首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Apolipoprotein (apo) A-I is the major protein in high density lipoproteins (HDL) and is found in two major subclasses of lipoproteins, those containing apolipoprotein A-II (termed LpA-I,A-II) and those without apoA-II (termed LpA-I). The in vivo kinetics of apoA-I on LpA-I and LpA-I,A-II were investigated in normolipidemic human subjects. In the first series of studies, radiolabeled apoA-I and apoA-II were reassociated with autologous plasma lipoproteins and injected into normal subjects. LpA-I and LpA-I,A-II were isolated from plasma at selected time points by immunoaffinity chromatography. By 24 h after injection, only 52.8 +/- 1.0% of the apoA-I in LpA-I remained, whereas 66.9 +/- 2.7% of apoA-I in LpA-I,A-II remained (P less than 0.01). In the second series of studies, purified apoA-I was labeled with either 131I or 125I and reassociated with autologous plasma. Isolated LpA-I and LpA-I,A-II particles differentially labeled with 131I-labeled apoA-I and 125I-labeled apoA-I, respectively, were simultaneously injected into study subjects. The plasma residence time of apoA-I injected on LpA-I (mean 4.39 days) was substantially shorter than that of apoA-I injected on LpA-I,A-II (mean 5.17 days), with a mean difference in residence times of 0.79 +/- 0.08 days (P less than 0.001). These data demonstrate that apoA-I injected on LpA-I is catabolized more rapidly than apoA-I injected on LpA-I,A-II. The results are consistent with the concept that LpA-I and LpA-I,A-II have divergent metabolic pathways.  相似文献   

2.
Apolipoproteins A-I and A-II comprise approximately 70 and 20%, respectively, of the total protein content of HDL. Evidence suggests that apoA-I plays a central role in determining the structure and plasma concentration of HDL, while the role of apoA-II is uncertain. To help define the function of apoA-II and determine what effect increasing its plasma concentration has on HDL, transgenic mice expressing human apoA-II and both human apoA-I and human apoA-II were produced. Human apoA-II mRNA is expressed exclusively in the livers of transgenic animals, and the protein exists as a dimer as it does in humans. High level expression of human apoA-II did not increase HDL concentrations or decrease plasma concentrations of murine apoA-I and apoA-II in contrast to what was observed in mice overexpressing human apoA-I. The primary effect of overexpressing human apoA-II was the appearance of small HDL particles composed exclusively of human apoA-II. HDL from mice transgenic for both human apoA-I and human apoA-II displayed a unique size distribution when compared with either apoA-I or apoA-II transgenic mice and contain particles with both these human apolipoproteins. These results in mice, indicating that human apoA-II participates in determining HDL size, parallel results from human studies.  相似文献   

3.
Human plasma HDLs are classified on the basis of apolipoprotein composition into those that contain apolipoprotein A-I (apoA-I) without apoA-II [(A-I)HDL] and those containing apoA-I and apoA-II [(A-I/A-II)HDL]. ApoA-I enters the plasma as a component of discoidal particles, which are remodeled into spherical (A-I)HDL by LCAT. ApoA-II is secreted into the plasma either in the lipid-free form or as a component of discoidal high density lipoproteins containing apoA-II without apoA-I [(A-II)HDL]. As discoidal (A-II)HDL are poor substrates for LCAT, they are not converted into spherical (A-II)HDL. This study investigates the fate of apoA-II when it enters the plasma. Lipid-free apoA-II and apoA-II-containing discoidal reconstituted HDL [(A-II)rHDL] were injected intravenously into New Zealand White rabbits, a species that is deficient in apoA-II. In both cases, the apoA-II was rapidly and quantitatively incorporated into spherical (A-I)HDL to form spherical (A-I/A-II)HDL. These particles were comparable in size and composition to the (A-I/A-II)HDL in human plasma. Injection of lipid-free apoA-II and discoidal (A-II)rHDL was also accompanied by triglyceride enrichment of the endogenous (A-I)HDL and VLDL as well as the newly formed (A-I/A-II)HDL. We conclude that, irrespective of the form in which apoA-II enters the plasma, it is rapidly incorporated into spherical HDLs that also contain apoA-I to form (A-I/A-II)HDL.  相似文献   

