首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Multidrug efflux pumps (MDRs) are hypothesized to protect pathogenic bacteria from toxic host defense compounds. We created mutations in the Ralstonia solanacearum acrA and dinF genes, which encode putative MDRs in the broad-host-range plant pathogen. Both mutations reduced the ability of R. solanacearum to grow in the presence of various toxic compounds, including antibiotics, phytoalexins, and detergents. Both acrAB and dinF mutants were significantly less virulent on the tomato plant than the wild-type strain. Complementation restored near-wild-type levels of virulence to both mutants. Addition of either dinF or acrAB to Escherichia coli MDR mutants KAM3 and KAM32 restored the resistance of these strains to several toxins, demonstrating that the R. solanacearum genes can function heterologously to complement known MDR mutations. Toxic and DNA-damaging compounds induced expression of acrA and dinF, as did growth in both susceptible and resistant tomato plants. Carbon limitation also increased expression of acrA and dinF, while the stress-related sigma factor RpoS was required at a high cell density (>10(7) CFU/ml) to obtain wild-type levels of acrA expression both in minimal medium and in planta. The type III secretion system regulator HrpB negatively regulated dinF expression in culture at high cell densities. Together, these results show that acrAB and dinF encode MDRs in R. solanacearum and that they contribute to the overall aggressiveness of this phytopathogen, probably by protecting the bacterium from the toxic effects of host antimicrobial compounds.  相似文献   

2.
Triclosan (Irgasan) is a broad spectrum antimicrobial agent used in handsoaps, toothpastes, fabrics, and plastics. It inhibits lipid biosynthesis in Escherichia coli , probably by action upon enoyl reductase (FabI) (McMurry L.M., Oethinger M. and Levy S.B. (1988) Nature 394, 531–532). We report here that overexpression of the multidrug efflux pump locus acrAB , or of marA or soxS , both encoding positive regulators of acrAB , decreased susceptibility to triclosan 2-fold. Deletion of the acrAB locus increased the susceptibility to triclosan approximately 10-fold. Four of five clinical E. coli strains which overexpressed marA or soxS also showed enhanced triclosan resistance. The acrAB locus was involved in the effects of triclosan upon both cell growth rate and cell lysis.  相似文献   

3.
4.
An optimized, defined minimal medium was developed to support balanced growth of Escherichia coli X90 harboring a recombinant plasmid. Foreign protein expression was repressed in these studies. A pulse injection technique was used to identify the growth responses to nutrients in a chemostat. Once the nutrients essential for growth had been identified, the yield coefficients for individual medium components. These yield coefficients were used to develop an optimized, glucose-limited defined minimal medium that supports balanced cell growth in chemostat culture. The biomass and substrate concentrations follow the Monod chemostat model. The maximum specific growth rate determined in a washout experiment is 0.87 h(-1) for this strain in the optimized medium. the glucose yield factor is 0.42 g DCW/g glucose and the maintenance coefficient is zero in the glucose-limited chemostat culture. (c) 1993 John Wiley & Sons, Inc.  相似文献   

5.
The general stress resistance of Escherichia coli is controlled by the RpoS sigma factor (phi(S)), but mutations in rpoS are surprisingly common in natural and laboratory populations. Evidence for the selective advantage of losing rpoS was obtained from experiments with nutrient-limited bacteria at different growth rates. Wild-type bacteria were rapidly displaced by rpoS mutants in both glucose- and nitrogen-limited chemostat populations. Nutrient limitation led to selection and sweeps of rpoS null mutations and loss of general stress resistance. The rate of takeover by rpoS mutants was most rapid (within 10 generations of culture) in slower-growing populations that initially express higher phi(S) levels. Competition for core RNA polymerase is the likeliest explanation for reduced expression from distinct promoters dependent on phi(70) and involved in the hunger response to nutrient limitation. Indeed, the mutation of rpoS led to significantly higher expression of genes contributing to the high-affinity glucose scavenging system required for the hunger response. Hence, rpoS polymorphism in E. coli populations may be viewed as the result of competition between the hunger response, which requires sigma factors other than phi(S) for expression, and the maintenance of the ability to withstand external stresses. The extent of external stress significantly influences the spread of rpoS mutations. When acid stress was simultaneously applied to glucose-limited cultures, both the phenotype and frequency of rpoS mutations were attenuated in line with the level of stress. The conflict between the hunger response and maintenance of stress resistance is a potential weakness in bacterial regulation.  相似文献   

