首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Aegilops umbellulata Zhuk. carries genes at Glu-U1 loci that code for a pair of high-molecular-weight glutenin subunits not found in common wheat, Triticum aestivum. Wheat-Ae. umbellulata recombinant lines were produced with the aim of transferring genes coding for glutenin subunits from Ae. umbellulata into wheat with minimal flanking material. We used fluorescent genomic in situ hybridization to evaluate the extent of recombination and to map physically the translocation breakpoints on 11 wheat-Ae. umbellulata recombinant lines. In situ hybridization was able to identify alien material in wheat and showed breakpoints not only near the centromeres but also along chromosome arms. To characterize and identify chromosomes further, including deletions along the 1U chromosome, we used simultaneous multiple target in situ hybridization to localize a tandemly repeated DNA sequence (pSc119.2) and the 18S–25S and 5S rRNA genes. One line contained an Ae. umbellulata telocentric chromosome and another two had different terminal deletions, mostly with some wheat chromosome rearrangements. Although from six independent original crosses, the other eight lines included only two types of intercalary wheat-Ae. umbellulata recombination events. Five occurred at the 5S rRNA genes on the short arm of the Ae. umbellulata chromosome with a distal wheat-origin segment, and three breakpoints were proximal to the centromere in the long arm, so most of the long arm was of Ae. umbellulata origin. The results allow characterization of recombination events in the context of the karyotype. They also facilitate the design of crossing programmes to generate lines where smaller Ae. umbellulata chromosome segments are transferred to wheat with the potential to improve bread-making quality by incorporating novel glutenin subunits without undesirable linked genes.  相似文献   

2.
Wheat scab (Fusarium Head Blight, FHB) is a destructive disease in the warm and humid wheat-growing areas of the world. Finding diverse sources of FHB resistance is critical for genetic diversity of resistance for wheat breeding programs. Leymus racemosus is a wild perennial relative of wheat and is highly resistant to FHB. Three wheat- L. racemosus disomic addition (DA) lines DA5Lr#1, DA7Lr#1 and DALr.7 resistant to FHB were used to develop wheat- L.racemosus translocation lines through irradiation and gametocidal gene-induced chromosome breakage. A total of nine wheat-alien translocation lines with wheat scab resistance were identified by chromosome C-banding, GISH, telosomic pairing and RFLP analyses. In line NAU614, the long arm of 5Lr#1 was translocated to wheat chromosome 6B. Four lines, NAU601, NAU615, NAU617, and NAU635, had a part of the short arm of 7Lr#1 transferred to different wheat chromosomes. Four other lines, NAU611, NAU634, NAU633, and NAU618, contained translocations involving Leymus chromosome Lr.7 and different wheat chromosomes. The resistance level of the translocation lines with a single alien chromosome segment was higher than the susceptible wheat parent Chinese Spring but lower than the alien resistant parent L. racemosus. At least three resistance genes in L. racemosus were identified. One was located on chromosome Lr.7, and two could be assigned to the long arm of 5Lr#1 and the short arm of 7Lr#1.  相似文献   

3.
Aegilops speltoides Tausch (2n = 2x = 14, SS) is considered as the closest living relative of the B and G genomes of polyploid wheats. A complete set of Triticum aestivum L. cv Chinese Spring-Ae. speltoides whole chromosomes and seven telosomic addition lines was established. A low pairing accession was selected for the isolation of the chromosome addition lines. Except for chromosomes 3S and 6S, which are presently only available as monosomic additions, all other lines were recovered as disomic or ditelosomic additions. The individual Ae. speltoides chromosomes isolated in the wheat background were assayed for their genetic effects on plant phenotype and cytologically characterized in terms of chromosome length, arm ratio, distribution of marker C-bands, and FISH sites using a Ae. speltoides-specific repetitive element, Gc1R-1, as a probe. The homoeology of the added Ae. speltoides chromosomes was established by using a standard set of RFLP probes. No chromosomal rearrangements relative to wheat were detected. Received: 28 June 1999 / Accepted: 16 November 1999  相似文献   