4.
Our understanding of apolipoprotein A-II (apoA-II) physiology is much more limited than that of apoA-I. However, important and rather surprising advances have been produced, mainly through analysis of genetically modified mice. These results reveal a positive association of apoA-II with FFA and VLDL triglyceride plasma concentrations; however, whether this is due to increased VLDL synthesis or to decreased VLDL catabolism remains a matter of controversy. As apoA-II-deficient mice present a phenotype of insulin hypersensitivity, a function of apoA-II in regulating FFA metabolism seems likely. Studies of human beings have shown the apoA-II locus to be a determinant of FFA plasma levels, and several genome-wide searches of different populations with type 2 diabetes have found linkage to an apoA-II intragenic marker, making apoA-II an attractive candidate gene for this disease. The increased concentration of apoB-containing lipoproteins present in apoA-II transgenic mice explains, in part, why these animals present increased atherosclerosis susceptibility. In addition, apoA-II transgenic mice also present impairment of two major HDL antiatherogenic functions: reverse cholesterol transport and protection of LDL oxidative modification. The apoA-II locus has also been suggested as an important genetic determinant of HDL cholesterol concentration, even though there is a major species-specific difference between the effects of mouse and human apoA-II. As antagonizing apoA-I antiatherogenic actions can hardly be considered the apoA-II function in HDL, this remains a topic for future investigations. We suggest that the existence of apoA-II or apoA-I in HDL could be an important signal for specific interaction with HDL receptors such as cubilin or heat shock protein 60.  相似文献   

5.
Treatment with the peroxisome proliferator-activated receptor γ agonist rosiglitazone has been reported to increase HDL-cholesterol (HDL-C) levels, although the mechanism responsible for this is unknown. We sought to determine the effect of rosiglitazone on HDL apolipoprotein A-I (apoA-I) and apoA-II metabolism in subjects with metabolic syndrome and low HDL-C. Subjects were treated with placebo followed by rosiglitazone (8 mg) once daily. At the end of each 8 week treatment, subjects (n = 15) underwent a kinetic study to measure apoA-I and apoA-II production rate (PR) and fractional catabolic rate. Rosiglitazone significantly reduced fasting insulin and high-sensitivity C-reactive protein (hsCRP) and increased apoA-II levels. Mean apoA-I and HDL-C levels were unchanged following rosiglitazone treatment, although there was considerable individual variability in the HDL-C response. Rosiglitazone had no effect on apoA-I metabolism, whereas the apoA-II PR was increased by 23%. The change in HDL-C in response to rosiglitazone was significantly correlated with the change in apoA-II concentration but not to changes in apoA-I, measures of glucose homeostasis, or hsCRP. Treatment with rosiglitazone significantly increased apoA-II production in subjects with metabolic syndrome and low HDL-C but had no effect on apoA-I metabolism. The change in HDL-C in response to rosiglitazone treatment was unrelated to effects on apoA-I, instead being related to the change in the metabolism of apoA-II.  相似文献   

