首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Data has been published showing that in heterotetrameric liver mitochondrial aldehyde dehydrogenase composed of the active (E487) and the inactive Oriental-variant (K487) subunit, the Oriental variant was dominant and caused the inactivation of the E487 subunit. The published structures of the enzyme showed that the glutamate at position 487 is salt bonded to an arginine (475) in a different subunit. Arg475 was mutated to a glutamine to test for its importance in causing the Oriental variant to be an enzyme with a high Km for NAD and a low specific activity. Unexpectedly, the R475Q mutant exhibited positive cooperativity in NAD binding with a Hill coefficient of 2. Individual heterotetramers composed of subunits of E487 and K487 were produced by making changes to two residues on the surface of the enzyme and then co-expressing both cDNAs in E. coli. The E(3)K form had essentially 50% the activity of the E(4) homotetrameric form while EK(3) had essentially the same properties as did the homotetrameric K(4) Oriental variant. This showed that in a dimer pair composed of one K- and one E- subunit the K-subunit became dominant and caused the inactivation of its E-partner. Further, pre-steady state burst data and steady state kinetic data make it appear that there was one functioning active subunit in each of the dimer pairs that made up the tetrameric enzyme. Thus, the half-of-the-site reactivity is a result of having one functioning and one non-functioning subunit in each dimer pair. The actual structural basis for this is still not understood, but could be related to the E487-R475 inter-dimer salt bond.  相似文献   

2.
Data has been published showing that in heterotetrameric liver mitochondrial aldehyde dehydrogenase composed of the active (E487) and the inactive Oriental-variant (K487) subunit, the Oriental variant was dominant and caused the inactivation of the E487 subunit. The published structures of the enzyme showed that the glutamate at position 487 is salt bonded to an arginine (475) in a different subunit. Arg475 was mutated to a glutamine to test for its importance in causing the Oriental variant to be an enzyme with a high Km for NAD and a low specific activity. Unexpectedly, the R475Q mutant exhibited positive cooperativity in NAD binding with a Hill coefficient of 2. Individual heterotetramers composed of subunits of E487 and K487 were produced by making changes to two residues on the surface of the enzyme and then co-expressing both cDNAs in E. coli. The E3K form had essentially 50% the activity of the E4 homotetrameric form while EK3 had essentially the same properties as did the homotetrameric K4 Oriental variant. This showed that in a dimer pair composed of one K- and one E- subunit the K-subunit became dominant and caused the inactivation of its E-partner. Further, pre-steady state burst data and steady state kinetic data make it appear that there was one functioning active subunit in each of the dimer pairs that made up the tetrameric enzyme. Thus, the half-of-the-site reactivity is a result of having one functioning and one non-functioning subunit in each dimer pair. The actual structural basis for this is still not understood, but could be related to the E487–R475 inter-dimer salt bond.  相似文献   

3.
Wei B  Ni L  Hurley TD  Weiner H 《Biochemistry》2000,39(18):5295-5302
The low-activity Oriental variant of human mitochondrial aldehyde dehydrogenase possesses a lysine rather than a glutamate at residue 487 in the 500 amino acid homotetrameric enzyme. The glutamate at position 487 formed two salt bonds, one to an arginine at position 264 in the same subunit and the other to arginine 475 in a different subunit [Steinmetz, C. G., Xie, P.-G.,Weiner, H., and Hurley, T. D. (1997) Structure 5, 2487-2505]. Mutating arginine 264 to glutamine produced a recombinantly expressed enzyme with nativelike properties; in contrast, mutating arginine 475 to glutamine produced an enzyme that exhibited positive cooperativity in NAD binding. The K(M) for NAD increased 23-fold with a Hill coefficient of 1.8. The binding of both NAD and NADH was affected by the mutation at position 475. Restoring the salt bonds between residues 487 and either or both 264 and 475 did not restore nativelike properties to the Oriental variant. Further, the R475Q mutant was thermally less stable than the native enzyme, Oriental variant, or other mutants. The presence of NAD restored nativelike stability to the mutant. It is concluded that movement of arginine 475 disrupted salt bonds between it and residues other than the one at 487, which caused the apo-R475Q mutant to have properties typical of an enzyme that exhibits positive cooperativity in substrate binding. Breaking the salt bond between glutamate 487 in the Oriental variant and the two arginine residues cannot be the only reason that this enzyme has altered catalytic properties.  相似文献   

