首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Previously identified mutations in subunits a and b of the F0 sector of the F1F0-ATPase from Escherichia coli are further characterized by isolating detergent-solubilized, partially purified F1F0 complexes from cells bearing these mutations. The composition of the various F1F0 complexes was judged by quantitating the amount of each subunit present in the detergent-solubilized preparations. The composition of the F0 sectors containing altered polypeptides was determined by quantitating the F0 subunits that were immunoprecipitated by antibodies directed against the F1 portion. In this way, the relative amounts of F0 subunits (a, b, c) which survived the isolation procedure bound to F1 were determined for each mutation. This analysis indicates that both missense mutations in subunit a (aser206----leu and ahis245----tyr) resulted in the isolation of F1F0 complexes with normal subunit composition. The nonsense mutation in subunit a (atyr235----end) resulted in isolation of a complex containing the b and c subunits. The bgly131----asp mutation in the b subunit results in an F0 complex which does not assemble or survive the isolation. The isolated F1F0 complex containing the mutation bgly9----asp in the b subunit was defective in two regards: first, a reduction in F1 content relative to F0 and second, the absence of the a subunit. Immunoprecipitations of this preparation demonstrated that F1 interacts with both c and mutant b subunits. A strain carrying the mutation, bgly9----asp, and the compensating suppressor mutation apro240----leu (previously shown to be partially unc+) yielded an F1F0 ++ complex that remained partially defective in F1 binding to F0 but normal in the subunit composition of the F0 sector. The assembly, structure, and function of the F1F0-ATPase is discussed.  相似文献   

2.
Energy transduction in mitochondria involves five oligomeric complexes embedded within the inner membrane. They are composed of catalytic and noncatalytic subunits, the role of these latter proteins often being difficult to assign. One of these complexes, the bc1 complex, is composed of three catalytic subunits including cytochrome b and seven or eight noncatalytic subunits. Recently, several mutations in the human cytochrome b gene have been linked to various diseases. We have studied in detail the effects of a cardiomyopathy generating mutation G252D in yeast. This mutation disturbs the biogenesis of the bc1 complex at 36 degrees C and decreases the steady-state level of the noncatalytic subunit Qcr9p. In addition, the G252D mutation and the deletion of QCR9 show synergetic defects that can be partially bypassed by suppressor mutations at position 252 and by a new cytochrome b mutation, P174T. Altogether, our results suggest that the supernumerary subunit Qcr9p enhances or stabilizes the interactions between the catalytic subunits, this role being essential at high temperature.  相似文献   

3.
A mutation of the b subunit of the Escherichia coli proton translocating ATPase was previously described (Porter, A. C. G., Kumamoto, C., Aldape, K., and Simoni, R. D. (1985) J. Biol. Chem. 260, 8182-8187). This mutation, which causes substitution of aspartic acid for glycine at position 9 (basp9), results in loss of function of the ATPase complex. In this paper we describe the isolation and characterization of two mutations that partially suppress the effects of the basp9 alteration. The suppressor mutations cause amino acid substitutions at position 240 of the a subunit. Membranes derived from strains carrying a suppressor mutation and the basp9 mutation exhibited ATP-dependent proton translocating activity.  相似文献   

4.
5.
B J Jenkins  R D''Andrea    T J Gonda 《The EMBO journal》1995,14(17):4276-4287
We have combined retroviral expression cloning with random mutagenesis to identify two activating point mutations in the common signal-transducing subunit (h beta c) of the receptors for human granulocyte-macrophage colony-stimulating factor (GM-CSF), interleukin (IL)-3 and IL-5 by virtue of their ability to confer factor independence on the haemopoietic cell line, FDC-P1. One mutation (V449E) is located within the transmembrane domain and, by analogy with a similar mutation in the neu oncogene, may act by inducing dimerization of h beta c. The other mutation (I374N) lies in the extracellular, membrane-proximal portion of h beta c. Neither of these mutants, nor a previously described mutant of h beta c (FI delta, which has a small duplication in the extracellular region), was capable of inducing factor independence in CTLL-2 cells, while only V449E could induce factor independence in BAF-B03 cells. These results imply that the extracellular and transmembrane mutations act by different mechanisms. Furthermore, they imply that the mutants, and hence also wild-type h beta c, interact with cell type-specific signalling molecules. Models are presented which illustrate how these mutations may act and predict some of the characteristics of the putative receptor-associated signalling molecules.  相似文献   