4.
Leaf rust and stripe rust are important foliar diseases of wheat worldwide. Leaf rust and stripe rust resistant introgression lines were developed by induced homoeologous chromosome pairing between wheat chromosome 5D and 5Mg of Aegilops geniculata (UgMg). Characterization of rust resistant BC2F5 and BC3F6 homozygous progenies using genomic in situ hybridization with Aegilops comosa (M) DNA as probe identified three different types of introgressions; two cytologically visible and one invisible (termed cryptic alien introgression). All three types of introgression lines showed similar and complete resistance to the most prevalent pathotypes of leaf rust and stripe rust in Kansas (USA) and Punjab (India). Diagnostic polymorphisms between the alien segment and recipient parent were identified using physically mapped RFLP probes. Molecular mapping revealed that cryptic alien introgression conferring resistance to leaf rust and stripe rust comprised less than 5% of the 5DS arm and was designated T5DL·5DS-5MgS(0.95). Genetic mapping with an F2 population of Wichita × T5DL·5DS-5MgS(0.95) demonstrated the monogenic and dominant inheritance of resistance to both diseases. Two diagnostic RFLP markers, previously mapped on chromosome arm 5DS, co-segregated with the rust resistance in the F2 population. The unique map location of the resistant introgression on chromosome T5DL·5DS-5MgS(0.95) suggested that the leaf rust and stripe rust resistance genes were new and were designated Lr57 and Yr40. This is the first documentation of a successful transfer and characterization of cryptic alien introgression from Ae. geniculata conferring resistance to both leaf rust and stripe rust in wheat.  相似文献   

5.
A total of 137 loci were mapped in Aegilops speltoides, the closest extant relative of the wheat B genome, using two F2 mapping populations and a set of wheat-Ae. speltoides disomic addition (DA) lines. Comparisons of Ae. speltoides genetic maps with those of Triticum monococcum indicated that Ae. speltoides conserved the gross chromosome structure observed across the tribe Triticeae. A putative inversion involving the short arm of chromosome 2 was detected in Ae. speltoides. A translocation between chromosomes 2 and 6, present in the wheat B genome, was absent. The ligustica/aucheri spike dimorphism behaved as allelic variation at a single locus, which was mapped in the centromeric region of chromosome 3. The genetic length of each chromosome arm was about 50 cM, irrespective of its physical length. Compared to T. monococcum genetic maps, recombination was virtually eliminated from the proximal 50–100 cM and was localized in short distal regions, which were often expanded compared to the T. monococcum maps. The wheat B genome and the genome of Ae. longissima, a close relative of Ae. speltoides, do not show the extreme localization of crossovers observed in Ae. speltoides.  相似文献   

6.
Alien chromosome addition lines are useful genetic material for studying the effect of an individual chromosome in the same genetic background. However, addition lines are sometimes unstable and tend to lose the alien chromosome in subsequent generations. In this study, we report preferential removal of chromosome 1D rather than the alien chromosome from homoeologous group-1 addition lines. The Agropyron intermedium chromosome 1Agi (1E) addition line, created in the background of 'Vilmorin 27', showed loss of a part of chromosome 1D, thereby losing its HMW glutenin locus. Even in the case of Aegilops longissima and Ae. peregrina, the genomes of which are closer to the B genome than D genome, chromosome 1D was lost from chromosome 1Sl and 1Sv addition lines in cv. 'Chinese Spring' rather than chromosome 1B during transfer from one generation to another. A similar observation was also observed in the case of a chromosome 1E disomic addition line of Ag. elongatum and alloplasmic common wheat line with Ag. intermedium ssp. trichophorum cytoplasm. The reason for this strange observation is thought to lie in the history of wheat evolution, the size of chromosome 1D compared to 1A and 1B, or differing pollen competition abilities.  相似文献   

7.
Summary The introgression of genetic material from alien species into wheat has become an important tool in modern wheat breeding. Ideally, only the trait of interest and no flanking material should be transferred. Random recombination between the genetic material is therefore of paramount importance. In a model system, we examined 17 recombinants putatively between chromosome 1D of wheat and 1R of rye with 60 random RFLP and three PCR markers. The recombinants had been generated by removing the normal effect of the Ph1 gene in the wheat background. Amongst the nine short-arm recombinants, three breakpoints were identified but no differentiation could be made between the five proximal recombinants. For the eight long-arm recombinants analysed only two breakpoints were identified with 36 markers. However, only a single RFLP marker was able to differentiate between the recombinants. Indeed the long-arm results are consistent with the possibility that only the rye telomeric region had been transferred. These results indicate either a strong clustering of the RFLP markers near the centromere or else imply that recombination induced between wheat and rye in the absence of the normal effect of the Ph1 gene occurs at only restricted sites. The results allow new primary recombinants to be selected for intercrossing to generate secondary recombinants which are expected to have a smaller interstitial rye segment than that present in DR-A1.  相似文献   

