首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
Chemical modification of the gamma-carboxyglutamyl (Gla) residues of bovine prothrombin fragment 1 using the formaldehyde-morpholine method in the presence of 100 Kappm Tb3+ ions at pH 5.0 provided a modified protein containing 3 gamma-methyleneglutamyl residues (gamma-MGlu) and 7 Gla residues (bovine 3-gamma-MGlu-fragment 1). The modified protein bound the same number of Ca2+ ions as the native protein (six to seven), exhibited 28Mg2+-binding properties identical to native fragment 1 (five Mg2+ ions bound), exhibited the metal ion-promoted quenching of the intrinsic fluorescence in a manner similar to the native protein, but did not bind to phosphatidylserine (PS)/phosphatidylcholine (PC) vesicles in the presence of Ca2+ ions. Modification of the bovine protein using [14C]formaldehyde-morpholine provided a 14C-labeled 3-gamma-MGlu-fragment 1 suitable for sequence analysis. Edman sequencing of the peptides released by a tryptic digest of the reduced and carboxymethylated bovine [14C]3-gamma-MGlu-fragment 1 indicated that Gla residues at positions 7, 8, and 33 had been converted to [14C]gamma-methyleneglutamyl residues. In addition Lys97 was found to contain a 14C label. Similar analysis of the human [14C]3-gamma-MGlu-fragment 1 indicated that Gla residues at positions 7 and 32 were major modification sites and that Gla residues at positions 6 and 14 were partially modified. Lysine 96 was also modified in the human protein. The incorporation of a 14C label at Lys97 in bovine 3-gamma-MGlu-fragment 1 protein is not responsible for the loss of Ca2+-promoted binding to PS/PC vesicles. We suggest that Gla residues 7, 8, and 33 are elements of the first Ca2+-binding site; occupancy of this site establishes the Ca2+-specific conformation which is essential for the Ca2+-promoted interaction of the bovine protein with PS/PC vesicles. These studies also suggest that the loss of Gla residues at positions 7 and 32 prevents the formation of the initial Ca2+-binding site in the human protein.  相似文献   

2.
1,1,4,4-Butanetetracarboxylic acid (BTCA) is evaluated as an analogue for the metal binding site in dipeptides of gamma-carboxyglutamic acid (Gla). Molecular modeling suggests that the four carboxylic acid groups in BTCA can assume a similar conformation to the four gamma-carboxylic acid groups in GlaGla and thus provides the impetus for the synthesis and metal binding determinations. BTCA is synthesized via the tert.-butyl ester and characterized via NMR, mass spectroscopy, and elemental composition. Equilibrium binding constants with protons, Ca(II) and Mg(II) are determined via pH and Ca(II) ion-selective electrode titrations and are found to be similar to those for GlaGla peptides with blocked termini.  相似文献   

3.
The present study investigates the unique contribution of the NH2-terminal 33 residues of prothrombin, the gamma-carboxyglutamic acid (Gla) domain, to the Ca(II) and phospholipid-binding properties of prothrombin. Two Gla domain peptides, 1-42 and 1-45, produced by chymotryptic cleavage of prothrombin fragment 1 (residues 1-156 of the amino terminus of bovine prothrombin) and isolated by anion-exchange chromatography were utilized to characterize the Gla domain of prothrombin. This investigation utilized several experimental approaches to examine the properties of the Gla domain peptides. These studies were somewhat hampered by the metal ion-induced insolubility of the peptides. However, the 1-45 peptide was specifically radioiodinated, which facilitated the study of this peptide at low concentrations. In contrast to prothrombin fragment 1, the intrinsic fluorescence of both 1-42 and 1-45 was not quenched upon the addition of 1 mM Ca(II) or any concentration of Mg(II). Equilibrium dialysis studies revealed that the 1-42 peptide bound three Ca(II) ions noncooperatively, whereas fragment 1 binds seven Ca(II) ions in a positive cooperative manner. Ca(II)-promoted conformational changes are observed by comparison of electrophoretic mobility changes in the presence of increasing Ca(II) concentrations. Prothrombin, fragment 1, and the Gla domain peptides 1-42 and 1-45 exhibited similar electrophoretic mobility behavior in the presence of Ca(II) ions. The radiolabeled 1-45 peptide was found to comigrate with phospholipid vesicles on gel permeation chromatography in the presence of Ca(II). Fragment 1 was shown to inhibit this Ca(II)-dependent phospholipid binding of 1-45, demonstrating that the 1-45 peptide does possess the necessary phospholipid-binding structure. Furthermore, a metal ion-dependent conformational monoclonal antibody, F9.29, was inhibited from binding fragment 1 by the 1-42 peptide.  相似文献   