6.
The mitochondrial bc(1) complex catalyzes the oxidation of ubiquinol and the reduction of cytochrome (cyt) c. The cyt b mutation A144F has been introduced in yeast by the biolistic method. This residue is located in the cyt b cd(1) amphipathic helix in the quinol-oxidizing (Q(O)) site. The resulting mutant was respiration-deficient and was affected in the quinol binding and electron transfer rates at the Q(O) site. An intragenic suppressor mutation was selected (A144F+F179L) that partially alleviated the defect of quinol oxidation of the original mutant A144F. The suppressor mutation F179L, located at less than 4 A from A144F, is likely to compensate directly the steric hindrance caused by phenylalanine at position 144. A second set of suppressor mutations was obtained, which also partially restored the quinol oxidation activity of the bc(1) complex. They were located about 20 A from A144F in the hinge region of the iron-sulfur protein (ISP) between residues 85 and 92. This flexible region is crucial for the movement of the ISP between cyt b and cyt c(1) during enzyme turnover. Our results suggested that the compensatory effect of the mutations in ISP was due to the repositioning of this subunit on cyt b during quinol oxidation. This genetic and biochemical study thus revealed the close interaction between the cyt b cd(1) helix in the quinol-oxidizing Q(O) site and the ISP via the flexible hinge region and that fine-tuning of the Q(O) site catalysis can be achieved by subtle changes in the linker domain of the ISP.  相似文献   

7.
The cytochrome bo complex is a terminal ubiquinol oxidase in the aerobic respiratory chain of Escherichia coli (Kita, K., Konishi, K., and Anraku, Y. (1984) J. Biol. Chem. 259, 3368-3374) and functions as a proton pump. It belongs to the heme-copper oxidase superfamily with the aa3-type cytochrome c oxidases in mitochondria and aerobic bacteria. In order to identify ligands of hemes and copper, we have substituted eight conserved histidines in subunit I by alanine and, in addition, His-106, -284, and -421 by glutamine and methionine. Western immunoblotting analysis showed that all the mutations do not affect the expression level of subunit I in the cytoplasmic membrane, indicating that these histidines are not crucial for its stability. A single copy expression vector carrying a single mutation at the invariant histidines, His-106, His-284, His-333, His-334, His-419, and His-421, of subunit I was unable to support the aerobic growth of a strain in which the chromosomal terminal oxidase genes (the cyo and cyd operons) have been deleted. The same mutations caused a complete loss of ubiquinol oxidase activity of the partially purified enzymes. Spectroscopic analysis of mutant oxidases in the cytoplasmic membrane revealed that substitutions of His-106 and -421 specifically eliminated a 563.5 nm peak of the low spin heme and that replacements of His-106, -284, and -419 reduced the extent of the CO-binding high spin heme. These spectroscopic properties of mutant oxidases were further confirmed with partially purified preparations. Atomic absorption analysis showed that substitutions of His-106, -333, -334, and -419 eliminated CuB almost completely. Based on these findings, we conclude that His-106 and -421 function as the axial ligands of the low spin heme and His-284 is a possible ligand of the high spin heme. His-333, -334, and -419 residues are attributed to the ligands of CuB. We present a helical wheel model of the redox center in subunit I, which consists of the membrane-spanning regions II, VI, VII, and X, and discuss the implications of the model.  相似文献   

8.
Mitochondrial dysfunction is involved in many neurodegenerative disorders in humans. Here we report mutations in a gene (designated levy) that codes for subunit VIa of cytochrome c oxidase (COX). The mutations were identified by the phenotype of temperature-induced paralysis and showed the additional phenotypes of decreased COX activity, age-dependent bang-induced paralysis, progressive neurodegeneration, and reduced life span. Germ-line transformation using the levy(+) gene rescued the mutant flies from all phenotypes including neurodegeneration. The data from levy mutants reveal a COX-mediated pathway in Drosophila, disruption of which leads to mitochondrial encephalomyopathic effects including neurodegeneration, motor dysfunction, and premature death. The data present the first case of a mutation in a nuclear-encoded structural subunit of COX that causes mitochondrial encephalomyopathy rather than lethality, whereas several previous attempts to identify such mutations have not been successful. The levy mutants provide a genetic model to understand the mechanisms underlying COX-mediated mitochondrial encephalomyopathies and to explore possible therapeutic interventions.  相似文献   