8.
A monosomic addition line of Aegilops tauschii chromosome 1D in Triticum durum cv. PBW114 was produced in 1990. This line was self-pollinated and maintained for several generations while following the presence of chromosome 1D carrying the gene for red glume color. Cytological analysis indicated that two of the three derivative lines had substitution of chromosome 1D for 1A and another had substitution of chromosome 1D for 1B. One of these lines carried a pair of small chromosomes in addition to the 1D chromosome. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) of the derived lines showed the presence of high-molecular-weight (HMW) glutenin encoded by the Glu-D1 locus. The small chromosome found in one of the lines had nearly regular pairing and transmission to daughter nuclei. Fluorescent in situ hybridization (FISH) and analysis of molecular markers indicated that the small chromosome was derived from the short arm of chromosome 1A and carried the Glu-A3 locus. Microsatellite mapping based on the deletion bin map revealed that the small chromosome had terminal deletions on both the terminal and centromeric sides. The line with the small chromosome showed improvement of the sodium dodecyl sulfate (SDS)-sedimentation value as compared to parent durum. However, the increase in SDS-sedimentation value was more significant in the substitution line of chromosome 1D for 1A without the small chromosome. These facts suggest a negative effect of the Glu-A3 locus on dough strength. The sequence of the Glu-D1 locus from these lines showed that the HMW glutenin subunits were Ae. tauschii specific 2t + T2, which were previously found to be associated with poor rheological properties and bread loaf volume in synthetic hexaploid wheat by other workers. Thus, the significant improvement in the SDS-sedimentation value of the substitution line of 1D for 1A suggests that the absence of the negative effect of chromosome 1A on quality is more important than the presence of Glu-D1 of Ae. tauschii.  相似文献   

9.
Relationships between the chromosomes of Aegilops umbellulata and wheat   总被引:3,自引:0,他引:3  
 A comparative genetic map of Aegilops umbellulata with wheat was constructed using RFLP probes that detect homoeoloci previously mapped in hexaploid bread wheat. All seven Ae. umbellulata chromosomes display one or more rearrangements relative to wheat. These structural changes are consistent with the sub-terminal morphology of chromosomes 2 U, 3 U, 6 U and 7 U. Comparison of the chromosomal locations assigned by mapping and those obtained by hybridization to wheat/Ae. umbellulata single chromosome addition lines verified the composition of the added Ae. umbellulata chromosomes and indicated that no further cytological rearrangements had taken place during the production of the alien-wheat aneuploid lines. Relationships between Ae. umbellulata and wheat chromosomes were confirmed, based on homoeology of the centromeric regions, for 1 U, 2 U, 3 U, 5 U and 7 U. However, homoeology of the centromeric regions of 4 U with wheat group-6 chromosomes and of 6 U with wheat group-4 chromosomes was also confirmed, suggesting that a re-naming of these chromosomes may be pertinent. The consequences of the rearrangements of the Ae. umbellulata genome relative to wheat for gene introgression are discussed. Received: 10 July 1997 / Accepted: 19 September 1997  相似文献   

10.
小麦基因组研究进展   总被引:13,自引:0,他引:13  
张正斌  徐萍 《遗传》2002,24(3):389-394
本文从小麦遗传图谱、物理图谱、比较基因组、基因组测序和EST 5个方面,介绍国内外小麦基因组的研究进展。我们利用W7984×Opata重组近交系的RFLP作图群体,对33个与小麦水分利用效率有关的性状进行了QTL遗传图谱比较分析,结果显明:在第一部分同源群染色体(1A,1B)上的着丝粒周围,分布有控制光合作用和根系特性的基因簇。在第二部分同源染色体上,有控制单株水分利用效率、根冠形态和生长发育的基因簇存在。在第六部分同源染色体上,6A和6B上都分别有由控制根系多个QTL组成的基因簇,6D染色体着丝粒周围有一个大的基因簇,由7个控制叶片和单株水分利用效率的QTL组成,说明第六部分同源染色体在小麦水分利用效率遗传方面起重要作用。 Abstract:Research development of genetic mapping,physics mapping,genome sequencing and expressed sequence tags in wheat have been reviewed in this paper.RFLP genetic linkage map of wheat recombinant inbred lines derived from W7984×Opata,was used to study QTL of 33 traits associated with water use efficiency.Compared with QTL map of 7 group homeologues chromosomes,the results were showed as follows:nearby the centromeric region of 1A and 1B chromosome,the gene cluster of controlling photosynthetic and root traits were located.The gene clusters of controlling water use efficiency per plant,root and plant height and growth rate were located on the 2 group chromosomes.The gene clusters of controlling root traits were located on the 6A an 6B chromosome,there was a big gene cluster mad up by 7 QTLs controlling water use efficiency of wheat leaf and per plant nearby the centromeric region of 6D chromosome.It showed that 6th homeologous chromosomes play an important role in controlling water use efficiency in wheat.  相似文献   