6.
PURPOSE OF REVIEW: To rationalize the distinctive biological behavior of apolipoprotein (apo)A-I and apoA-II in light of differences in their respective structures, properties, and physico-chemical behavior. RECENT FINDINGS: The distinctive metabolic behavior of apoA-I compared with that of apoA-II, which are revealed as differences in their interactions with the HDL receptor, scavenger receptor class B type I, can be understood in terms of their physico-chemical properties. Detergent and chaotropic perturbation of HDL unmasks properties that distinguish apoA-I from apoA-II and emulate the secondary effects of lecithin: cholesterol acyltransferase, cholesteryl ester transfer protein, and phospholipid transfer protein - the key protein factors in HDL remodeling, that is, formation of lipid-free apoA-I but not apoA-II and particle fusion. Thus, of the two major HDL apolipoproteins, apoA-I is the more plastic and labile and this difference gives apoA-I a unique physiological role that has been verified in mouse models of HDL metabolism. SUMMARY: The compositions, structures, and properties of HDL particles are important determinants of the mechanisms by which these antiatherogenic lipoproteins are metabolized. Although the plasma lipid transfer proteins and lipid-modifying enzymes are important determinants of HDL processing, the distinctive structures and properties of apoA-I and apoA-II, the two major HDL proteins, determine in different ways the thermodynamic stability of HDL - the former through its greater plasticity and the latter by its higher lipophilicity. These distinctions have been revealed by physico-chemical studies of HDL stability in the context of numerous studies of enzyme and lipid transfer activities and of the interaction of HDL with its hepatic scavenger receptor.  相似文献   

7.
Endothelial lipase (EL) plays an important physiological role in modulating HDL metabolism. Data suggest that plasma contains an inhibitor of EL, and previous studies have suggested that apolipoprotein A-II (apoA-II) inhibits the activity of several enzymes involved in HDL metabolism. Therefore, we hypothesized that apoA-II may reduce the ability of EL to influence HDL metabolism. To test this hypothesis, we determined the effect of EL expression on plasma phospholipase activity and HDL metabolism in human apoA-I and human apoA-I/A-II transgenic mice. Expression of EL in vivo resulted in lower plasma phospholipase activity and significantly less reduction of HDL-cholesterol, phospholipid, and apoA-I levels in apoA-I/A-II double transgenic mice compared with apoA-I single transgenic mice. We conclude that the presence of apoA-II on HDL particles inhibits the ability of EL to influence the metabolism of HDL in vivo.  相似文献   

8.
The precise nature and origin(s) of the abnormalities in lipoprotein and apolipoprotein profile associated with severe hepatic dysfunction and the presence of spur cells remain poorly defined. To shed light on this question, we have analyzed the plasma lipoprotein and apolipoprotein profiles in five patients with alcoholic cirrhosis and spur cells, and compared them with those of a group with similar hepatocellular dysfunction, but lacking spur cells, and with that of a control group. Lipoproteins were subfractionated by density gradient ultracentrifugation and their physicochemical properties were determined; apolipoprotein A-I, A-II, and B contents in plasma and the respective subfractions were quantitated by radial immunodiffusion, while the complement of low molecular weight apolipoproteins in each subfraction was analyzed by isoelectric focusing and electrophoresis in alkaline-urea polyacrylamide gels. Spur cell plasma was distinguished by reduced levels of apoA-II and elevated ratios of apoA-I/apoA-II (approximately 13:1 as compared to 3.3-3.9:1 in the other two groups), and by reduced concentrations of HDL3. Gradient fractionation showed the apoA-II content of HDL3 to be dramatically and significantly diminished in spur cell plasma; in addition, apoA-II content was reduced relative to apoA-I in this subclass (4.7:1 as compared to 1:1 in cirrhotics lacking spur cells and 1.9:1 in controls). Spur cell HDL2 was similarly deficient in apoA-II, with elevated ratios of apoA-I:apoA-II (9.8:1 in comparison with 1.9-2.5:1 in the two other groups). Nonetheless, high HDL2 concentrations were seen in both series of cirrhotic patients, irrespective of red cell morphology. Spur cell HDL2 thus appears to consist primarily of particles possessing only apoA-I, with a minor population containing both apoA-I and apoA-II. The free cholesterol content of all lipoprotein subfractions from spur cell plasma was increased, as indeed was the molar ratio of free cholesterol to phospholipid, in comparison with that of corresponding fractions from alcoholic cirrhotics lacking spur cells and of control subjects. LDL levels were reduced in spur cell plasma, thereby distinguishing this group from the cirrhotics without spur cells who displayed elevated LDL levels. Markedly reduced plasma levels of apoA-II, HDL3, and LDL appear characteristic of alcoholic cirrhotics presenting with spur cells. Our findings suggest that apoA-II may be essential to the normal function and metabolism of HDL, one aspect of which may be the transport of free cholesterol and thereby the direct or indirect maintenance of red cell morphology.  相似文献   