4.
Yeast has at least three partially characterized aldehyde dehydrogenases. Previous studies by gene disrupted in our laboratory revealed that the Saccharomyces cerevisiae cytosol ALDH1 played an important role in ethanol metabolism as did the class 2 mitochondrial enzyme. To date, few mutagenesis studies have been performed with the yeast enzymes. An important human variant of ALDH is one found in Asian People. In it, the glutamate at position 487 is replaced by a lysine. This glutamate interacts with an arginine (475) that is located in the subunit that makes up the dimer pair in the tetrameric enzyme. Sequence alignment shows that these two residues are located at positions 492 and 480, respectively, in the yeast class 1 enzyme which shares just 45% sequence identity with the human enzymes. Mutating glutamate 492 to lysine produced an enzyme with altered kinetic properties when compared to the wild-type glutamate-enzyme. The K(m) for NADP of E492K increased to nearly 3600 microM compare to 40 microM for wild-type enzyme. The specific activity decreased more than 10-fold with respect to the recombinant wild-type yeast enzyme. Moreover, substituting a glutamine for a glutamate was not detrimental in that the E492Q had wild-type-like K(m) for NADP and V(max). These properties were similar to the changes found with the human class 2 E487K mutant form. Further, mutating arginine 480 to glutamine produced an enzyme that exhibited positive cooperativity in NADP binding. The K(m) for NADP increased 11-fold with a Hill coefficient of 1.6. The NADP-dependent activity of R480Q mutant was 60% of wild-type enzyme. Again, these results are very similar to what we recently showed to occur with the human enzyme [Biochemistry 39 (2000) 5295-5302]. These findings show that the even though the glutamate and arginine residues are not conserved, similar changes occur in both the human and the yeast enzyme when either is mutated.  相似文献   

5.
Yeast has at least three partially characterized aldehyde dehydrogenases. Previous studies by gene disrupted in our laboratory revealed that the Saccharomyces cerevisiae cytosol ALDH1 played an important role in ethanol metabolism as did the class 2 mitochondrial enzyme. To date, few mutagenesis studies have been performed with the yeast enzymes. An important human variant of ALDH is one found in Asian People. In it, the glutamate at position 487 is replaced by a lysine. This glutamate interacts with an arginine (475) that is located in the subunit that makes up the dimer pair in the tetrameric enzyme. Sequence alignment shows that these two residues are located at positions 492 and 480, respectively, in the yeast class 1 enzyme which shares just 45% sequence identity with the human enzymes. Mutating glutamate 492 to lysine produced an enzyme with altered kinetic properties when compared to the wild-type glutamate-enzyme. The Km for NADP of E492K increased to nearly 3600 μM compare to 40 μM for wild-type enzyme. The specific activity decreased more than 10-fold with respect to the recombinant wild-type yeast enzyme. Moreover, substituting a glutamine for a glutamate was not detrimental in that the E492Q had wild-type-like Km for NADP and Vmax. These properties were similar to the changes found with the human class 2 E487K mutant form. Further, mutating arginine 480 to glutamine produced an enzyme that exhibited positive cooperativity in NADP binding. The Km for NADP increased 11-fold with a Hill coefficient of 1.6. The NADP-dependent activity of R480Q mutant was 60% of wild-type enzyme. Again, these results are very similar to what we recently showed to occur with the human enzyme [Biochemistry 39 (2000) 5295–5302]. These findings show that the even though the glutamate and arginine residues are not conserved, similar changes occur in both the human and the yeast enzyme when either is mutated.  相似文献   

