首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Spatial solute concentration profiles resulting from in vivo microdialysis were measured in rat caudate-putamen by quantitative autoradiography. Radiolabeled sucrose was included in the dialysate, and the tissue concentration profile measured after infusions of 14 min and 61.5 min in an acute preparation. In addition, the changes in sucrose extraction fraction over time were followed in vivo and in a simple in vitro system consisting of 0.5% agarose. These experimental results were then compared with mathematical simulations of microdialysis in vitro and in vivo. Simulations of in vitro microdialysis agreed well with experimental results. In vivo, the autoradiograms of the tissue concentration profiles showed clear evidence of substantial differences between 14 and 61.5 min, even though the change in extraction fraction was relatively small over that period. Comparison with simulated results showed that the model substantially underpredicted the observed extraction fraction and overall amount of sucrose in the tissue. A sensitivity analysis of the various model parameters suggested a tissue extracellular volume fraction of approximately 40% following probe implantation. We conclude that the injury from probe insertion initially causes disruption of the blood-brain barrier in the vicinity of the probe, and this disruption leads to an influx of water and plasma constituents, causing a vasogenic edema.  相似文献   

2.
Steady-state microdialysis is a widely used technique to monitor the concentration changes and distributions of substances in tissues. To obtain more information about brain tissue properties from microdialysis, a dual-probe approach was applied to infuse and sample the radiotracer, [3H]mannitol, simultaneously both in agar gel and in the rat striatum. Because the molecules released by one probe and collected by the other must diffuse through the interstitial space, the concentration profile exhibits dynamic behavior that permits the assessment of the diffusion characteristics in the brain extracellular space and the clearance characteristics. In this paper a mathematical model for dual-probe microdialysis was developed to study brain interstitial diffusion and clearance processes. Theoretical expressions for the spatial distribution of the infused tracer in the brain extracellular space and the temporal concentration at the probe outlet were derived. A fitting program was developed using the simplex algorithm, which finds local minima of the standard deviations between experiments and theory by adjusting the relevant parameters. The theoretical curves accurately fitted the experimental data and generated realistic diffusion parameters, implying that the mathematical model is capable of predicting the interstitial diffusion behavior of [3H]mannitol and that it will be a valuable quantitative tool in dual-probe microdialysis.  相似文献   

3.
Experimental and theoretical microdialysis studies of in situ metabolism   总被引:2,自引:0,他引:2  
Microdialysis sampling was performed to monitor localized metabolism in vivo and in vitro. A mathematical model that accounts for analyte mass transport during microdialysis sampling was used to predict metabolite concentrations in the microdialysis probe during localized metabolism experiments. The model predicts that metabolite concentrations obtained in the microdialysis probe are a function of different experimental parameters including membrane length, perfusion fluid flow rate, and sample diffusive and kinetic properties. Different microdialysis experimental parameters including membrane length and perfusion fluid flow rate were varied to affect substrate extraction efficiency (E(d)), or loss to the sample matrix, in vivo and in vitro. Local hepatic metabolism was studied in vivo in male Sprague-Dawley rats by infusing acetaminophen through the microdialysis probe. Acetaminophen sulfate concentrations increased linearly with respect to acetaminophen E(d) in contrast to modeling predictions. Xanthine oxidase was used as an in vitro model of localized metabolism. In vitro experimental results partially matched modeling predictions for 10-mm probes. These results suggest that monitoring local metabolism using microdialysis sampling is feasible. It is important to consider system parameters such as dialysis flow rate, membrane length, and sample properties because these factors will affect analyte concentrations obtained during local metabolism experiments.  相似文献   