9.
A mutation in the infA gene encoding initiation factor 1 (IF1) gives rise to a cold-sensitive phenotype. An Escherichia coli strain with this mutation was used as a tool to select for second-site suppressors that compensate for the cold sensitivity and map specifically to rRNA. Several suppressor mutants with altered 16S rRNA that partially restore growth of an IF1 mutant strain in the cold were isolated and characterized. Suppressor mutations were found in helix (h)18, h32, h34 and h41 in 16S rRNA. These mutations are not clustered to any particular region in 16S rRNA and none overlap previously reported sites of interaction with IF1. While the isolated suppressors are structurally diverse, they are functionally related because all affect ribosomal subunit association in vivo. Furthermore, in vitro subunit-association experiments indicate that most of the suppressor mutations directly influence ribosomal subunit association even though none of these are confined to any of the known intersubunit bridges. These results are consistent with the model that IF1 is an rRNA chaperone that induces large-scale conformational changes in the small ribosomal subunit, and as a consequence modulates initiation of translation by affecting subunit association.  相似文献   

10.
Sixteen mutants of Escherichia coli defective in H+-ATPase (proton-translocating ATPase) were tested for their ability to recombine with hybrid plasmids carrying various portions of the beta subunit cistron. Twelve mutations were mapped within the carboxyl half of the cistron corresponding to amino acid residues 279 to 459 (domain II), while four mutations were mapped within residues 17 to 278 (domain I). The biochemical properties of these mutants were analyzed in terms of the proton permeability of their membranes and the assembly properties of their F1F0 complex. The mutants were classified according to the properties into three types, I, II, and III. In 12 mutants of type I, proton conduction in membrane vesicles was blocked and little F1 was released from the membranes under conditions in which F1 could be released from wild-type membranes, suggesting that assembly of the F1F0 complex is structurally and functionally defective. F1 was partially purified with very low recovery from one of the type I mutants, KF16. ATPase activity was reconstituted from this F1 with the beta subunit of the wild type, confirming the genetic results. Only one mutant, KF38, was classified as type II. Its membranes were partially leaky to protons and its F1 was releasable, suggesting that the interaction of its F1 and F0 was unstable. Type III mutants, KF11 and KF43, had an F1F0 complex with very low activity, in which the structure of F1 was relatively similar to that of the wild type. F1 was purified as a single complex from KF43 in this study and from KF11 previously (H. Kanazawa, Y. Horiuchi, M. Takagi, Y. Ishino, and M. Futai (1980) J. Biochem. 88, 695-703). Reconstitution experiments in vitro showed that the F1's of both mutants were defective in the beta subunit. The properties of the altered F1 of KF43 differed from those of F1 of KF11, suggesting that the mutation sites of KF43 and KF11 were different. From the results of mapping mutation sites and the biochemical properties of the mutants, the correlation of structural domains with function of the beta subunit is discussed. Most type I and type II mutations except that of KF39 were mapped in domain II, while the type III mutations were mapped in domain I, suggesting that domain II is more important than domain I for the function of the beta subunit, especially in terms of proper assembly of the F1F0 complex.  相似文献   