4.
Circular dichroism spectroscopy was used to investigate the structure of bovine prothrombin fragment 1 (BF1) and related proteins in several environments. The conformational change induced in BF1 by the addition of Mg[II] ions was found to be different from that induced by Ca[II] or Sr[II]. The Ca[II] and Sr[II] conformations appear to differ only slightly from the apo-metal conformation. The conformation of the 1-45 fragment of prothrombin, however, is markedly different than the conformation of the same fragment in the presence of either Ca[II] of Mg[II]; both of the latter structures differ substantially from one another. The presence of phospholipids has almost no effect on the structure of either BF1 or the 1-45 fragment; in the presence of both phospholipids and Ca[II] a structural change is seen for the 1-45 fragment but not BF1 (relative to the protein alone). The addition of phospholipids to the Mg[II]/BF1 structure did not induce a CD-detectable conformational change, while the addition of phospholipids to the Ca[II]/BF1 or Sr[II]/BF1 structures induced a change to a conformation similar in secondary structure composition to the relative apometal structures.  相似文献   

5.
Factor IX is an indispensable protein required in the blood coagulation cascade. It binds to the surface of phospholipid membrane by means of a gamma-carboxyglutamic acid (Gla) domain situated at the N terminus. Recently, we showed that physiological concentrations of Mg2+ ions affect the native conformation of the Gla domain and in doing so augment the biological activity of factor IXa and binding affinity with its binding protein even in the presence of Ca2+ ions. Here we report on the crystal structures of the Mg2+/Ca2+-bound and Ca2+-bound (Mg2+-free) factor IX Gla domain (IXGD1-46) in complex with its binding protein (IX-bp) at 1.55 and 1.80 A resolutions, respectively. Three Mg2+ and five Ca2+ ions were bound in the Mg2+/Ca2+-bound IXGD1-46, and the Mg2+ ions were replaced by Ca2+ ions in Mg2+-free IXGD1-46. Comparison of Mg2+/Ca2+-bound with Ca2+-bound structures of the complexes showed that Mg2+ ion, which formed a bridge between IXGD1-46 and IX-bp, forced IXGD1-46 to rotate 4 degrees relative to IX-bp and hence might be the cause of a more tight interaction between the molecules than in the case of the Mg2+-free structure. The results clearly suggest that Mg2+ ions are required to maintain native conformation and in vivo function of factor IX Gla domain during blood coagulation.  相似文献   

6.
The formaldehyde-morpholine method for the conversion of gamma-carboxyglutamyl (Gla) residues to gamma-methyleneglutamyl (gamma-MGlu) residues has been applied to the modification of bovine prothrombin fragment 1. In the absence of Tb3+ ions or at Tb3+ ion concentrations of 2 Km app and 25 Km app the action of 10,000-fold molar excess of formaldehyde and morpholine, pH 5.0, converts the 10 Gla residues of the protein into 10 gamma-MGlu residues. Modification of the protein using the same conditions but increasing the Tb3+ concentration to 100 Km app provided a homogeneous protein containing 3 gamma-MGlu and 7 Gla residues, bovine 3 gamma-MGlu-fragment 1. The modified protein binds the same number of Ca2+ ions (6-7) as bovine fragment 1. However, the positive cooperatively associated with Ca2+ binding is abolished and the overall affinity for Ca2+ ions is reduced. Fluorescence titrations of 3 gamma-MGlu-fragment 1 using either Ca2+ or Mg2+ ions indicate that the modified protein retains a fluorescence quenching behavior similar to that of the native protein. The modified protein does not bind to phosphatidylserine/phosphatidylcholine vesicles in the presence of Ca2+ ions. Thus the metal ion-induced fluorescence transition exhibited by the bovine protein appears to be a necessary but not sufficient condition for phospholipid binding.  相似文献   