4.
The behavior of a microdialysis probe in vivo is mathematically described. A diffusion-reaction model is developed that not only accounts for transport of substances through tissues and probe membranes but also accounts for transport across the microvasculature and metabolism. Time-dependent equations are presented both for the effluent microdialysate concentration and for concentration profiles about the probe. The analysis applies either to measuring the tissue pharmacokinetics of drugs administered systemically, or for sampling of endogenously produced substances from tissue. In addition, an expression is developed for the transient concentration about the probe when it is used as an infusion device. All mathematical expressions are found to be a sum of an algebraic and an integral term. Theoretical prediction of time-dependent probe behavior in brain has been compared with experimental data for acetaminophen administered at 15 mg/kg to rats by intravenous bolus. Plasma and whole striatal tissue samples were used to describe plasma kinetics and to estimate a capillary permeability-area product of 0.07 min-1. Theoretical prediction of transient effluent dialysate concentrations exhibited close agreement with experimental data over 60 min. Terminal decline of the dialysate effluent concentration was slightly overestimated but theoretical concentrations still lay within the 95% confidence interval of the experimental data at 112 min. Microvasculature transport and metabolism play major roles in determining microdialysate transient responses. Extraction fraction (recovery) has been shown to be a declining function in time for five probe operating conditions. High rates of metabolism and/or capillary transport affect the time required to approach steady-state extraction, shortening the time as the rates increase. Conversely, for substances characterized by low permeabilities and negligible metabolism, experimental situations exist that are predicted to have very slow approaches to microdialysis steady state.  相似文献   

5.
微透析校正的相关问题和方法   总被引:9,自引:0,他引:9  
微透析技术是研究生物动态变化的一种新型的活体生物采样技术,近年来由于实验方法的不断改进,微透析技术已广泛应用于在体的定量研究。在进行生物细胞外液的定量研究中,微透析探针的校正是十分必要的。本从微透析的回收率、影响因素及校正方法等方面简要介绍了微透析校正的相关问题。  相似文献   

6.
Although microdialysis is widely used to sample endogenous and exogenous substances in vivo, interpretation of the results obtained by this technique remains controversial. The goal of the present study was to examine recent criticism of microdialysis in the specific case of dopamine (DA) measurements in the brain extracellular microenvironment. The apparent steady-state basal extracellular concentration and extraction fraction of DA were determined in anesthetized rat striatum by the concentration difference (no-net-flux) microdialysis technique. A rate constant for extracellular clearance of DA calculated from the extraction fraction was smaller than the previously determined estimate by fast-scan cyclic voltammetry for cellular uptake of DA. Because the relatively small size of the voltammetric microsensor produces little tissue damage, the discrepancy between the uptake rate constants may be a consequence of trauma from microdialysis probe implantation. The trauma layer has previously been identified by histology and proposed to distort measurements of extracellular DA levels by the no-net-flux method. To address this issue, an existing quantitative mathematical model for microdialysis was modified to incorporate a traumatized tissue layer interposed between the probe and surrounding normal tissue. The tissue layers are hypothesized to differ in their rates of neurotransmitter release and uptake. A post-implantation traumatized layer with reduced uptake and no release can reconcile the discrepancy between DA uptake measured by microdialysis and voltammetry. The model predicts that this trauma layer would cause the DA extraction fraction obtained from microdialysis in vivo calibration techniques, such as no-net-flux, to differ from the DA relative recovery and lead to an underestimation of the DA extracellular concentration in the surrounding normal tissue.  相似文献   

7.
In this paper, we further develop the general theory of microdialysis by extending the linear model of Bungay et al. to provide a theoretical basis for in vitro and in vivo microdialysis. Specifically, we considered the effect of active clearance processes on in vivo microdialysis, and thereby elaborated the theory of Benveniste et al. to endogenous compounds. We examined the use of steady state tissue diffusion resistance with negligible clearance processes to interpret microdialysis data. The influence of the tissue properties on the in vitro and in vivo recoveries in dual-probe microdialysis was analyzed and we simulated the effect of the operating parameters on dual probe microdialysis performance. We estimated that the minimum clearance rate constant detectable by microdialysis in a quasi-steady state is about 5.5 x 10(-5) s(-1). This minimum rate constant establishes a criterion, below which inhibition of the active clearance processes does not show detectable influences on the microdialysis extraction efficiency.  相似文献   