6.
Mitochondrial aldehyde dehydrogenase (ALDH2) is the major enzyme that oxidizes ethanol-derived acetaldehyde. A nearly inactive form of the enzyme, ALDH2*2, is found in about 40% of the East Asian population. This variant enzyme is defined by a glutamate to lysine substitution at residue 487 located within the oligomerization domain. ALDH2*2 has an increased Km for its coenzyme, NAD+, and a decreased kcat, which lead to low activity in vivo. Here we report the 2.1 A crystal structure of ALDH2*2. The structure shows a large disordered region located at the dimer interface that includes much of the coenzyme binding cleft and a loop of residues that form the base of the active site. As a consequence of these structural changes, the variant enzyme exhibits rigid body rotations of its catalytic and coenzyme-binding domains relative to the oligomerization domain. These structural perturbations are the direct result of the inability of lysine 487 to form important stabilizing hydrogen bonds with arginines 264 and 475. Thus, the elevated Km for coenzyme exhibited by this variant probably reflects the energetic penalty for reestablishing this site for productive coenzyme binding, whereas the structural alterations near the active site are consistent with the lowered Vmax.  相似文献   

7.
1. Hybrids of the tetrameric enzyme chloramphenicol acetyltransferase (EC 2.3.1.28) were formed in vivo in a strain of Escherichia coli which harbours two different plasmids, each of which normally confers chloramphenicol resistance and specifies an easily distinguished enzyme variant (type I or type III) which is composed of identical subunits. Cell-free extracts of the dual-plasmid strain were found to contain five species of active enzyme, two of which were the homomeric enzymes corresponding to the naturally occurring tetramers of the type-I (beta 4) and type-III (alpha 4) enzymes. The other three variants were judged to be the heteromeric hybrid variants (alpha 3 beta, alpha 2 beta 2, alpha beta 3). 2. The alpha 3 beta and alpha 2 beta 2 hybrids of chloramphenicol acetyltransferase were purified to homogeneity by combining the techniques of affinity and ion-exchange chromatography. The alpha beta 3 variant was not recovered and may be unstable in vitro. 3. The unique lysine residues that could not be modified with methyl acetimidate in each of the native homomeric enzymes were also investigated in the heteromeric tetramers. 4. Lysine-136 remains buried in each beta subunit of the parental (type I) enzyme and in each of the hybrid tetramers. Lysine-38 of each alpha subunit is similarly unreactive in the native type-III chloramphenicol acetyltransferase (alpha 4), but in the alpha 2 beta 2 hybird lysine-38 of each alpha subunit is fully exposed to solvent. Another lysine residue, fully reactive in the alpha 4 enzyme, was observed to be inaccessible to modification in the symmetrical hybrid. The results obtained for the alpha 3 beta enzyme suggest that lysine-38 in two subunits and a different lysine group (that identified in the alpha 2 beta 2 enzyme) in the third alpha subunit are buried. 5. A tentative model for the subunit interactions of chloramphenicol acetyltransferase is proposed on the basis of the results described.  相似文献   

8.
GluR0 from Nostoc punctiforme (NpGluR0) is a bacterial homologue of the ionotropic glutamate receptor (iGluR). We have solved the crystal structure of the ligand-binding core of NpGluR0 in complex with l-glutamate at a resolution of 2.1 Å. The structure exhibits a noncanonical ligand interaction and two distinct subunit interfaces. The side-chain guanidium group of Arg80 forms a salt bridge with the γ-carboxyl group of bound l-glutamate: in GluR0 from Synechocystis (SGluR0) and other iGluRs, the equivalent residues are Asn or Thr, which cannot form a similar interaction. We suggest that the local positively charged environment and the steric constraint created by Arg80 mediate the selectivity of l-glutamate binding by preventing the binding of positively charged and hydrophobic amino acids. In addition, the NpGluR0 ligand-binding core forms a new subunit interface in which the two protomers are arranged differently than the known iGluR and SGluR0 dimer interfaces. The significance of there being two different dimer interfaces was investigated using analytical ultracentrifugation analysis.  相似文献   