9.
The kinetics of apolipoprotein A-IV associated with high density lipoproteins (HDL) of plasma from fasting human subjects was followed for 15 days in five healthy normolipidemic volunteers. Purified apoA-IV and apoA-I were radioiodinated, respectively, with 125I and 131I, incubated in vitro with normal HDL, isolated at density 1.250 g/ml, and finally reinjected intravenously as HDL-125I-labeled apoA-IV and HDL-131I-labeled apoA-I. Blood samples were withdrawn at regular intervals for 15 days, and 24-h urine samples were collected. More than 93% (93.5 +/- 0.9%) of apoA-IV was recovered in apoA-I-containing lipoprotein particles after affinity chromatography on an anti-apoA-I column and 69.7 +/- 4.8% was bound to apoA-II in apoA-I:A-II particles separated on an anti-apoA-II column. 125I-labeled apoA-IV showed a much faster decay than 131I-labeled apoA-I for the first 5 days and thereafter the curves became parallel. Urinary/plasma ratios (U/P) for the 125I-labeled parallel. Urinary/plasma ratios (U/P) for the 125I-labeled apoA-IV were much higher than those for 131I-labeled apoA-I for the first days, but the U/P curves became parallel for the last 7 days, suggesting heterogeneity of apoA-IV metabolism. A heterogeneous multicompartmental model was constructed to describe the metabolism of lipoprotein particles containing apoA-IV and apoA-I and to calculate the kinetic parameters, fitting simultaneously all plasma and urine data for both tracers.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
Isocaloric substitution of polyunsaturated fat for saturated fat reduces concentrations of total plasma cholesterol and high density lipoproteins (HDL) in nonhuman primates. The biochemical mechanisms through which polyunsaturated fat lowers plasma HDL concentrations are not well understood but must involve changes in HDL production or HDL clearance from plasma, or both. To determine whether dietary polyunsaturated fat (P/S = 2.2) alters apolipoprotein (apo) A-I production, African green monkeys (Cercopithecus aethiops) were fed diets containing polyunsaturated fat or saturated fat (P/S = 0.3) each in combination with high (0.8 mg/kcal) and low (0.03 mg/kcal) amounts of dietary cholesterol. Animals fed polyunsaturated fat at either cholesterol level had lower plasma concentrations of total cholesterol and HDL cholesterol. Plasma apoA-I concentration was reduced by 16% by polyunsaturated fat in the high cholesterol group. The rate of hepatic apoA-I secretion, as estimated by the accumulation of perfusate apoA-I during recirculating liver perfusion, was reduced by 19% in animals consuming the high cholesterol, polyunsaturated fat diet. Hepatic apoA-I mRNA concentrations, as measured by DNA-excess solution hybridization, also were reduced by 22% in the high cholesterol, polyunsaturated fat-fed animals. In contrast, intestinal apoA-I mRNA concentrations were not altered by the type of dietary fat. Plasma apoA-II and hepatic apoA-II mRNA concentrations also were not altered by the type of dietary fat. These data indicate that dietary polyunsaturated fat can selectively alter the expression of the apoA-I gene in a tissue-specific manner.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
We investigated in vivo catabolism of apolipoprotein A-II (apo A-II), a major determinant of plasma HDL levels. Like apoA-I, murine apoA-II (mapoA-II) and human apoA-II (hapoA-II) were reabsorbed in the first segment of kidney proximal tubules of control and hapoA-II-transgenic mice, respectively. ApoA-II colocalized in brush border membranes with cubilin and megalin (the apoA-I receptor and coreceptor, respectively), with mapoA-I in intracellular vesicles of tubular epithelial cells, and was targeted to lysosomes, suggestive of degradation. By use of three transgenic lines with plasma hapoA-II concentrations ranging from normal to three times higher, we established an association between plasma concentration and renal catabolism of hapoA-II. HapoA-II was rapidly internalized in yolk sac epithelial cells expressing high levels of cubilin and megalin, colocalized with cubilin and megalin on the cell surface, and effectively competed with apoA-I for uptake, which was inhibitable by anti-cubilin antibodies. Kidney cortical cells that only express megalin internalized LDL but not apoA-II, apoA-I, or HDL, suggesting that megalin is not an apoA-II receptor. We show that apoA-II is efficiently reabsorbed in kidney proximal tubules in relation to its plasma concentration.  相似文献   