8.
Pediatric diffuse intrinsic pontine gliomas are aggressive brainstem tumors that fail to respond to treatment. We hypothesize that the protective features of the pons may hinder chemotherapeutic agents from entering pontine tissue compared with cortical brain tissue. To test this hypothesis, we developed a unique nonhuman primate model using microdialysis, a continuous in vivo extracellular sampling technique, to compare drug exposure concurrently in pontine tissue, cortical tissue, CSF, and plasma after intravenous administration of chemotherapeutic agents. The surgical coordinates and approach for microdialysis cannula–probe placement were determined in 5 adult male rhesus monkeys (Macaca mulatta) by using MRI. Microdialysis cannulas–probes were implanted stereotactically in the brain, retrodialysis was performed to measure relative recovery, and a 1-h intravenous infusion of temozolomide was administered. Continuous microdialysis samples were collected from the pons and cortex over 4 h with concurrent serial plasma and CSF samples. Postsurgical verification of microdialysis cannula–probe placement was obtained via MRI in 3 macaques and by gross pathology in all 5 animals. The MRI-determined coordinates and surgical methodologies resulted in accurate microdialysis probe placement in the pons and cortex in 4 of the 5 macaques. Histologic examination from these 4 animals revealed negligible tissue damage to the pontine and cortical tissue from microdialysis. One macaque was maintained for 8 wk and had no deficits attributed to the procedure. This animal model allows for the determination of differences in CNS penetration of chemotherapeutic agents in the pons, cortex, and CSF after systemic drug administration.Abbreviations: DIPG, diffuse intrinsic pontine glioma; ECF, extracellular fluidPediatric diffuse intrinsic pontine gliomas (DIPG) are aggressive tumors that cannot be surgically resected due to their location, and are resistant to chemotherapeutic and radiation therapies. As a result, children with DIPG have a dismal prognosis with median survival less than one year from diagnosis. One hypothesis for the poor efficacy of treatment is that innate CNS protective features, such as the blood–brain barrier and the blood–CSF barrier, shield the brainstem to a higher degree given its critical functions, and isolate pontine gliomas from treatment. To test this hypothesis, we developed a nonhuman primate model in rhesus monkeys to evaluate pontine tissue pharmacokinetics by using microdialysis, a continuous in vivo extracellular sampling technique based on diffusion. Microdialysis is the ‘gold standard’ for in vivo sampling methodologies in the CNS, enabling the collection of extracellular tissue fluid via passive diffusion by using a semipermeable membrane probe.A nonhuman primate model demonstrating the feasibility of microdialysis sampling from cortical brain tissue with concurrent pharmacokinetic sampling during chemotherapeutic drug administration has previously been established,3-5,7 but there are no current animal models that measure drug penetration into the pons. The location of the pons deep within the brain, as well as the vital brainstem functions associated with the pons, present additional obstacles to accurate microdialysis probe placement and sample collection. The objectives of the current study were to develop imaging and surgical procedures for the accurate placement of a microdialysis probe within the pons of rhesus monkeys for sample collection, to establish a method to perform microdialysis simultaneously in multiple CNS regions, and to develop a mechanism to perform repeated microdialysis in the same areas with a single invasive surgical procedure. This model allows for the pharmacokinetic comparison of drug penetration into pontine tissue, in conjunction with cortical tissue, plasma, and CSF, after intravenous administration.  相似文献   

9.
A quantitative method allowing determination of glucose metabolism in vivo in muscles and white adipose tissue of the anaesthetized rat is presented. A tracer dose of 2-deoxy[3H]glucose was injected intravenously in an anaesthetized rat and the concentration of 2-deoxy[3H]glucose was monitored in arterial blood. After 30-80 min, three muscles, the soleus, the extensor digitorum longus and the epitrochlearis, periovarian white adipose tissue and brain were sampled and analysed for their content of 2-deoxy[3H]glucose 6-phosphate. This content could be related to glucose utilization during the same time period, since (1) the integral of the decrease of 2-deoxy[3H]glucose in arterial blood was known and (2) correction factors for the analogue effect of 2-deoxyglucose compared with glucose in the transport and phosphorylation steps were determined from experiments in vitro. Glucose utilization was then measured by this technique in the tissues of post-absorptive rats in the basal state (0.1 munit of insulin/ml of plasma) or during euglycaemic-hyperinsulinaemic glucose clamp (8 munits of insulin/ml of plasma) and of 48 h-starved rats. Results corresponded qualitatively and quantitatively to the known physiological characteristics of the tissues studied.  相似文献   