9.
Sepharose-bound tetrameric, dimeric and monomeric forms of yeast glyceraldehyde-3-phosphate dehydrogenase were prepared, as well as immobilized hybrid species containing (by selective oxidation of an active center cysteine residue with H2O2) one inactivated subunit per tetramer or dimer. The catalytic properties of these enzyme forms were compared in the forward reaction (glyceraldehyde-3-phosphate oxidation) and reverse reaction (1,3-bisphosphoglycerate reductive dephosphorylation) under steady-state conditions. In the reaction of glyceraldehyde-3-phosphate oxidation, immobilized monomeric and tetrameric forms exhibited similar specific activities. The hybrid-modified dimer contributed on half of the total activity of a native dimer. The tetramer containing one modified subunit possessed 75% of the activity of an unmodified tetramer. In the reaction of 1,3-bisphosphoglycerate reductive dephosphorylation, the specific activity of the monomeric enzyme species was nearly twice as high as that of the tetramer, suggesting that only one-half of the active centers of the oligomer were acting simultaneously. Subunit cooperativity in catalysis persisted in an isolated dimeric species. The specific activity of a monomer associated with a peroxide-inactivated monomer in a dimer was equal to that of an isolated monomeric species and twice as high as that of a native immobilized dimer. The specific activity of subunits associated with a peroxide-inactivated subunit in a tetramer did not differ from that of a native immobilized tetramer; this indicates that interdimeric interactions are involved in catalytic subunit cooperativity. A complex was formed between the immobilized glyceraldehyde-3-phosphate dehydrogenase and soluble phosphoglycerate kinase. Three monomers of phosphoglycerate kinase were bound per tetramer of the dehydrogenase and one per dimer. Evidence is presented that if the reductive dephosphorylation of 1,3-bisphosphoglycerate proceeds in the phosphoglycerate kinase - glyceraldehyde-3-phosphate dehydrogenase complex, all active sites of the latter enzyme act independently, i.e. subunit cooperativity is abolished.  相似文献   

10.
Y C Huang  R F Colman 《Biochemistry》1990,29(36):8266-8273
Pig heart NAD-dependent isocitrate dehydrogenase has a subunit structure consisting of alpha 2 beta gamma, with the alpha subunit exhibiting a molecular weight of 39,000 and the beta and gamma each having molecular weights of 41,000. The amino-terminal sequences (33-35 residues) and the cysteinyl peptide sequences have now been determined by using subunits separated by chromatofocusing or isoelectric focusing and electroblotting. Displacement of the N-terminal sequence of the alpha subunit by 11-12 amino acids relative to that of the larger beta and gamma subunits reveals a 17 amino acid region of great similarity in which 10 residues are identical in all three subunits. The complete enzyme has 6.0 free SH groups per average subunit of 40,000 daltons, but yields 15 distinguishable cysteines in isolated tryptic peptides. Six distinct cysteines in sequenced peptides have been located in the alpha subunit. The beta and gamma subunits contain seven and five cysteines, respectively, with tryptic peptides containing three cysteines being common to the beta and gamma subunits. The three subunits appear to be closely related, but beta and gamma are more similar to each other than either is to the alpha subunit. The NAD-specific isocitrate dehydrogenase from pig heart has been shown to have 2 binding sites/enzyme tetramer for isocitrate, manganous ion, NAD+, and the allosteric activator ADP [Colman, R. F. (1983) Pept. Protein Rev. 1, 41-69]. It is proposed that the catalytically active tetrameric enzyme is organized as a dimer of dimers in which the alpha beta and alpha gamma dimers are nonidentical but functionally similar.  相似文献   

11.
Sorbitol dehydrogenase (SDH) is a distant relative to the alcohol dehydrogenases (ADHs) with sequence identities around 20%. SDH is a tetramer with one zinc ion per subunit. We have crystallized rat SDH and determined the structure by molecular replacement using a tetrameric bacterial ADH as search object. The conformation of the bound coenzyme is extended and similar to NADH bound to mammalian ADH but the interactions with the NMN-part have several differences with those of ADH. The active site zinc coordination in SDH is significantly different than in mammalian ADH but similar to the one found in the bacterial tetrameric NADP(H)-dependent ADH of Clostridiim beijerinckii. The substrate cleft is significantly more polar than for mammalian ADH and a number of residues are ideally located to position the sorbitol molecule in the active site. The SDH molecule can be considered to be a dimer of dimers, with subunits A-B and C-D, where the dimer interactions are similar to those in mammalian ADH. The tetramers are composed of two of these dimers, which interact with their surfaces opposite the active site clefts, which are accessible on the opposite side. In contrast to the dimer interactions, the tetramer-forming interactions are small with only few hydrogen bonds between side-chains.  相似文献   