7.
The thermal decarboxylation of N-benzyloxycarbonyl-L-gamma-carboxyglutamic acid alpha-methyl ester [Z)-L-Gla-OMe) has been studied. In the presence of increasing amounts of calcium or magnesium ions, lyophilized powders of (Z)-L-Gla-OMe exhibit a corresponding increase in thermal stability. Both magnesium and calcium form relatively tight, thermally stable complexes with (Z)-L-Gla-OMe at high metal ion concentrations. Differences between Ca(II) and Mg(II) binding are noted at low metal ion concentrations, where (Z)-L-Gla-OMe is in excess. Under these conditions, complex formation with Mg(II) apparently favors a 2:1 Gla-magnesium ion complex in which both Gla residues are unstable to thermal decarboxylation. Calcium ion complexes, however, are found to favor a 3:1 Gla-calcium ion complex in which 1 of the 3 Gla residues is thermally stable.  相似文献   

8.
To further the understanding of the biological importance of metal-binding by avian prion proteins, we have investigated the affinity and selectivity of peptides Hx1 [Ac-HNPGYP-nh] and Hx2 [Ac-NPGYPHNPGYPH-nh] with a range of physiological metals via electrospray ionization mass spectrometry and tyrosine fluorescence emission spectroscopy. Both the hexamer Hx1 and the "dimer" peptide Hx2 bind only one equivalent of Cu(II), although only the latter peptide binds copper with significant affinity (Hx1 K(d)=150+/-35 microM; Hx2 K(d)=1.07+/-0.78 microM, pH 7.0 in 3-(N-morpholino)propanesulfonic acid (MOPS) buffer). Both peptides are selective for Cu(II) over divalent Ca, Co, Mg, Mn, Ni, and Zn. Cyclic voltammetry was used to estimate Cu(II/I) solution potentials at pH 6.8, which were very similar for the two peptides (CuHx1 E degrees'=+350 mV, CuHx2 E degrees'=+320 mV vs. normal hydrogen electrode). These results suggest similar binding modes for the two peptides, and relative stabilization of Cu(I) relative to similar His-Gly-rich peptides in the literature.  相似文献   

9.
The concentration of Ca2+ that produced 50% of the saturable intrinsic fluorescence change (C50) of wild-type (wt) recombinant (r) human protein C (PC) was 0.40 mM. The C50 for Ca2+ increased < 2.5-fold for the following r-PC variants (Gla is gamma-carboxyglutamic acid): [Gla6-->Asp]r-PC, [Gla7-->Asp]r-PC, [Gla14-->Asp]r-PC, [Gla19-->Asp]r-PC, or [Gla25-->Asp]r-PC, and approximately 4-6-fold for [Gla20-->Asp]r-PC and [Gla29-->Asp]r-PC. Much more dramatic increases in the C50 for Ca2+ were observed for [Gla16-->Asp]r-PC (> 75-fold) and [Gla26-->Asp]r-PC (ca. 30-fold). A substantially larger maximum fluorescence change (> 3-fold) as compared to that for wtr-PC, was also found in the case of the Ca2+/[Gla16-->Asp]r-PC complex, suggesting that the final Ca(2+)-induced conformation for this variant is dissimilar to that for wtr-PC and the above mutants. When a mutation was constructed at Arg15 ([Arg15-->Leu]r-PC), a residue conserved in all Gla-containing coagulation proteins, no fluorescence alteration occurred upon addition of Ca2+. The C50 for Ca2+ for promotion of the binding of the Ca(2+)-dependent, Gla-domain-directed, conformational monoclonal antibodies, JTC-1 and JTC-3, to wtr-PC was 3.0 and 4.0 mM, respectively. A similar C50 value was found for [Gla25-->Asp]r-PC. In the case of each antibody, approximately 4-6-fold higher C50 values for Ca2+ were found for the mutants; [Gla14-->Asp]r-PC, [Gla19-->Asp]r-PC, and [Gla29-->Asp]r-PC. Ca2+ did not promote binding of either of these antibodies to the following variants; [Gla6-->Asp]r-PC, [Gla7-->Asp] r-PC, [Arg15-->Leu]r-PC, [Gla16-->Asp]r-PC, [Gla20-->Asp]r-PC, and [Gla26-->Asp]r-PC. The results of this study suggest that adoption of the Ca(2+)-dependent conformation of PC is greatly dependent upon the presence of specific essential Gla residues, particularly those, namely Gla16 and Gla26, shown in the crystal structure of the prothrombin Gla domain/Ca2+ complex to be involved with coordination of Ca2+ ions not exposed to the surface. Of similar importance is Arg15. On the other hand, Gla residues at positions 14 and 19 are much less important in directing this same conformation. This finding is readily reconciled with the above crystal structure, which shows that these latter 2 residues are mainly responsible for coordination of a surface-exposed Ca2+ that is present at the end of the Ca(2+)-ion channel.  相似文献   