10.
The in vitro and in vivo performance of three different semipermeable microdialysis membranes was compared: a proprietary polycarbonate-ether membrane made by Carnegie Medecin; cuprophan, a regenerated cellulose membrane; and polyacrylonitrile. When microdialysis probes were tested in a stirred in vitro solution, large and statistically significant differences among the three membranes in extraction of acid metabolites (3,4-dihydroxyphenylacetic acid, 5-hydroxyindoleacetic acid, and homovanillic acid) and acetaminophen were found. Polyacrylonitrile had the highest extractions in vitro. In contrast, when microdialysis probes were implanted in vivo (in rat striatum), extraction of acid metabolites and acetaminophen did not differ significantly among the different membranes. These results are consistent with predictions made by a mathematical model of microdialysis and can be explained by the fact that in vitro the main factor limiting extraction is membrane resistance to diffusion, whereas tissue resistance to diffusion plays a more dominant role in vivo. These findings suggest that (aside from differences in surface area), the choice of semipermeable membrane will generally have little effect on in vivo microdialysis results. Furthermore, in vitro measurements of microdialysis probe extractions are not a reliable way of calibrating in vivo performance.  相似文献   

11.
L St?hle 《Life sciences》1991,49(24):1835-1842
Microdialysis was applied to estimate concentrations of caffeine and theophylline in vitro or in vivo in blood, adipose tissue, muscle, liver and brain of rats. The in vivo and in vitro recovery of a compound was estimated by perfusing the dialysis probe with varying concentrations of caffeine and theophylline. The difference between the concentration in the dialysate and the concentration in the perfusion medium was plotted against the concentration in the perfusion medium and the slope of the resulting line was taken as an estimate of the recovery (difference method). In all experiments caffeine (20 mg/kg sc) and theophylline (20 mg/kg sc) were administered simultaneously. The recovery in vitro was virtually identical for caffeine and theophylline. The in vivo recovery of theophylline was significantly smaller than the recovery of caffeine in brain, liver, muscle and adipose tissue. The difference in recovery was significantly larger in the brain than in other tissues. The results show that the transport of a substance from the tissue to the dialysis probe may differ between tissues and between chemically very similar compounds. It is shown that the recovery of theophylline rapidly declines after death ensues which shows that energy-dependent processes are involved in the transport to the dialysis probe and not solely passive diffusion. It is suggested the differences in transport over brain capillaries explain the difference between caffeine and theophylline. It is concluded that the use of internal standards in microdialysis experiments requires validation in every specific application.  相似文献   

12.
The relative efficiencies of microdialysis probes were determined both in vitro and in vivo using tritiated water. Tritiated water (THO) freely distributes throughout the fluid spaces of an experimental animal and, at equilibrium, the brain extracellular concentration of THO is the same as the plasma concentration. Microdialysis probes were inserted into the right caudoputamen of anesthetized rats. The rats were injected with THO and after one hour microdialysis samples were collected at flow rates between 0.2 and 10.0 ul/min. The in vitro relative efficiency for THO was computed as the ratio of the THO concentration in the dialysate to that of the solution the probe was immersed in. The in vivo relative efficiency was computed as the ratio of the concentration of THO in the brain dialysate to that measured in the plasma of the rat. Both the in vitro and in vivo relative efficiencies for THO decrease with increasing flow rates, but they differ from each other except at very low flow rates (less than 0.25 ul/min). The in vitro relative efficiency at a given probe flow is the maximum efficiency that can be attained in vivo at that flow. The surface of effective exchange (Se) is the fraction of that maximum which is attained in vivo. This study also demonstrates how the effective surface area can be computed at any probe flow rate and how it can be used as a correction factor.  相似文献   

13.
Recent reports have indicated that the prior metabolism of testosterone by the secondary sexual tissues may be necessary for its androgenic effect. The effects of two anti-androgens, diethylstilboestrol and cyproterone acetate (17alpha-acetoxy-6-chloro-1,2alpha-methylenepregna-4,6-diene-3,20-dione) used in the chemotherapy of human prostatic carcinoma, have been examined on both the metabolism of testosterone and the retention of its metabolites by the rat ventral prostate gland. Cyproterone acetate was found to inhibit the retention of labelled metabolites of [(3)H]-testosterone by prostatic nuclei, both in vivo and in vitro. This inhibition appeared to be competitive. In contrast with its effect on nuclear retention of metabolites of testosterone, cyproterone acetate had no significant effect on the metabolism of [(3)H]testosterone by rat ventral prostate tissue. Diethylstilboestrol similarly had little effect on the metabolism of [(3)H]testosterone by prostatic tissue, although it did appear partially to inhibit its initial metabolism in all the incubation systems used. Diethylstilboestrol inhibited the nuclear retention of dihydrotestosterone when both [(3)H]testosterone and diethylstilboestrol were injected intraperitoneally in vivo, but had no effect on dihydrotestosterone retention when both testosterone and diethylstilboestrol were supplied directly to the prostate either in vivo or in vitro. It was concluded that if diethylstilboestrol has an anti-androgenic effect at the level of the target organ as distinct from its effect on androgen production by the testes, then it is probably due to a mechanism differing from that of cyproterone acetate.  相似文献   