11.
 RFLP, RAPD, STS and DDRT-PCR techniques were applied to find molecular markers linked to Pm13, an Aegilops longissima gene conferring resistance to powdery mildew in wheat. The experimental strategy was based on the differential comparison of DNAs from common wheat and from common wheat/Ae. longissima recombinant lines carrying short segments of the 3S l S chromosome arm containing the Pm13 gene. Sixteen RFLP clones that detect loci previously located in the short arms of group-3 wheat chromosomes were screened for their ability to hybridise to Ae. longissima restriction fragments derived from the 3S l S segments introgressed into the recombinant lines. Eight RFLP clones and one STS marker detected 3S l S-specific fragments whose location relative to the wheat-alien chromatin breakage point of the recombinant lines was determined. Four amplification products were identified through the screening of about 200 RAPD primers. Their polymorphism was associated with the introgression of the alien DNA. One of the differential fragments was derived from the 3S l S DNA segment, while the remaining three corresponded to the replaced 3DS DNA. Further analyses carried out using 40 combinations of DDRT-PCR primers detected an additional reproducible polymorphism associated with the presence of 3S l S DNA. In view of their possible utilisation in Pm13 marker-assisted selection, differentially amplified RAPD and DDRT-PCR fragments were cloned, transformed into RFLP markers and converted into STS markers. Received: 23 March 1998 / Accepted: 5 August 1998  相似文献   

12.
Eleven wheat-Ae. umbellulata recombinant lines involving chromosome 1U, including an important high-molecular-weight glutenin locus, were characterized by protein and RFLP markers. Four 1U-1A recombinants, one 1U-1B recombinant, two 1U deletions with either nullisomy for chromosome 1A or 1B and a 1U ditelosomic addition line were detected, while 3 recombinant lines involved 1U and non-homoeologous wheat chromosomes. Similar recombination events were found in independent lines, and no small segmental translocations of Ae. umbellulata chromatin were detected. Correlation of the markers with physical maps of the wheat-Ae. umbellulata breakpoints obtained using in situ hybridization enabled the marker order to be established on chromosomes 1A, 1B and 1U. The short arm of chromosome 1A probably differs from both 1U and 1B by one inversion. As now being found to be universal in the Triticeae, clustering of the genetical map in the distal physical regions of the group 1 chromosomes was found. Received: 3 June 1996 / Accepted: 14 June 1996  相似文献   

13.
Summary A series of RFLP and isozyme markers were followed in the progenies of two alien addition lines of Brassica campestris-oleracea. One of the lines, carrying the C genome chromosome 4 as the alien chromosome, was surveyed for six markers. Fifty-four percent of the plants carrying alien chromosomes displayed all the expected makers, whereas the rest had one to five markers missing. The second line for C genome chromosome 5 displayed a similar behavior when surveyed for three markers. All three markers were transmitted together in 46% of the plants carrying alien chromosomes, whereas the rest carried only one or two of the markers. The loss of markers was associated with reduced chromosome size caused by deletions. The observed chromosome deficiencies permitted deletion analysis for a rough physical mapping and ordering of the markers on the two C genome chromosomes. The deletions observed may represent another mechanism for molding the chromosomes of the Brassica genomes during their evolution.  相似文献   