12.
High density lipoprotein (HDL) represents a mixture of particles containing either apoA-I and apoA-II (LpA-I/A-II) or apoA-I without apoA-II (LpA-I). Differences in the function and metabolism of LpA-I and LpA-I/A-II have been reported, and studies in transgenic mice have suggested that apoA-II is pro-atherogenic in contrast to anti-atherogenic apoA-I. The molecular basis for these observations is unclear. The scavenger receptor BI (SR-BI) is an HDL receptor that plays a key role in HDL metabolism. In this study we investigated the abilities of apoA-I and apoA-II to mediate SR-BI-specific binding and selective uptake of cholesterol ester using reconstituted HDLs (rHDLs) that were homogeneous in size and apolipoprotein content. Particles were labeled in the protein (with (125)I) and in the lipid (with [(3)H]cholesterol ether) components and SR-BI-specific events were analyzed in SR-BI-transfected Chinese hamster ovary cells. At 1 microg/ml apolipoprotein, SR-BI-mediated cell association of palmitoyloleoylphosphatidylcholine-containing AI-rHDL was significantly greater (3-fold) than that of AI/AII-rHDL, with a lower K(d) and a higher B(max) for AI-rHDL as compared with AI/AII-rHDL. Unexpectedly, selective cholesterol ester uptake from AI/AII-rHDL was not compromised compared with AI-rHDL, despite decreased binding. The efficiency of selective cholesterol ester uptake in terms of SR-BI-associated rHDL was 4-5-fold greater for AI/AII-rHDL than AI-rHDL. These results are consistent with a two-step mechanism in which SR-BI binds ligand and then mediates selective cholesterol ester uptake with an efficiency dependent on the composition of the ligand. ApoA-II decreases binding but increases selective uptake. These findings show that apoA-II can exert a significant influence on selective cholesterol ester uptake by SR-BI and may consequently influence the metabolism and function of HDL, as well as the pathway of reverse cholesterol transport.  相似文献   

13.
It is well accepted that HDL has the ability to reduce risks for several chronic diseases. To gain insights into the functional properties of HDL, it is critical to understand the HDL structure in detail. To understand interactions between the two major apolipoproteins (apos), apoA-I and apoA-II in HDL, we generated highly defined benchmark discoidal HDL particles. These particles were reconstituted using a physiologically relevant phospholipid, 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) incorporating two molecules of apoA-I and one homodimer of apoA-II per particle. We utilized two independent mass spectrometry techniques to study these particles. The techniques are both sensitive to protein conformation and interactions and are namely: 1) hydrogen deuterium exchange combined with mass spectrometry and 2) partial acetylation of lysine residues combined with MS. Comparison of mixed particles with apoA-I only particles of similar diameter revealed that the changes in apoA-I conformation in the presence of apoA-II are confined to apoA-I helices 3-4 and 7-9. We discuss these findings with respect to the relative reactivity of these two particle types toward a major plasma enzyme, lecithin:cholesterol acyltransferase responsible for the HDL maturation process.  相似文献   