14.
A method for extracting from biological tissues vincristine, vinblastine, and their metabolites and analysis by high-performance liquid chromatography has been developed. After excision tissues are rapidly frozen in liquid nitrogen (less than 10 s) and powders are made under liquid N2. Extraction of blood, plasma, or tissue powders was achieved using ethanol (95%) acidified to pH 4.9 with acetic acid. Extracts were analyzed using reverse-phase chromatography capable of separating Vinca alkaloids with substitutions on the vindoline or catharanthine moiety. This technique has been used to elucidate the metabolism of [3H]vincristine and [3H]vinblastine in vivo and in vitro.  相似文献   

15.
This study used chemiluminescence, an "on-line" photon-counting technique, to detect and characterize activated O2 species in vitro and in isolated rat lungs. The sensitivity and specificity of enhanced chemiluminescence for superoxide anion (O2-.) and hydrogen peroxide (H2O2) was evaluated in vitro. The effect of media conditions (such as O2 tension, albumin concentration, and sulfhydryl group availability) on luminescence was assessed in vitro. Xanthine-xanthine oxidase (X-XO) primarily produced superoxide anion in vitro. Enhanced chemiluminescence varied directly with the dose of luminescent probe used and the quantity of activated O2 species administered. The strength of the luminescent signal was also dependent on the concentration of albumin and O2 in the media. Lucigenin was more sensitive than luminol to the presence of O2-. and, unlike luminol, lucigenin did not alter radical production by XO. However, neither luminescent probe was specific for O2-., as both detected H2O2 and O2 in vitro. H2O2-induced chemiluminescence was inhibited by catalase but not superoxide dismutase (SOD), while X-XO-induced luminescence was inhibited by SOD but not catalase. SOD-inhibitable chemiluminescence was a sensitive and specific marker for O2-. production in vitro. Once the sensitivity-specificity of enhanced chemiluminescence was defined in vitro, this technique was used to explore the mechanism by which exogenous X-XO reduced hypoxic vasoconstriction in isolated rat lungs. The vascular paresis, caused by administration of X-XO to the rat lung, resulted from a brief burst of O2-. production rather than a sustained alteration of lung radical levels.  相似文献   

16.
The microdialysis technique was used for following the glucose content of the extracellular subcutaneous (SC) fluid under varying blood glucose levels in rats. The glucose content in the microdialysis perfusion fluid was continuously analyzed by means of the measuring flow chamber of an ex vivo glucose monitor. In six ChBB rats blood glucose levels were varied between 40 mg/dl and 575 mg/dl by intravenous (IV) infusion of glucose and by SC injections of insulin, respectively. After a running-in period of about half an hour, the glucose content in the perfusion fluid was closely related to the blood glucose concentration (r > 0.92) up to a time period of 6 hrs. The "relative recovery" rate of glucose by the microdialysis probe in the SC tissue varied within the 6 experimental sessions. The relative recovery rate could be shown to be not dependent on the absolute blood glucose levels in the individual rat within the glucose concentration range tested.  相似文献   