10.
The electron spin resonance (ESR) technique was used to evaluate binding constants for Ca(II) and Mg(II) in interaction with low density lipoprotein (LDL). The Ca(II) or Mg(II) ions competed with the paramagnetic Mn(II) ions for the same binding sites of two different classes on the LDL surface. For each ion competing with Mn(II), the solutions of eight non-linear competition equations were fit to the experimental titration curves, with two adjustable parameters, the two binding constants. The derived "intrinsic" values (the values corrected for the electrolyte-induced change of the surface potential) for "strong" binding sites for Ca(II) (170 +/- 85 M-1) and Mg(II) (60 +/- 30 M-1) differ significantly from the respective value for Mn(II) (760 M-1). The values for the "weak" binding sites (18 M-1, 15 M-1 and 10 M-1 for Mn(II), Ca(II) and Mg(II), respectively are in the range of the binding constants for these ions in interaction with model membranes.  相似文献   

11.
Sepia eumelanin is associated with many metal ions, yet little is known about its metal binding capacity and the chemical nature of the binding site(s). Herein, the natural concentrations of metal ions are presented and the ability to remove metals by exposure of the melanin granules to EDTA is quantified. The results reveal that the binding constants of melanin at pH 5.8 for Mg(II), Ca(II), Sr(II) and Cu(II) are, respectively, 5, 4, 14 and 34 times greater than the corresponding binding constants of these ions with EDTA. By exposing Sepia eumelanin to aqueous solutions of FeCl(3), the content of bound Fe(III) can be increased from a natural concentration of approximately 180 ppm to a saturation limit of approximately 80 000 ppm or 1.43 mmol/g of melanin. Similar saturation limits are found for Mg(II) and Ca(II). Exposure of Sepia melanin granules to aqueous solutions containing Ca(II) results in the stoichiometric replacement of the initially bound Mg(II), arguing that these two ions occupy the same binding site(s) in the pigment. The pH-dependent binding of Mg(II) and Ca(II) suggests coordination of these ions to carboxylic acid groups in the pigment. Mg(II) and Ca(II) can be added to a Fe(III)-saturated melanin sample without affecting the amount of Fe(III) pre-adsorbed, clearly establishing Fe(III) and Mg(II)/Ca(II) occupy different binding sites. Taking recent Raman spectroscopic data into account, the binding of Fe(III) is concluded to involve coordination to o-dihydroxyl groups. The effects of metal ion content on the surface morphology were analyzed. No significant changes were found over the full range of Fe(III) concentration studied, which is supported by the Brunauer-Emmett-Teller surface area analysis. These observations imply the existence of channels within the melanin granules that can serve to transport metal ions.  相似文献   