14.
Atherosclerosis is a state of heightened oxidative stress. Oxidized LDL is present in atherosclerotic lesions and used as marker for coronary artery disease, although in human lesions lipids associated with HDL are as oxidized as those of LDL. Here we investigated specific changes occurring to apolipoprotein A-I (apoA-I) and apoA-II, as isolated HDL and human plasma undergo mild, chemically induced oxidation, or autoxidation. During such oxidation, Met residues in apoA-I and apoA-II become selectively and consecutively oxidized to their respective Met sulfoxide (MetO) forms that can be separated by HPLC. Placing plasma at -20 degrees C prevents autoxidation, whereas metal chelators and butylated hydroxytoluene offer partial protection. Independent of the oxidation conditions, apoA-I and apoA-II (dimer) with two MetO residues accumulate as relatively stable oxidation products. Compared to controls, serum samples from subjects with the endothelial cell nitric oxide synthase a/b genotype that is associated with increased coronary artery disease contain increased concentrations of apoA-I with two MetO residues. Our results show that during the early stages, oxidation of HDL gives rise to specifically oxidized forms of apoA-I and apoA-II, some of which may be useful markers of in vivo HDL oxidation, and hence potentially atherosclerosis.  相似文献   

15.
We have studied the binding of 125I-labeled high density lipoproteins (HDL3) to liver plasma membranes, which are thought to contain specific HDL receptor sites, using anti-peptide antibodies directed against two sites in the carboxyl-terminal region of human apoA-I. Two distinct antibody populations raised to peptides corresponding to amino acid residues 205-220 and 230-243, respectively, recognized regions of apoA-I that are exposed in the lipid environment of HDL3. However, anti-AI[230-243] IgG, but not anti-AI[205-220] IgG, recognized HDL2, suggesting that residues 205-220 of apoA-I are expressed differently in the two HDL populations. In addition, anti-AI[230-243] IgG showed strong cross-reactivity toward apoA-II. Epitope mapping studies showed that anti-AI[230-243] binds to an epitope located in the carboxyl-terminus of apoA-II, demonstrating significant structural homology between the carboxyl-terminal of apoA-II, demonstrating significant structural homology between the carboxyl-terminal regions of apoA-I and A-II, two candidate proteins for mediating the specific cellular interaction of HDL3. Fab fragments from anti-AI[205-220] and anti-AI[230-243] inhibited the binding of 125I-HDL3 to liver plasma membranes by approximately 80% and 60%, respectively. These findings are in agreement with our recent work using isolated CNBr fragments of apoA-I (Morrison, J., Fidge, N. H., and Tozuka, M. (1991) J. Biol. Chem. 266, 18780-18785), which suggest that the carboxyl-terminal region of apoA-I contains a binding domain which mediates the specific interaction of HDL3 with liver plasma membranes, possibly through the involvement of specific HDL receptors.  相似文献   

16.
The monolayer system was employed to investigate the relative affinities of apolipoproteins A-I and A-II for the lipid/water interface. The adsorption of reductively 14C-methylated apolipoproteins to phospholipid monolayers spread at the air/water interface was determined by monitoring the surface pressure of the mixed monolayer and the surface concentration of the apoprotein. ApoA-II has a higher affinity than apoA-I for lipid monolayers; for a given initial surface pressure, apoA-II adsorbs more than apoA-I to monolayers of egg phosphatidylcholine (PC), distearoyl-PC and human high-density lipoprotein (HDL3) surface lipids. Comparison of the molecular packing of apolipoproteins A-I and A-II suggests that apoA-II adopts a more condensed conformation at the lipid/water interface compared to apoA-I. The ability of apoA-II to displace apoA-I from egg PC and HDL3 surface lipid monolayers was studied by following the adsorption and desorption of the reductively 14C-methylated apolipoproteins. At saturating subphase concentrations of the apoproteins (3.10(-5) g/100 ml), two molecules of apoA-II absorbed for each molecule of apoA-I displaced. This displacement was accompanied by an increase in surface pressure. An identical stoichiometry for the displacement of apoA-I from HDL particles by apoA-II has been reported by others. At low subphase concentrations of apoproteins (5.10(-6) g/100 ml), the apoA-I/lipid monolayer was not fully compressed and could accommodate the adsorbing apoA-II molecules without displacement of apoA-I molecules. ApoA-I molecules were unable to displace apoA-II from the lipid/water interface. The average residue hydrophobicity of apoA-II is higher than that of apoA-I; this may contribute to the higher affinity of apoA-II for lipids compared to apoA-I. The probable helical regions in apolipoproteins A-I and A-II were located using a secondary structure prediction algorithm. The analysis suggests that the amphiphilic properties of the alpha-helical regions of apoA-I and apoA-II are probably not significantly different. Further understanding of the differences in surface activity of these apolipoproteins will require more knowledge of their secondary and tertiary structures.  相似文献   