17.
We developed a method for absolute quantitative autoradiographic measurement of very low concentrations of [125I]-labeled proteins in arterial tissue using Kodak NTB-2 nuclear emulsion. A precise linear relationship between measured silver grain density and isotope concentration was obtained with uniformly labeled standard sources composed of epoxy-embedded gelatin containing glutaraldehyde-fixed [125I]-albumin. For up to 308-day exposures of 1 micron-thick tissue sections, background grain densities ranged from about two to eight grains/1000 micron 2, and the technique was sensitive to as little as about one grain/1000 micron 2 above background, which correspond to a radioactivity concentration of about 2 x 10(4) cpm/ml. A detailed statistical analysis of variability was performed and the sum of all sources of variation quantified. The half distance for spatial resolution was 1.7 micron. Both visual and automated techniques were employed for quantitative grain density analysis. The method was illustrated by measurement of in vivo transmural [125I]-low-density lipoprotein [( 125I]-LDL) concentration profiles in de-endothelialized rabbit thoracic aortic wall.  相似文献   

18.
Creating protein profiles of tissues and tissue fluids, which contain secreted proteins and peptides released from various cells, is critical for biomarker discovery as well as drug and vaccine target selection. It is extremely difficult to obtain pure samples from tissues or tissue fluids, however, and identification of complex protein mixtures is still a challenge for mass spectrometry analysis. Here, we summarize recent advances in techniques for extracting proteins from tissues for mass spectrometry profiling and imaging. We also introduce a novel technique using a capillary ultrafiltration (CUF) probe to enable in vivo collection of proteins from the tissue microenvironment. The CUF probe technique is compared with existing sampling techniques, including perfusion, saline wash, fine-needle aspiration and microdialysis. In this review, we also highlight quantitative mass spectrometric proteomic approaches with, and without, stable-isotope labels. Advances in quantitative proteomics will significantly improve protein profiling of tissue and tissue fluid samples collected by CUF probes.  相似文献   

19.
Dual-probe microdialysis was used to study interstitial diffusion in the rat brain. A radiolabelled tracer, (3H]mannitol, was continuously infused at different concentrations via a probe acutely implanted into the striatum of an anaesthetized male rat or into a dilute agar gel. Samples were collected by a second probe placed 1 mm away from the first, and the recovered [3H]mannitol was measured by liquid scintillation counting. In the striatum, the delivery of [3H]mannitol was counteracted by its removal from the extracellular space by passive uptake into cells and clearance into the microcirculation, causing the diffusion profile to approach quasi steady-state levels within 2 h. Diffusion data from brain and agar were analysed using a mathematical model. The apparent (effective) diffusion coefficient for [3H]mannitol was D* = 2.9 x 10(-6) cm2/s, the effective volume fraction alpha* = 0.30 and the clearance rate constant kappa= 2.3 x 10(-5)/s. A tortuosity, lambda = 1.81, and penetration distance r = 4.2 mm, were calculated. We conclude that, using dual-probe microdialysis, parameters reflecting geometric and dynamic tissue properties may be obtained using appropriate mathematical analysis. Quantitative dual-probe microdialysis will be valuable in characterizing interstitial diffusion and the clearance processes underpinning volume transmission in the brain.  相似文献   

20.
N-[4-(3)H]Benzoylglycylglycylglycine ([(3)H]BzG(3)) was tested as a probe for detecting hydroxyl radicals (*OH). Aerated solutions of l-ascorbate generated *OH, which oxidized [(3)H]BzG(3), yielding hydrophilic (probably hydroxylated) derivatives plus tritiated water. The (3)H(2)O was separated from organic products and remaining [(3)H]BzG(3) on Dowex-1. (3)H(2)O production was much greater with *OH than with other reactive oxygen species (ROS) (e.g., H(2)O(2), superoxide). The slight (3)H(2)O production in the presence of H(2)O(2) or superoxide was blocked by *OH scavengers (e.g., glycerol, mannitol, butan-1-ol) that do not scavenge H(2)O(2) or superoxide. This indicates that (3)H(2)O production was caused by *OH and that other ROS only generated any (3)H(2)O by forming traces of *OH. Doses of *OH that caused detectable nonenzymic polysaccharide scission also caused (3)H(2)O production, indicating that [(3)H]BzG(3) is a sensitive *OH probe in studies of polymer scission. The ability of scavengers and chelators to protect against ascorbate-mediated polysaccharide scission paralleled their ability to inhibit concurrent (3)H(2)O production, indicating that both processes were due to *OH. Thus, [(3)H]BzG(3) is a simple, specific, sensitive, and robust probe for detecting *OH production in vitro. It may have applications for in vivo detection of extracellular *OH in arthritic joints and of apoplastic *OH in plant cell walls.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号