12.
Yeast NAD(+)-specific isocitrate dehydrogenase (IDH) is an octameric enzyme composed of four heterodimers of regulatory IDH1 and catalytic IDH2 subunits. The crystal structure suggested that the interactions between tetramers in the octamer are restricted to defined regions in IDH1 subunits from each tetramer. Using truncation and mutagenesis, we constructed three tetrameric forms of IDH. Truncation of five residues from the amino terminus of IDH1 did not alter the octameric form of the enzyme, but this truncation with an IDH1 G15D or IDH1 D168K residue substitution produced tetrameric enzymes as assessed by sedimentation velocity ultracentrifugation. The IDH1 G15D substitution in the absence of any truncation of IDH1 was subsequently found to be sufficient for production of a tetrameric enzyme. The tetrameric forms of IDH exhibited ~50% reductions in V(max) and in cooperativity with respect to isocitrate relative to those of the wild-type enzyme, but they retained the property of allosteric activation by AMP. The truncated (-5)IDH1/IDH2 and tetrameric enzymes were much more sensitive than the wild-type enzyme to inhibition by the oxidant diamide and concomitant formation of a disulfide bond between IDH2 Cys-150 residues. Binding of ligands reduced the sensitivity of the wild-type enzyme to diamide but had no effect on inhibition of the truncated or tetrameric enzymes. These results suggest that the octameric structure of IDH has in part evolved for regulation of disulfide bond formation and activity by ensuring the proximity of the amino terminus of an IDH1 subunit of one tetramer to the IDH2 Cys-150 residues in the other tetramer.  相似文献   

13.
The alpha-amino-3-hydroxyl-5-methyl-4-isoxazolepropionic acid (AMPA) subtype of ionotropic glutamate receptors (iGluRs) mediates fast excitatory neurotransmission in the mammalian brain. Although the most N-terminal leucine/isoleucine/valine-binding protein (LIVBP) domain is suggested to play a role in the initial assembly of iGluR subunits, it is unclear how this domain is arranged and functions in intact iGluRs. Similarly, although recent crystallographic analyses indicate that the isolated ligand-binding lysine/arginine/ornithine-binding protein domain forms a 2-fold symmetric dimer, the subunit stoichiometry of intact iGluRs remains elusive. Here, we developed a new approach to address these issues. The LIVBP domain of the GluR1 subunit of AMPA receptors was replaced by leucine-zipper peptides designed to form stable symmetric dimers, trimers, tetramers, or pentamers. All these mutant GluR1s were expressed in human embryonic kidney 293 cells and were transported to the cell surface as well as wild type GluR1. Functional and biochemical analyses indicated that these oligomerizing peptides specifically controlled the formation of the expected number of subunits in a channel complex. However, the channel function was only restored by the tetramer-forming peptide. Although the purified LIVBP domain of GluR1 formed a dimmer in solution, a dimer-forming peptide could not restore the function of GluR1. Moreover, a cross-linking assay indicated that four LIVBP domains are located in proximity to each other. These results suggest that the function of the LIVBP domain is not simply to form initial dimers but to adopt a conformation compatible with the overall tetrameric arrangement of subunits in intact AMPA receptors.  相似文献   

14.
The vacuolar (H+)-ATPase (or V-ATPase) is an ATP-dependent proton pump which couples the energy released upon ATP hydrolysis to rotational movement of a ring of proteolipid subunits (c, c', and c') relative to the integral subunit a. The proteolipid subunits each contain a single buried acidic residue that is essential for proton transport, with this residue located in TM4 of subunits c and c' and TM2 of subunit c'. Subunit c' contains an additional buried acidic residue in TM4 that is not required for proton transport. The buried acidic residues of the proteolipid subunits are believed to interact with an essential arginine residue (Arg735) in TM7 of subunit a during proton translocation. We have previously shown that the helical face of TM7 of subunit a containing Arg735 interacts with the helical face of TM4 of subunit c' bordered by Glu145 and Leu147 (Kawasaki-Nishi et al. (2003) J. Biol. Chem. 278, 41908-41913). We have now analyzed interaction of subunits a and c' using disulfide-mediated cross-linking. The results indicate that the helical face of TM7 of subunit a containing Arg735 interacts with the helical face of TM2 of subunit c' centered on Ile105, with the essential glutamic acid residue (Glu108) located near the opposite border of this face compared with TM4 of subunit c'. By contrast, TM4 of subunit c' does not form strong cross-links with TM7 of subunit a, suggesting that these transmembrane segments are not normally in close proximity. These results are discussed in terms of a model involving rotation of interacting helices in subunit a and the proteolipid subunits relative to each other.  相似文献   