17.
High density lipoprotein (HDL) cholesterol levels are inversely related to the risk of developing coronary heart disease. Apolipoprotein (apo) A-II is the second most abundant HDL apolipoprotein and apoA-II knockout mice show a 70% reduction in HDL cholesterol levels. There is also evidence, using human apoA-II transgenic mice, that apoA-II can prevent hepatic lipase-mediated HDL triglyceride hydrolysis and reduction in HDL size. These observations suggest the hypothesis that apoA-II maintains HDL levels, at least in part, by inhibiting hepatic lipase. To evaluate this, apoA-II knockout mice were crossbred with hepatic lipase knockout mice. Compared to apoA-II-deficient mice, in double knockout mice there were increased HDL cholesterol levels (57% in males and 60% in females), increased HDL size, and decreased HDL cholesteryl ester fractional catabolic rate. In vitro incubation studies of plasma from apoA-II knockout mice, which contains largely apoA-I HDL particles, showed active lipolysis of HDL triglyceride, whereas similar studies of plasma from apoA-I knockout mice, which contains largely apoA-II particles, did not. In summary, these results strongly suggest that apoA-II is a physiological inhibitor of hepatic lipase and that this is at least part of the mechanism whereby apoA-II maintains HDL cholesterol levels.  相似文献   

18.
High density lipoproteins (HDL) are heterogeneous particles consisting of about equal amounts of lipid and protein that are thought to mediate the transport of cholesterol from peripheral tissues to liver. We show that a previously identified polymorphism affecting HDL electrophoretic mobility in mice is due to a monogenic variation controlling HDL size and apolipoprotein composition. Thus, the HDL particles of various inbred strains of mice exhibit a striking difference in the ratio fo the two major apolipoproteins of HDL, apoA-I and apoA-II. HDL particles in all strains examined contain an average of about five apoA-I molecules; however, whereas the strains with small HDL contain two to three apoA-II molecules per particle, the strains with large HDL contain about five apoA-II molecules per particle. This increase in the protein content of the large HDL is also accompanied by increased lipid content. The HDL size polymorphism and apoA-II levels cosegregate with the apoA-II structural gene on mouse chromosome 1, indicating that a mutation of the apoA-II gene locus is responsible. The rates of synthesis of apoA-II are increased in the strains with large HDL and high apoA-II levels as compared to the strains with small HDL and low apoA-II levels. On the other hand, the fractional catabolic rates of both apoA-I and apoA-II among the strains are very similar, confirming that apoA-II concentrations are controlled at the level of synthesis. Despite the difference in rates of apoA-II synthesis between strains, the apoA-II mRNA levels in the strains are not discernibly different, suggesting that a mutation of the apoA-II structural gene controls apoA-II translational efficiency. This was confirmed by translating apoA-II mRNA in vitro using a rabbit reticulocyte lysate system. Sequencing of apoA-II cDNA from the strains revealed a number of nucleotide substitutions, which may affect translational efficiency. We conclude that the assembly of apoA-II into HDL does not have a set stoichiometry but, rather, is controlled by the production of apoA-II. As apoA-II levels increase, the HDL particles become larger and acquire more lipid, but apoA-I content per particle remains unchanged. These studies with mice provide a model for the metabolic relationships between apoA-I, apoA-II, and HDL lipid in humans.  相似文献   