11.
The vacuolar H+-ATPase is inhibited with high specificity and potency by bafilomycin and concanamycin, macrolide antibiotics with similar structures. We previously reported that mutation at three residues in subunit c of the vacuolar ATPase from Neurospora crassa conferred strong resistance to bafilomycin but little or no resistance to concanamycin (Bowman, B. J., and Bowman, E. J. (2002) J. Biol. Chem. 277, 3965-3972). We have identified additional mutated sites in subunit c that confer resistance to bafilomycin. Furthermore, by subjecting a resistant mutant to a second round of mutation we isolated strains with increased resistance to both bafilomycin and concanamycin. In all of these strains the second mutation is also in subunit c, suggesting it forms at least part of the concanamycin binding site. Site-directed mutagenesis of the gene encoding subunit c in Saccharomyces cerevisiae showed that single mutations in each of the residues identified in one of the double mutants of N. crassa conferred resistance to both bafilomycin and concanamycin. Mutations at the corresponding sites in the VMA11 and VMA16 genes of S. cerevisiae, which encode the c' and c" subunits, did not confer resistance to the drugs. In all, nine residues of subunit c have been implicated in drug binding. The positions of these residues support a model in which the drug binding site is a pocket formed by helices 1, 2, and 4. We hypothesize that the drugs inhibit by preventing the rotation of the c subunits.  相似文献   

12.
Recent kinetics experiments using mutants of the bc(1) complex (ubihydroquinone-cytochrome c oxidoreductase) iron-sulfur subunit with modified hinge regions have revealed the crucial role played by the large scale movement of its [2Fe-2S] cluster domain during the activity of this enzyme. In particular, one of these mutants (+1Ala) with an insertion of one alanine residue in the hinge region is partially deficient in performing this movement. We found that this defect can be overcome by the appearance of a second mutation substituting the leucine at position 286 in the ef loop of cytochrome b with a phenylalanine. Detailed studies of these mutants and their derivatives revealed that the ef loop acts as a barrier that needs to be crossed for multiple turnovers of the enzyme but not for a single turnover ubihydroquinone oxidation site catalysis. These findings indicate that the movement of the iron-sulfur subunit is composed of two discrete parts: a "micro-movement" at the cytochrome b interface, during which the [2Fe-2S] cluster interacts with ubihydroquinone oxidation site occupants and catalyzes ubihydroquinone oxidation, and a "macro-movement," during which the cluster domain swings away from cytochrome b interface, crosses the ef loop, and reaches a position close to cytochrome c(1) heme, to which it ultimately transfers an electron.  相似文献   

13.
The effect of various point mutations in subunits a and and c of the E. coli ATP-synthase was characterized. In each of the mutants there was no F0-dependent H+-conduction, but still an ATPase-activity comparable to wildtype activities. In addition, the subunit b could be extracted from the mutant's F0 but not from the F0 of wildtype. The effects are interpreted as a change in the conformation of F0 caused by the different mutations.  相似文献   

14.
Most of what is known about the structure and function of subunit a, of the ATP synthase, has come from the construction and isolation of mutations, and their analysis in the context of the ATP synthase complex. Three classes of mutants will be considered in this review. (1) Cys substitutions have been used for structural analysis of subunit a, and its interactions with subunit c. (2) Functional residues have been identified by extensive mutagenesis. These studies have included the identification of second-site suppressors within subunit a. (3) Disruptive mutations include deletions at both termini, internal deletions, and single amino acid insertions. The results of these studies, in conjunction with information about subunits b and c, can be incorporated into a model for the mechanism of proton translocation in the Escherichia coli ATP synthase.  相似文献   

15.
In Salmonella enterica serovar Typhimurium, an S431P substitution in the B subunit of gyrase (allele gyrB651) confers resistance to nalidixic acid and causes reduced DNA superhelicity and hypersensitivity to novobiocin. Selection for novobiocin resistance allowed isolation of a mutation in the gyrA gene (allele gyrA659), a T467S substitution, which partially suppresses the supercoiling defect of gyrB651. Modeling analysis suggests that this mutation acts by destabilizing the GyrA bottom dimer interface. This is the first example of a gyrA mutation that compensates for a gyrB defect.  相似文献   