6.
The enterobacterium Erwinia amylovora causes fire blight on members of the family Rosaceae, with economic importance on apple and pear. During pathogenesis, the bacterium is exposed to a variety of plant-borne antimicrobial compounds. In plants of Rosaceae, many constitutively synthesized isoflavonoids affecting microorganisms were identified. Bacterial multidrug efflux transporters which mediate resistance toward structurally unrelated compounds might confer tolerance to these phytoalexins. To prove this hypothesis, we cloned the acrAB locus from E. amylovora encoding a resistance nodulation division-type transport system. In Escherichia coli, AcrAB of E. amylovora conferred resistance to hydrophobic and amphiphilic toxins. An acrB-deficient E. amylovora mutant was impaired in virulence on apple rootstock MM 106. Furthermore, it was susceptible toward extracts of leaves of MM 106 as well as to the apple phytoalexins phloretin, naringenin, quercetin, and (+)-catechin. The expression of acrAB was determined using the promoterless reporter gene egfp. The acrAB operon was up-regulated in vitro by the addition of phloretin and naringenin. The promoter activity of acrR, encoding a regulatory protein involved in acrAB expression, was increased by naringenin. In planta, an induction of acrAB was proved by confocal laser scanning microscopy. Our results strongly suggest that the AcrAB transport system plays an important role as a protein complex required for virulence of E. amylovora in resistance toward apple phytoalexins and that it is required for successful colonization of a host plant.  相似文献   

7.
Changes in dilution rate did not elicit large and systematic changes in cellular cyclic AMP levels in Escherichia coli grown in a chemostat under carbon or phosphate limitation. However, the technical difficulties of measuring low levels of cellular cyclic AMP in the presence of a large background of extracellular cyclic AMP precluded firm conclusions in this point. The net rate of cyclic AMP synthesis increased exponentially with increasing dilution rate through either the entire range of dilution rates examined (phosphate limitation) or a substantial part of the range (lactose and glucose limitations). Thus, it is probable that growth rate regulates the synthesis of adenylate cyclase. The maximum rate of net cyclic AMP synthesis was greater under lactose than under glucose limitation, which is consistent with the notion that the uptake of phosphotransferase sugars is more inhibitory to adenylate cyclase than the uptake of other carbon substrates. Phosphate-limited cultures exhibited the lowest rate of net cyclic AMP synthesis, which could be due to the role of phosphorylated metabolites in the regulation of adenylate cyclase activity. Under all growth conditions examined, greater than 99.9% of the cyclic AMP synthesized was found in the culture medium. The function of this excretion, which consumed up to 9% of the total energy available to the cell and which evidently resulted from elaborate regulatory mechanisms, remains entirely unknown.  相似文献   

8.
Bacterial resistance to inactivation by antibacterial agents that is induced by the growth environment was studied. Escherichia coli was grown in batch culture and in a chemostat, and the following parameters were varied: type of substrate, growth rate, temperature, and cell density during growth. Low doses (0.75 mg/liter) of chlorine dioxide were used to inactivate the cultures. The results demonstrated that populations grown under conditions that more closely approximated natural aquatic environments were more resistant than those grown under commonly employed batch culture conditions. In particular, bacteria grown at submaximal rates were more resistant than their counterparts grown at mumax. The most resistant populations encountered in this study were those grown at D values of 0.02 h-1 and 0.06 h-1 at 25 degrees C. Growth at 15 degrees C led to greater resistance than did growth at 37 degrees C. The conditions that produced relatively resistant phenotypes were much closer to those found in most natural environments than are the typical conditions of batch culture methods. The importance of major physiological changes that can be induced by the antecedent growth environment is discussed in light of the possible modes of action of several disinfectants.  相似文献   

