cells of Stat3(DeltaDelta) mice after exposure to virus. RNA microarray analysis of type II epithelial cells isolated from Stat3(DeltaDelta) mice demonstrated significant changes in expression of numerous genes, including those genes regulating apoptosis, supporting the concept that the susceptibility of Stat3-deficient mice to adenovirus was related to the role of Stat3 in the regulation of cell survival. AV1-Bcl-x(L), an E1- and E3-deleted, nonproliferative adenovirus expressing the antiapoptotic protein Bcl-x(L), protected Stat3(DeltaDelta) mice from adenoviral-induced lung injury. Adenoviral infection of the lungs of Stat3-deficient mice was associated with severe injury of the alveolar and bronchiolar epithelium. Thus, Stat3 plays a critical cytoprotective role that is required for epithelial cell survival and maintenance of alveolar structures during the early phases of pulmonary adenoviral infection.  相似文献   

9.
Stat3 activation in acute lung injury   总被引:8,自引:0,他引:8  
Stat3 plays diverse roles in biological processes including cell proliferation, survival, apoptosis, and inflammation. Very little is known regarding its activation and function in the lung during acute inflammation. We now show that Stat3 activation was triggered in lungs and in alveolar macrophages after intrapulmonary deposition of IgG immune complexes in rats. Low levels of constitutive Stat3 were observed in normal rat lungs as determined by the EMSA. Stat3 activity in whole lung extracts increased 2 h after initiation of IgG immune complex deposition, reaching maximal levels by 4 h, whereas Stat3 activation was found in alveolar macrophages as early as 30 min after onset of injury. Expression and activation of Stat3 mRNA, protein, and protein phosphorylation was accompanied by increased gene expression of IL-6, IL-10, and suppressor of cytokine signaling-3 in whole lung tissues. Both Tyr(705) and Ser(727) phosphorylation were involved in Stat3 activation as assessed in whole lung extracts. C5a (complement 5, fragment a) per se can induce phosphorylation of Ser(727) of Stat3. In vivo, Stat3 activation was dramatically suppressed by depletion of neutrophils or lung macrophages, resulting in reduced gene expression of IL-6 and IL-10 in whole lung tissues. Using blocking Abs to IL-6, IL-10, and C5a, Stat3 activation induced by IgG immune complexes was markedly diminished. These data suggest in the lung injury model used that activation of Stat3 in lungs is macrophage dependent and neutrophil dependent. IL-6, IL-10, and C5a contribute to Stat3 activation in inflamed rat lung.  相似文献   

10.
11.
12.
13.
Whereas decreased concentrations of surfactant protein (SP)-B are associated with lung injury and respiratory distress, potential causal relationships between SP-B deficiency and lung inflammation remain unclear. A transgenic mouse in which human SP-B expression was placed under conditional control of doxycycline via the CCSP promoter was utilized to determine the role of SP-B in the initiation of pulmonary inflammation. Adult mice, made SP-B deficient by removal of doxycycline, developed severe respiratory failure within 4 days. Deficiency of SP-B was associated with increased minimal surface tension of the surfactant and perturbed lung mechanics. Four days of SP-B deficiency did not alter SP-C content or surfactant phospholipid content or composition. SP-B deficiency was associated with lung inflammation and increased soluble L-selectin, STAT-3, and phosphorylated STAT-3 in alveolar macrophages and alveolar epithelial cells. Alveolar IL-6, IL-1beta, and macrophage inflammatory protein-2 concentrations were increased after removal of doxycycline, indicating pulmonary inflammation. Restoration of SP-B expression following administration of doxycycline rapidly reversed SP-B-dependent abnormalities in lung mechanics and inflammation. SP-B deficiency is sufficient to cause lung dysfunction and inflammation in adult mice. SP-B reversed inflammation and maintained lung function in vivo, indicating its potential utility for the prevention and treatment of pulmonary injury and surfactant deficiency.  相似文献   

14.
15.
GATA6 regulates differentiation of distal lung epithelium   总被引:8,自引:0,他引:8  
  相似文献   

16.
The alveolar epithelium serves as a barrier between organism and environment and functions as the first line of protection against potential respiratory pathogens. Alveolar type II (TII) cells have traditionally been considered the immune cells of the alveolar epithelium, as they possess immunomodulatory functions; however, the precise role of alveolar type I (TI) cells, which comprise ∼95% of the alveolar epithelial surface area, in lung immunity is not clear. We sought to determine if there was a difference in the response of TI and TII cells to lung injury and if TI cells could actively participate in the alveolar immune response. TI cells isolated via fluorescence activated cell sorting (FACS) from LPS-injured rats demonstrated greater fold-induction of multiple inflammatory mediators than TII cells isolated in the same manner from the same animals. Levels of the cytokines TNF-α, IL-6 and IL-1β from cultured primary rat TI cells after LPS stimulation were significantly increased compared to similarly studied primary rat TII cells. We found that contrary to published reports, cultured TII cells produce relatively small amounts of TNF-α, IL-6 and IL-1β after LPS treatment; the higher levels of cytokine expression from cultured TII cells reported in the literature were likely from macrophage contamination due to traditional non-FACS TII cell isolation methods. Co-culture of TII cells with macrophages prior to LPS stimulation increased TNF-α and IL-6 production to levels reported by other investigators for TII cells, however, co-culture of TI cells and macrophages prior to LPS treatment resulted in marked increases in TNF-α and IL-6 production. Finally, exogenous surfactant blunted the IL-6 response to LPS in cultured TI cells. Taken together, these findings advocate a role for TI cells in the innate immune response and suggest that both TI and TII cells are active players in host defense mechanisms in the lung.  相似文献   

17.
18.
Supplemental oxygen inhalation is frequently used to treat severe respiratory failure; however, prolonged exposure to hyperoxia causes hyperoxic acute lung injury (HALI), which induces acute respiratory distress syndrome and leads to high mortality rates. Recent investigations suggest the possible role of NLRP3 inflammasomes, which regulate IL-1β production and lead to inflammatory responses, in the pathophysiology of HALI; however, their role is not fully understood. In this study, we investigated the role of NLRP3 inflammasomes in mice with HALI. Under hyperoxic conditions, NLRP3−/− mice died at a higher rate compared with wild-type and IL-1β−/− mice, and there was no difference in IL-1β production in their lungs. Under hyperoxic conditions, the lungs of NLRP3−/− mice exhibited reduced inflammatory responses, such as inflammatory cell infiltration and cytokine expression, as well as increased and decreased expression of MMP-9 and Bcl-2, respectively. NLRP3−/− mice exhibited diminished expression and activation of Stat3, which regulates MMP-9 and Bcl-2, in addition to increased numbers of apoptotic alveolar epithelial cells. In vitro experiments revealed that alveolar macrophages and neutrophils promoted Stat3 activation in alveolar epithelial cells. Furthermore, NLRP3 deficiency impaired the migration of neutrophils and chemokine expression by macrophages. These findings demonstrate that NLRP3 regulates Stat3 signaling in alveolar epithelial cells by affecting macrophage and neutrophil function independent of IL-1β production and contributes to the pathophysiology of HALI.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号