12.
Blood coagulation factor IX is composed of discrete domains with an NH2-terminal vitamin K-dependent gamma-carboxyglutamic acid (Gla)-containing region, followed by two domains that are homologous with the epidermal growth factor (EGF) precursor and a COOH-terminal serine protease part. Calcium ions bind to the Gla-containing region and to the NH2-terminal EGF-like domain. To be able to determine the structure and function of the Gla- and EGF-like domains, we have devised a method for cleaving factor IX under controlled conditions and isolating the intact domains in high yield, either separately or linked together. The Ca2+ and Mg2+ binding properties of these fragments were examined by monitoring the metal ion-induced changes in intrinsic protein fluorescence. A fragment, consisting of the Gla region linked to the two EGF-like domains, bound Ca2+ in a manner that was indistinguishable from that of the intact molecule, indicating a native conformation. The Ca2+ affinity of the isolated Gla region was lower, suggesting that the EGF-like domains function as a scaffold for the folding of the Gla region. The Gla-independent high affinity metal ion binding site in the NH2-terminal EGF-like domain was shown to bind Ca2+ but not Mg2+. A comparison with similar studies of factor X (Persson, E., Bj?rk, I., and Stenflo, J. (1991) J. Biol. Chem. 266, 2444-2452) suggests that the Ca2(+)-induced fluorescence quenching is due to an altered environment primarily around the tryptophan residue in position 42.  相似文献   

13.
Equilibrium dialysis results are presented for Ca(II) and Mg(II) ion binding to human and bovine prothrombin and fragment 1. Ca(II) ions bind cooperatively, Mg(II) does not.  相似文献   

14.
Coagulation factor X is a multidomain proenzyme of a serine protease. Calcium ions bind to the vitamin K-dependent gamma-carboxyglutamic acid (Gla) residues and to a site in the NH2-terminal of two epidermal growth factor (EGF)-like domains. To study structure-function relationships in the NH2-terminal part of factor X and to determine the structure of isolated domains, we have developed methods that allow the subsequent isolation of the first or both EGF-like domains with or without an attached Gla domain from controlled proteolytic digests of the protein. The Ca2(+)-induced changes of the intrinsic protein fluorescence were measured to elucidate whether the isolated fragments retain their native conformation. Changes in the fluorescence caused by Ca2+ binding were found to result from perturbations of the environment of the Trp residue in position 41. Calcium ion binding to the Gla-containing region linked to the NH2-terminal EGF-like domain was identical with that to intact factor X, indicating a native orientation of the ligand binding groups in the fragment. In contrast, the isolated Gla peptide had a lower affinity for Ca2+, suggesting that the NH2-terminal EGF-like domain serves as a scaffold for the folding of the Gla region. Similarly, the presence of the Gla region was found to increase the affinity of the Gla-independent site in the first EGF-like domain for Ca2+. The metal ion-induced resistance against chymotryptic cleavage COOH-terminal of Tyr-44 in intact factor X is similar in the isolated fragment that contains the Gla region linked to one EGF-like domain, indicating a native conformation of the fragment in the presence of Ca2+. Furthermore, the Gla-independent metal ion binding site binds Ca2+ but does not appear to bind Mg2+.  相似文献   

15.
Sepia eumelanin is associated with many metal ions, yet little is known about its metal binding capacity and the chemical nature of the binding site(s). Herein, the natural concentrations of metal ions are presented and the ability to remove metals by exposure of the melanin granules to EDTA is quantified. The results reveal that the binding constants of melanin at pH 5.8 for Mg(II), Ca(II), Sr(II) and Cu(II) are, respectively, 5, 4, 14 and 34 times greater than the corresponding binding constants of these ions with EDTA. By exposing Sepia eumelanin to aqueous solutions of FeCl3, the content of bound Fe(III) can be increased from a natural concentration of ~180 ppm to a saturation limit of ~80 000 ppm or 1.43 mmol/g of melanin. Similar saturation limits are found for Mg(II) and Ca(II). Exposure of Sepia melanin granules to aqueous solutions containing Ca(II) results in the stoichiometric replacement of the initially bound Mg(II), arguing that these two ions occupy the same binding site(s) in the pigment. The pH‐dependent binding of Mg(II) and Ca(II) suggests coordination of these ions to carboxylic acid groups in the pigment. Mg(II) and Ca(II) can be added to a Fe(III)‐saturated melanin sample without affecting the amount of Fe(III) pre‐adsorbed, clearly establishing Fe(III) and Mg(II)/Ca(II) occupy different binding sites. Taking recent Raman spectroscopic data into account, the binding of Fe(III) is concluded to involve coordination to o‐dihydroxyl groups. The effects of metal ion content on the surface morphology were analyzed. No significant changes were found over the full range of Fe(III) concentration studied, which is supported by the Brunauer–Emmett–Teller surface area analysis. These observations imply the existence of channels within the melanin granules that can serve to transport metal ions.  相似文献   