14.
Aegilops longissima Schw. et Musch. (2n= 2x=14, SlSl) and Aegilops sharonensis Eig. (2n=2x=14, SlSl) are diploid species belonging to the section Sitopsis in the tribe Triticeae and potential donors of useful genes for wheat breeding. A comparative genetic map was constructed of the Ae. longissima genome, using RFLP probes with known location in wheat. A high degree of conserved colinearity was observed between the wild diploid and basic wheat genome, represented by the D genome of cultivated wheat. Chromosomes 1Sl, 2Sl, 3Sl, 5Sl and 6Sl are colinear with wheat chromosomes 1D, 2D, 3D, 5D and 6D, respectively. The analysis confirmed that chromosomes 4Sl and 7Sl are translocated relative to wheat. The short arms and major part of the long arms are homoeologous to most of wheat chromosomes 4D and 7D respectively, but the region corresponding to the distal segment of 7D was translocated from 7SlL to the distal region of 4SlL. The map and RFLP markers were then used to analyse the genomes and added chromosomes in a set of ’Chinese Spring’ (CS)/Ae. longissima chromosome additions. The study confirmed the availability of disomic CS/Ae. longissima addition lines for chromosomes 1Sl, 2Sl, 3Sl, 4Sl and 5Sl. An as yet unpublished set of Ae. sharonensis chromosome addition lines were also available for analysis. Due to the gametocidal nature of Ae. sharonensis chromosomes 2Sl and 4Sl, additions 1Sl, 3Sl, 5Sl, 6Sl and 7Sl were produced in a (4D)4Sl background, and 2Sl and 4Sl in a euploid wheat background. The analysis also confirmed that the 4/7 translocation found in Ae. longissima was not present in Ae. sharonensis although the two wild relatives of wheat are considered to be closely related. The phenotypes of the Ae. sharonensis addition lines are described in an Appendix. Received: 28 September 2000 / Accepted: 19 January 2001  相似文献   

15.
The physical distribution of translocation breakpoints was analyzed in homoeologous recombinants involving chromosomes 1A, 1B, 1D of wheat and 1R of rye, and the long arms of chromosome 7S of Aegilops speltoides and 7A of wheat. Recombination between homoeologues was induced by removal of the Ph1 gene. In all instances, translocation breakpoints were concentrated in the distal ends of the chromosome arms and were absent in the proximal halves of the arms. The relationship between the relative distance from the centromere and the relative homoeologous recombination frequency was best explained by the function f(x)=0.0091e0.0592x. The pattern of recombination in homoeologous chromosomes was essentially the same as in homologues except that there were practically no double exchanges. Among 313 recombinant chromosomes, only one resulted from a double crossing-over. The distribution of translocation breakpoints in translocated arms indicated that positive chiasma interference operated in homoeologous recombination. This implies that the reduction of the length of alien chromosome segments present in translocations with wheat chromosomes may be more difficult than the production of the original recombinants.  相似文献   

16.
H Ozkan  M Feldman 《Génome》2001,44(6):1000-1006
The Ph1 gene has long been considered the main factor responsible for the diploid-like meiotic behavior of polyploid wheat. This dominant gene, located on the long arm of chromosome 5B (5BL), suppresses pairing of homoeologous chromosomes in polyploid wheat and in their hybrids with related species. Here we report on the discovery of genotypic variation among tetraploid wheats in the control of homoeologous pairing. Compared with the level of homoeologous pairing in hybrids between Aegilops peregrina and the bread wheat cultivar Chinese Spring (CS), significantly higher levels of homoeologous pairing were obtained in hybrids between Ae. peregrina and CS substitution lines in which chromosome 5B of CS was replaced by either 5B of Triticum turgidum ssp. dicoccoides line 09 (TTD09) or 5G of Triticum timopheevii ssp. timopheevii line 01 (TIMO1). Similarly, a higher level of homoeologous pairing was found in the hybrid between Ae. peregrina and a substitution line of CS in which chromosome arm 5BL of line TTD140 substituted for 5BL of CS. It appears that the observed effect on the level of pairing is exerted by chromosome arm 5BL of T turgidum ssp. dicoccoides, most probably by an allele of Ph1. Searching for variation in the control of homoeologous pairing among lines of wild tetraploid wheat, either T turgidum ssp. dicoccoides or T timopheevii ssp. armeniacum, showed that hybrids between Ae. peregrina and lines of these two wild wheats exhibited three different levels of homoeologous pairing: low, low intermediate, and high intermediate. The low-intermediate and high-intermediate genotypes may possess weak alleles of Ph1. The three different T turgidum ssp. dicoccoides pairing genotypes were collected from different geographical regions in Israel, indicating that this trait may have an adaptive value. The availability of allelic variation at the Ph1 locus may facilitate the mapping, tagging, and eventually the isolation of this important gene.  相似文献   