9.
Sporulation of Bacillus subtilis in Continuous Culture   总被引:20,自引:8,他引:12       下载免费PDF全文
Sporulation of Bacillus subtilis 168 was studied in chemostat cultures. Sporulation occurred at high frequency under limitation of growth by glucose or the nitrogen source in minimal medium, whereas rates of sporulation were low for Mg(2+), phosphate, citrate, or tryptophan limitation. Sporulation was found at all growth rates tested, and the incidence of spores increased with decrease in growth rate of the culture. Within the range of growth rates up to the maximum obtainable with the defined medium, no threshold effect of growth rate on sporulation was observed. By studying transient states, it was possible to determine the time taken for the appearance of a refractile spore after initiation of a cell to sporulation. Under conditions of glucose limitation, cells were found to be committed to sporulation as soon as they were initiated. In nitrogen-limited cultures, however, a partial relief of nitrogen limitation prevented the development of spores during the first hour after initiation. The results of experiments with multistep changes in dilution rate of a chemostat culture indicate that initiation to sporulation is probably restricted to a particular point in the cell division cycle.  相似文献   

10.
11.
The use of glucose starvation to uncouple the production of recombinant beta-galactosidase from cell growth in Escherichia coli was investigated. A lacZ operon fusion to the carbon starvation-inducible cst-1 locus was used to control beta-galactosidase synthesis. beta-Galactosidase induction was observed only under aerobic starvation conditions, and its expression continued for 6 h following the onset of glucose starvation. The cessation of beta-galactosidase expression closely correlated with the exhaustion of acetate, an overflow metabolite of glucose, from the culture medium. Our results suggest the primary role of acetate in cst-1-controlled protein expression is that of an energy source. Using this information, we metered acetate to a glucose-starved culture and produced a metabolically sluggish state, where growth was limited to a low linear rate and production of recombiant beta-galactosidase occurred continuously throughout the experiment. The cst-1 controlled beta-galactosidase synthesis was also induced at low dilution rates in a glucose-limited chemostat, suggesting possible applications to high-density cell systems such as glucose-limited recycle reactors. This work demonstrates that by using an appropriate promoter system and nutrient limitation, growth can be restrained while recombinant protein production is induced and maintained.  相似文献   

12.
The effect of plasmid-mediated metabolic burden of on the expression of the host genes and its consequences on the plasmid maintenance were studied in carbon-limited chemostat culture of Escherichia coli 1EA(pBR322) subject to selection for strains overproducing chromosomally coded ribitol dehydrogenase. The chemostat population became rapidly heterogeneous and the competition among evolved strains was found to be crucial for the kinetics of the plasmid loss from the culture. The selective disadvantages in growth rate associated with plasmid carriage in the parent-like and ribitol dehydrogenase-overproducing strains was estimated. (c) 1993 John Wiley & Sons, Inc.  相似文献   

13.
Recently we have isolated a number of thermotolerant, spore-forming methylotrophic bacilli in pure culture. With a methanol-limited chemostat culture of strain Ts1, incremental increases in the incubation temperature from 45°C to 62.5°C revealed an optimum with respect to growth yield of 52.5°C, and a maximum of 62.5°C. Similar investigations revealed a pH optimum of 7.5 and a broad growth rate optimum with respect to growth yield. The organism displayed a low maintenance energy requirement and high growth yield (attained simultaneosly with high growth rates) during growth on methanol. Under all conditions of methanol limitation, substrate was oxidized solely to biomass and CO2 and carbon recoveries greater than 90% were manifest. Our data suggested that this resulted from an ability of the organism to precisely adjust its catabolic and anabolic pathways to suit prevailing growth conditions. These results are discussed in relation to previously reported data on thermophiles in both batch and chemostat culture.  相似文献   

14.
Abstract In an Escherichia coli strain, the levels of penicillin-binding proteins (PBPs) 1A plus 1B, both peptidoglycan transglycosylase/transpeptidases, were found to be relatively independent of the imposed growth ratw in chemostat cultures under different nutrient limitation conditions. A considerable increase in levels of PBP 6 was observed as the growth rate was reduced, whilst, in contrast, a decrease was observed in levels of the other PBPs.  相似文献   

15.
Summary The maintenance and genetic stability of the vector plasmids pBR322 and pBR325 in two genetically different Escherichia coli hosts were studied during chemostat cultivation with glucose and ammonium chloride limitation and at two different dilution rates. The plasmid pBR322 was stably maintained under all growth conditions tested. However pBR325 segregated from both hosts preferentially during glucose limitation and at low dilution rate. In addition to this general segregation process a separate loss of tetracycline resistance was observed. The remaining plasmid conferred resistance to ampicillin and chloramphenicol only, without any remarkable alteration of its molecular weight.Cultivation conditions in the chemostat were found that allowed the stable genetic inheritance of both plasmids in the hosts studied.  相似文献   