16.
Specific binding sites of high affinity and low capacity for 125I-angiotensin II have been identified in a membrane fraction derived from arterial arcades of the rat mesentery. Heterogeneity of binding sites and extensive tracer degradation necessitated the use of nonlinear regression methods for the analysis of radioligand binding data. Forward and reverse rate constants for the high affinity sites obtained by three experimental approaches were in good agreement and gave a dissociation equilibrium constant (Kd) of 19-74 pM (95% confidence interval). Affinities for a number of angiotensin-related peptides calculated from competitive binding curves were in the order 125I-angiotensin II = angiotensin II greater than angiotensin III greater than [Sar1,Ile8]angiotensin II greater than [Sar1,Gly8]angiotensin II. Angiotensin I and biochemically unrelated peptides had virtually no effect on binding of tracer angiotensin II. The divalent cations Mn2+, Mg2+ and Ca2+ stimulated 125I-angiotensin II binding at concentrations of 2-10 mM, as did Na+ at 50-100 mM. In the presence of Na+ or Li+, K+ had a biphasic effect. The chelating agents EDTA and EGTA were inhibitory, as were the thiol reagents dithiothreitol and cysteine. This study defined angiotensin II binding sites in a vascular target tissue of sufficiently high affinity to interact rapidly with plasma angiotensin II at physiological concentrations.  相似文献   

17.
The high-affinity cannabinoid site in rat brain is an integral component of brain membranes that recognizes cannabinoids with inhibitory constants (Ki) in the nanomolar range. To clarify its physiological role, we studied the regulation of [3H]5'-trimethylammonium delta 8-tetrahydrocannabinol ([3H]TMA) binding. The site is inhibited by heavy metal ions, such as La3+, at low micromolar concentrations; divalent cations, such as Ca2+ and Mg2+, inhibit [3H]TMA binding, though at somewhat higher concentrations. In contrast, [3H]TMA binding is stimulated by Fe2+, Cu2+, and Hg2+ ions. Ascorbic acid and its analogs are also stimulators of cannabinoid binding at low micromolar concentrations. Stimulation of [3H]TMA binding by ascorbate or ions is dependent upon molecular oxygen, but is not inhibited by metabolic poisons. Metabolically stable nucleoside triphosphate analogs enhance [3H]TMA binding by different mechanisms, with hydrolysis of a high-energy phosphate bond apparently requisite for these influences. These results suggest that the cannabinoid binding site is associated with a nucleotide-utilizing protein possessing multiple regulatory subsites.  相似文献   

18.
Conantokin-G (con-G) and conantokin-T (con-T) are naturally occurring gamma-carboxyglutamate (Gla)-containing peptides that interact with multivalent cations in functionally relevant manners. Selective 13C-enrichment of Cgamma and Cdelta in each of the Gla residues has allowed metal binding affinities to be measured at individual side chains. Con-T possesses two metal binding sites, one with high affinity at Gla10/Gla14 and another with weak binding at Gla3/Gla4. Con-G contains two sites of comparable low affinity for Ca2+. Analysis of the 13C line-widths of con-G in the presence of Mg2+ allowed the order of metal binding to be determined, with Gla10/Gla14 loading before the Gla3/Gla4/Gla7 cluster. While the variant peptide, apo-con-T[Lys7Gla], was shown to have a very low alpha-helical content, this peptide binds a second metal with much greater affinity than wild-type con-T. This provides additional evidence that Gla7 in con-G is primarily responsible for destabilizing the apo-form, but is an important ligand for metal chelation. The residue-specific alpha-helical stabilities of con-G and con-T in their metal-free and metal-loaded states were estimated by determining rates of proton exchange from backbone peptide bond amides with deuterium atoms from 2H20-containing solvents. For both peptides, the lifetimes of protons on several peptide bond amides increased as metals of higher affinity were bound to the peptides, with the longest half-lives found in the region of the alpha-helical turn stabilized by the Gla10/Gla14 metal coordination site. We propose that Gla10 and Gla14 constitute the primary tight metal ion binding site in both peptides. This detailed analysis with physiologically relevant metal cations is crucial for deciphering the roles of critical amino acids in the bioactivity of the conantokin peptides.  相似文献   