17.
Cytologically based physical maps for the group 3 chromosomes of wheat were constructed by mapping 25 Triticum aestivum deletion lines with 29 T. tauschii and T. aestivum RFLP probes. The deletion lines divide chromosomes 3A, 3B, and 3D into 31 discrete intervals, of which 18 were tagged by marker loci. The comparison of the consensus physical map with a consensus RFLP linkage map of the group 3 chromosomes of wheat revealed a fairly even distribution of marker loci on the long arm, and higher recombination in the distal region.  相似文献   

18.
Genomic in-situ hybridization (GISH) was used to determine the amount of wheat-rye chromosome pairing in wheat (Triticum aestivum) x rye (Secale cereale) hybrids having chromosome 5B present, absent, or replaced by an extra dose of chromosome 5D. The levels of overall chromosome pairing were similar to those reported earlier but the levels of wheat-rye pairing were higher than earlier determinations using C-banding. Significant differences in chromosome pairing were found between the three genotypes studied. Both of the chromosome-5B-deficient hybrid genotypes showed much higher pairing than the euploid wheat hybrid. However, the 5B-deficient hybrid carrying an extra chromosome 5D had significantly less wheat-rye pairing than the simple 5B-deficient genotype, indicating the presence of a suppressing factor on chromosome 5D. Non-homologous/non-homoeologous chromosome pairing was observed in all three hybrid genotypes. The value of GISH for assessing the level of wheat-alien chromosome pairing in wheat/alien hybrids and the effectiveness of wheat genotypes that affect homoeologous chromosome pairing is demonstrated.  相似文献   

19.
Polyploidy has been found to be common in plants. Bread or common wheat (Triticum aestivum L., 2n=42) is a good example of allopolyploid made up of three diploid genomes A, B and D. In recent years, by the study of mimicking the origination of common wheat, it was found that changes of DNA sequence and gene expression occurred at the early stages of artificial allohexaploid between tetraploid wheat and Aegilops tauschii, which was probably favorable to genetic diploidization of new synthetic hexaploid wheat. Common wheat 99L2 is a new line stable in genetic, which was derived from the early self-pollinated generation of wide hybrids between common wheat and rye. In this study, it was found that at least two rye DNA segments had been introgressed into 99L2. This result suggested that a mechanism of alien DNA introgression may exist, which was different from the traditional mechanism of chromosome pairing and DNA recombination between wheat and alien species. Meanwhile, during the introgression process of alien rye DNA segments, the changes in DNA sequences of wheat itself occurred.  相似文献   

20.
The genetic constitutions of chromosome 2M of Aegilops comosa and the derived wheat-Ae. comosa translocations were analyzed by molecular cytogenetic techniques. Hybridization of 15 RFLP markers covering the entire length of the group-2 chromosomes revealed that chromosome 2M was structurally rearranged compared to the homoeologous chromosomes of wheat by either a pericentric inversion or a terminal intrachromosomal translocation. The breakpoint of the rearrangement was located in a region between the loci Xpsr131 and Xcdo405, resulting in the translocation of 47% of 2MS to 2ML. This aberrant structure of 2M allowed homoeologous recombination between 2M and its wheat counterpart only in the translocated segment on 2ML. C-banding and genomic in situ hybridization analyses confirmed that all translocation chromosomes consisted of the complete 2MS arm, a large part of 2ML, and very small distal segments derived from 2AS or 2DS, as expected from the aberrant structure of chromosome 2M. Thus, the translocation in the line 2A-2M?4/2 can be described as T2AS-2M?1L???2M?1S and the translocations in the lines Compair and 2D-2M?3/8 as T2DS-2M?1L???2M?1S. RFLP analysis determined the breakpoints in these translocation chromosomes to be within the telomeric 16% of the wheat chromosome arms. The breakpoint of the 2A/2M translocation was between Xbcd348 and Xcdo783, and that of the 2D/2M translocation was between Xcdo783 and Xpsr666. Because the translocation chromosomes retain the structural aberration found in chromosome 2M, further exploitation of the wheat-Ae. comosa translocations for cultivar improvement is questionable.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号