19.
Endothelial lipase (EL) is a triglyceride lipase gene family member that has high phospholipase and low triglyceride lipase activity. The aim of this study was to determine whether the phospholipase activity of EL is sufficient to remodel HDLs into small particles and mediate the dissociation of apolipoprotein A-I (apoA-I). Spherical, reconstituted HDLs (rHDLs) containing apoA-I only [(A-I)rHDLs], apoA-II only [(A-II)rHDLs], or both apoA-I and apoA-II [(A-I/A-II) rHDLs] were prepared. The rHDLs, which contained only cholesteryl esters in their core and POPC on the surface, were incubated with EL. As the rHDLs did not contain triacylglycerol, only the POPC was hydrolyzed. Hydrolysis was greater in the (A-I/A-II)rHDLs than in the (A-I)rHDLs. The (A-II)rHDL phospholipids were not hydrolyzed by EL. EL remodeled the (A-I)rHDLs and (A-I/A-II)rHDLs, but not the (A-II)rHDLs, into smaller particles. The reduction in particle size was related to the amount of phospholipid hydrolysis, with the diameter of the (A-I/A-II)rHDLs decreasing more than that of the (A-I)rHDLs. These changes did not affect the conformation of apoA-I, and neither apoA-I nor apoA-II dissociated from the rHDLs. Comparable results were obtained when human plasma HDLs were incubated with EL. These results establish that the phospholipase activity of EL remodels plasma HDLs and rHDLs into smaller particles without mediating the dissociation of apolipoproteins.  相似文献   

20.
We examined the effect of lipid-free apolipoprotein A-I (apoA-I) and apoA-II on the structure of reconstituted high density lipoproteins (rHDL) and on their reactivity as substrates for lecithin:cholesterol acyltransferase (LCAT). First, homogeneous rHDL were prepared with either apoA-I or apoA-II using palmitoyloleoylphosphatidylcholine (POPC) and cholesterol. Lipid-free apoA-I and apoA-II were labeled with the fluorescent probe dansyl chloride (DNS). The binding kinetics of apoA-I-DNS to A-II-POPCrHDL and of apoA-II-DNS to A-I-POPCrHDL were monitored by fluorescence polarization, adding the lipid-free apolipoproteins to the rHDL particles in a 1:1 molar ratio. For both apolipoproteins, the binding to rHDL was rapid, occurring within 5 min. Next, the effect on rHDL structure and particle size was determined after incubations of lipid-free apolipoproteins with homogeneous rHDL at 37 degrees C from 0.5 to 24 h. The products were analyzed by non-denaturing gradient gel electrophoresis followed by Western blotting. The effect of apoA-I or apoA-II on 103 A A-II-POPCrHDL was a rearrangement into 78 A particles containing apoA-I and/or apoA-II, and 90 A particles containing only apoA-II. The effect of apoA-I or apoA-II on 98 A A-I-POPCrHDL was a rearrangement into complexes ranging in size from 78 A to 105 A containing apoA-I and/or apoA-II, with main particles of 78 A, 88 A, and 98 A. Finally, the effect of lipid-free apoA-I and apoA-II on rHDL as substrates for LCAT was determined. The addition of apoA-I to A-II-POPCrHDL increased its reactivity with LCAT 24-fold, reflected by a 4-fold increase in apparent V(m)ax and a 6-fold decrease in apparent K(m), while the addition of apoA-II to A-II-POPCrHDL had no effect on its minimal reactivity with LCAT. In contrast, the addition of apoA-II to A-I-POPCrHDL decreased the reaction with LCAT by about one-half. The inhibition was due to a 2-fold increase in apparent K(m); there was no significant change in apparent V(m)ax. Likewise, the addition of apoA-I to A-I-POPCrHDL inhibited the reaction with LCAT to about two-thirds that of A-I-POPCrHDL without added apoA-I. In summary, both lipid-free apoA-I and apoA-II can promote the remodeling of rHDL into hybrid particles of primarily smaller size. Both apoA-I and apoA-II affect the reactivity of rHDL with LCAT, when added to the reaction in lipid-free form. These results have important implications for the roles of lipid-free apoA-I and apoA-II in HDL maturation and metabolism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号