19.
Factor VIIa (FVIIa) consists of a gamma-carboxyglutamic acid (Gla) domain, two epidermal growth factor-like domains, and a protease domain. FVIIa binds seven Ca(2+) ions in the Gla, one in the EGF1, and one in the protease domain. However, blood contains both Ca(2+) and Mg(2+), and the Ca(2+) sites in FVIIa that could be specifically occupied by Mg(2+) are unknown. Furthermore, FVIIa contains a Na(+) and two Zn(2+) sites, but ligands for these cations are undefined. We obtained p-aminobenzamidine-VIIa/soluble tissue factor (sTF) crystals under conditions containing Ca(2+), Mg(2+), Na(+), and Zn(2+). The crystal diffracted to 1.8A resolution, and the final structure has an R-factor of 19.8%. In this structure, the Gla domain has four Ca(2+) and three bound Mg(2+). The EGF1 domain contains one Ca(2+) site, and the protease domain contains one Ca(2+), one Na(+), and two Zn(2+) sites. (45)Ca(2+) binding in the presence/absence of Mg(2+) to FVIIa, Gla-domainless FVIIa, and prothrombin fragment 1 supports the crystal data. Furthermore, unlike in other serine proteases, the amide N of Gly(193) in FVIIa points away from the oxyanion hole in this structure. Importantly, the oxyanion hole is also absent in the benzamidine-FVIIa/sTF structure at 1.87A resolution. However, soaking benzamidine-FVIIa/sTF crystals with d-Phe-Pro-Arg-chloromethyl ketone results in benzamidine displacement, d-Phe-Pro-Arg incorporation, and oxyanion hole formation by a flip of the 192-193 peptide bond in FVIIa. Thus, it is the substrate and not the TF binding that induces oxyanion hole formation and functional active site geometry in FVIIa. Absence of oxyanion hole is unusual and has biologic implications for FVIIa macromolecular substrate specificity and catalysis.  相似文献   

20.
Measurements of binding equilibria of EcoRV endonuclease to DNA, for a series of base-analogue substrates, demonstrate that expression of sequence selectivity is strongly enhanced by the presence of Ca2+ ions. Binding constants were determined for short duplex oligodeoxynucleotides containing the cognate DNA site, three cleavable noncognate sites, and a fully nonspecific site. At pH 7.5 and 100 mM NaCl, the full range of specificity from the specific (tightest binding) to nonspecific (weakest binding) sites is 0.9 kcal/mol in the absence of metal ions and 5.8 kcal/mol in the presence of Ca2+. Precise determination of binding affinities in the presence of the active Mg2+ cofactor was found to be possible for substrates retaining up to 1.6% of wild-type activity, as determined by the rate of phosphoryl transfer. These measurements show that Ca2+ is a near-perfect analogue for Mg2+ in binding reactions of the wild-type enzyme with DNA base-analogue substrates, as it provides identical DeltaDeltaG degrees bind values among the cleavable noncognate sites. Equilibrium dissociation constants of wild-type and base-analogue sites were also measured for the weakly active EcoRV mutant K38A, in the presence of either Mg2+ or Ca2+. In this case, Ca2+ allows expression of a greater degree of specificity than does Mg2+. DeltaDeltaG degrees bind values of K38A toward specific versus nonspecific sites are 6.1 kcal/mol with Ca2+ and 3.9 kcal/mol with Mg2+, perhaps reflecting metal-specific conformational changes in the ground-state ternary complexes. The enhancement of binding specificity provided by divalent metal ions is likely to be general to many restriction endonucleases and other metal-dependent nucleic acid-modifying enzymes. These results strongly suggest that measurements of DNA binding affinities for EcoRV, and likely for many other restriction endonucleases, should be performed in the presence of divalent metal ions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号