16.
Subunit E is a component of the peripheral stalk(s) that couples membrane and peripheral subunits of the V-ATPase complex. In order to elucidate the function of subunit E, site-directed mutations were performed at the amino terminus and carboxyl terminus. Except for S78A and D233A/T202A, which exhibited V(1)V(o) assembly defects, the function of subunit E was resistant to mutations. Most mutations complemented the growth phenotype of vma4Delta mutants, including T6A and D233A, which only had 25% of the wild-type ATPase activity. Residues Ser-78 and Thr-202 were essential for V(1)V(o) assembly and function. The mutation S78A destabilized subunit E and prevented assembly of V(1) subunits at the membranes. Mutant T202A membranes exhibited 2-fold increased V(max) and about 2-fold less of V(1)V(o) assembly; the mutation increased the specific activity of V(1)V(o) by enhancing the k(cat) of the enzyme 4-fold. Reduced levels of V(1)V(o) and V(o) complexes at T202A membranes suggest that the balance between V(1)V(o) and V(o) was not perturbed; instead, cells adjusted the amount of assembled V-ATPase complexes in order to compensate for the enhanced activity. These results indicated communication between subunit E and the catalytic sites at the A(3)B(3) hexamer and suggest potential regulatory roles for the carboxyl end of subunit E. At the carboxyl end, alanine substitution of Asp-233 significantly reduced ATP hydrolysis, although the truncation 229-233Delta and the point mutation K230A did not affect assembly and activity. The implication of these results for the topology and functions of subunit E within the V-ATPase complex are discussed.  相似文献   

17.
BACKGROUND: Mutations in components of the extraordinarily large alpha-ketoacid dehydrogenase multienzyme complexes can lead to serious and often fatal disorders in humans, including maple syrup urine disease (MSUD). In order to obtain insight into the effect of mutations observed in MSUD patients, we determined the crystal structure of branched-chain alpha-ketoacid dehydrogenase (E1), the 170 kDa alpha(2)beta(2) heterotetrameric E1b component of the branched-chain alpha-ketoacid dehydrogenase multienzyme complex. RESULTS: The 2.7 A resolution crystal structure of human E1b revealed essentially the full alpha and beta polypeptide chains of the tightly packed heterotetramer. The position of two important potassium (K(+)) ions was determined. One of these ions assists a loop that is close to the cofactor to adopt the proper conformation. The second is located in the beta subunit near the interface with the small C-terminal domain of the alpha subunit. The known MSUD mutations affect the functioning of E1b by interfering with the cofactor and K(+) sites, the packing of hydrophobic cores, and the precise arrangement of residues at or near several subunit interfaces. The Tyr-->Asn mutation at position 393-alpha occurs very frequently in the US population of Mennonites and is located in a unique extension of the human E1b alpha subunit, contacting the beta' subunit. CONCLUSIONS: Essentially all MSUD mutations in human E1b can be explained on the basis of the structure, with the severity of the mutations for the stability and function of the protein correlating well with the severity of the disease for the patients. The suggestion is made that small molecules with high affinity for human E1b might alleviate effects of some of the milder forms of MSUD.  相似文献   

18.
The effects of mutation of residue Ala-128 of the b subunit of Escherichia coli ATP synthase to aspartate on the structure of the subunit and its interaction with the F(1) sector were analyzed. Determination of solution molecular weights by sedimentation equilibrium ultracentrifugation revealed that the A128D mutation had little effect on dimerization in the soluble b construct, b(34-156). However, the mutation caused a structural perturbation detected through both a 12% reduction in the sedimentation coefficient and also a reduced tendency to form intersubunit disulfide bonds between cysteine residues inserted at position 132. Unlike the wild-type sequence, the A128D mutant was unable to interact with F(1)-ATPase. These results indicate that the A128D mutation caused a structural change in the C-terminal region of the protein, preventing the binding to F(1) but having little or no effect on the dimeric nature of b.  相似文献   

19.
Complete nucleotide sequence of the genes for subunits of the H+ ATPase of E.coli has been determined and several hybrid plasmids carrying various portions of these genes have been constructed. Genetic complementation and recombination tests of about forty mutants of E.coli defective in the ATPase were performed using these plasmids for identifying the locations of the mutations. Two mutants defective in the delta subunit and a novel type of mutant defective in the b subunit of F0 were identified. The delta subunit mutants showed no proton conduction, suggesting that this subunit has an important role for the proton conduction. The ATPase of the b subunit mutant has a normal activity of proton channel portion, which phenotype is clearly different from that of mutants of the b subunit reported previously.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号