16.
A recombinant Escherichia coli K-12 strain was grown in the regime of chemostat with glucose limitation at a different flow rate and in the regime of turbidostat. The stability of its population and the dynamics of somatotropin biosynthesis were studied. The plasmid-containing strain became less stable as the flow rate in the fermenter dropped down, which was due, apparently, to a greater limitation. The level of somatotropin biosynthesis was higher at a low dilution rate (D = 0.075, 0.17 and 0.34 h-1). Possible factors responsible for this phenomenon are discussed.  相似文献   

17.
To evaluate the extent to which single-cell glucose uptake rates determine the overall specific growth rate of a culture, dilute chemostat cultures of Escherichia coli BL21 were grown in defined medium under glucose limitation. The glucose uptake dynamics of the cell population was examined at the single-cell level using the fluorescent glucose analog, 2-NBDG. Between dilution rates of 0.12 h(-1) and 0.40 h(-1), mean cellular protein content and steady-state, extracellular glucose concentrations increased with increasing dilution rate. However, the distribution of 2-NBDG uptake rates in the population remained constant over the range of dilution rates studied. This indicates that the growth of cells in continuous culture is not limited by the maximum rate of uptake of glucose but by the availability of glucose for transport. The work represents an example of how quantitative flow cytometry can be applied to gain detailed insight into microbial growth physiology.  相似文献   

18.
The mixed culture kinetics of stringent and relaxed Escherichia coli cells were investigated in a glucose-limited chemostat at different dilution rates. Independent of the dilution rate the stringent cells competed out the relaxed cells. But the number of generations necessary for displaying the relaxed cells by the stringent ones increased with increasing dilution rate. The results are discussed as a consequence of the regulatory role of guanosine-5'-diphosphate-3'-diphosphate (ppGpp) which is known to be present at different concentrations in stringent and relaxed cells under conditions of nutrient limitation. In addition, it is postulated that the coefficient of the maintenance metabolism according to PIRT (1965) is slower in stringent cells than in relaxed cells of E. coli.  相似文献   

19.
The role of the rRNA gene copy number as a central component of bacterial life histories was studied by using strains of Escherichia coli in which one or two of the seven rRNA operons (rrnA and/or rrnB) were deleted. The relative fitness of these strains was determined in competition experiments in both batch and chemostat cultures. In batch cultures, the decrease in relative fitness corresponded to the number of rRNA operons deleted, which could be accounted for completely by increased lag times and decreased growth rates. The magnitude of the deleterious effect varied with the environment in which fitness was measured: the negative consequences of rRNA operon deletions increased under culture conditions permitting more-rapid growth. The rRNA operon deletion strains were not more effective competitors under the regimen of constant, limited resources provided in chemostat cultures. Enhanced fitness in chemostat cultures would have suggested a simple tradeoff in which deletion strains grew faster (due to more efficient resource utilization) under resource limitation. The contributions of growth rate, lag time, Ks, and death rate to the fitness of each strain were verified through mathematical simulation of competition experiments. These data support the hypothesis that multiple rRNA operons are a component of bacterial life history and that they confer a selective advantage permitting microbes to respond quickly and grow rapidly in environments characterized by fluctuations in resource availability.  相似文献   

20.
The heterotrophic bacterial strain HIS 53 was grown in a continuous culture under chemostat conditions and at sinusoidal or stepwise variations of the dilution rate; aspartate, ammonium, and phosphate were the growth-limiting nutrients. Within a specific nutrient limitation the growth yield was constant and independent of the applied environmental conditions. Compared with the reference chemostat culture, sinusoidal variations of the dilution rate increased the cellular RNA level by 19%–53% dependent on the growth limitation; stepwise variations caused an increase of the RNA level by 28%–41%. It was hypothesized that under the variable environmental conditions in the natural habitat the physiological potential of the organism is enhanced by some such increase of the cellular RNA level. As a consequence these increased RNA levels influence the competition between heterotrophic bacteria and, as a result, also the composition of the population of heterotrophic bacteria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号