15.
Quinlan RJ  Reinhart GD 《Biochemistry》2006,45(38):11333-11341
Differences between the crystal structures of inhibitor-bound and uninhibited forms of phosphofructokinase (PFK) from B. stearothermophilus have led to a structural model for allosteric inhibition by phosphoenolpyruvate (PEP) wherein a dimer-dimer interface within the tetrameric enzyme undergoes a quaternary shift. We have developed a labeling and hybridization technique to generate a tetramer with subunits simultaneously containing two different extrinsic fluorophores in known subunit orientations. This construct has been utilized in the examination of the effects of allosteric ligand and substrate binding on the subunit affinities of tetrameric PFK using several biophysical and spectroscopic techniques including 2-photon, dual-channel fluorescence correlation spectroscopy (FCS). We demonstrate that PEP-binding at the allosteric site is sufficient to reduce the affinity of the active site interface from beyond the limits of experimental detection to nanomolar affinity, while conversely strengthening the interface at which it is bound. The reduced interface affinity is specific to inhibitor binding because binding the activator ADP at the same allosteric site causes no reduction in subunit affinity. With inhibitor bound, the weakened subunit affinity has allowed the kinetics of dimer association to be elucidated.  相似文献   

16.
Cytoplasmic serine hydroxymethyltransferase (cSHMT) is a tetrameric, pyridoxal phosphate (PLP)-dependent enzyme that catalyzes the reversible interconversion of serine and tetrahydrofolate to glycine and methylenetetrahydrofolate. The enzyme has four active sites and is best described as a dimer of obligate dimers. Each monomeric subunit within the obligate dimer contributes catalytically important amino acid residues to both active sites. To investigate the interchange of subunits among cSHMT tetramers, a dominant-negative human cSHMT enzyme (DNcSHMT) was engineered by making three amino acid substitutions: K257Q, Y82A, and Y83F. Purified recombinant DNcSHMT protein was catalytically inactive and did not bind 5-formyltetrahydrofolate. Coexpression of the cSHMT and DNcSHMT proteins in bacteria resulted in the formation of heterotetramers with a cSHMT/DNcSHMT subunit ratio of 1. Characterization of the cSHMT/DNcSHMT heterotetramers indicates that DNcSHMT and cSHMT monomers randomly associate to form tetramers and that cSHMT/DNcSHMT obligate dimers are catalytically inactive. Incubation of recombinant cSHMT protein with recombinant DNcSHMT protein did not result in the formation of hetero-oligomers, indicating that cSHMT subunits do not exchange once the tetramer is assembled. However, removal of the active site PLP cofactor does permit exchange of obligate dimers among preformed cSHMT and DNcSHMT tetramers, and the formation of heterotetramers from cSHMT and DNcSHMT homodimers does not affect the activity of the cSHMT homodimers. The results of these studies demonstrate that PLP inhibits dimer exchange among cSHMT tetramers and suggests that cellular PLP concentrations may influence the stability of cSHMT protein in vivo.  相似文献   

17.
The thermostability of glucose oxidase (beta-D-glucose: oxygen 1-oxidoreductase, EC 1.1.3.4) at 60 degrees C has been studied as a function of its concentration in various media (pure water and pure deuterium oxide). In deuterium oxide, glucose oxidase is more stable than in water, and two kinds of stabilizing effect have been observed: the medium-organization effect and the enzyme-concentration effect. This effect has been related to the glucose oxidase subunit structure. This enzyme contains four forms of subunit: monomer, dimer, trimer, and tetramer, which are all composed of the identical monomer. The monomers of glucose oxidase subunits are linked by the non-covalent bond. Only dimer and trimer possess the enzymatic activity. During glucose oxidase denaturing, monomers assemble into dimer, trimer, or tetramer. This redistribution behavior depends on the enzyme concentration and the nature of the medium.  相似文献   

18.
Two forms of the gonadotropin alpha subunit are synthesized in placenta and in human chorionic gonadotropin (hCG)-producing tumors: an uncombined (monomer) form and a combined (dimer) form. These forms show differences in their migration on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The slower migration of the monomeric form on sodium dodecyl sulfate-polyacrylamide gel electrophoresis has been attributed to a different glycosylation pattern. Previous studies demonstrated different roles of each of the two alpha N-linked glycosylation sites (Asn-52 and Asn-78) in secretion of the uncombined subunit and the biologic activity of hCG dimer. To assess the influence of formation of dimer on the processing pattern at the individual sites, we characterized the N-linked oligosaccharides of monomer and dimer forms of recombinant human choriogonadotropin alpha subunit. Two approaches were employed. First, site-directed mutagenesis was used to alter the two N-linked oligosaccharide attachment sites, thus allowing the expression of alpha subunits containing only one glycosylation site. Second, tryptic glycopeptides of the wild-type subunits were examined. Concanavalin A (ConA) binding and sialic acid content indicated that the oligosaccharides at each glycosylation site of the uncombined alpha subunit are processed differently. Oligosaccharides present at Asn-52 are almost exclusively ConA-unbound and contain three sialic acid residues. The majority of Asn-78-linked oligosaccharides are ConA-bound and disialylated. Both sites are processed independently because no significant differences were observed between the oligosaccharides at the same sites in wild-type and mutant monomeric alpha subunits. By contrast, the majority of the oligosaccharides at both glycosylation sites of the dimer alpha are bound to ConA. Thus, combination primarily affects the processing pattern of the Asn-52-linked species. Because glycosylation at this site is essential for hCG assembly and signal transduction, these data imply a critical link between the site-specific processing and hormone function.  相似文献   

19.
Pseudomonas cytochrome oxidase (EC 1.9.3.2) is composed of two subunits. Each subunit has a molecular weight of approx. 63000 and, according to the iron determination, contains two hemes. Cytochrome oxidase was subjected to various dissociation procedures to determine the stability of the dimeric structure. Progressive succinylation of 14 to 68% of the lysine residues of the enzyme increases the amount of the protein appearing in the subunit form (S20,W approximately 4 S) from 18 to 92%. At a high degree of succinylation a component with a sedimentation coefficient of approx. 2 S appears. The subunits with sedimentation coefficients of approx. 4 S and 2 S are also formed when the pH is below 4 or above 11. The same molecular weight (63000) was found for these two components in sodium dodecylsulphate electrophoresis. No dissociation of cytochrome oxidase was observed in salt solutions like 3 M NaC1 and 1 M Na2SO4, or in 6 M urea. The slight decrease in the sedimentation coefficients in NaC1 solutions is partly explained by preferential hydratation of the protein.  相似文献   

20.
Guanidinoacetate methyltransferase (GAMT) is the enzyme that catalyzes the last step of creatine biosynthesis. The enzyme is found in abundance in the livers of all vertebrates. Recombinant rat liver GAMT has been crystallized with S-adenosylhomocysteine (SAH), and the crystal structure has been determined at 2.5 A resolution. The 36 amino acid residues at the N terminus were cleaved during the purification and the truncated enzyme was crystallized. The truncated enzyme forms a dimer, and each subunit contains one SAH molecule in the active site. Arg220 of the partner subunit forms a pair of hydrogen bonds with Asp134 at the guanidinoacetate-binding site. On the basis of the crystal structure, site-directed mutagenesis on Asp134, and chemical modification and limited proteolysis studies, we propose a catalytic mechanism of this enzyme. The truncated GAMT dimer structure can be seen as a ternary complex of protein arginine methyltransferase (one subunit) complexed with a protein substrate (the partner subunit) and the product SAH. Therefore, this structure provides insight into the structure and catalysis of protein arginine methyltransferases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号