首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae), or fall armyworm, is an important agricultural pest of several crops in the Western Hemisphere, including cotton (Gossypium L.). Two morphologically identical host strains of fall armyworm exist that differ in plant host use and habitat distribution. The corn-strain is a primary pest of corn, Zea mays L., whereas the rice-strain is the majority population infesting rice (Oryza spp.) and turfgrass (Cynodon spp.). With the increased use of Bacillus thuringiensis (Bt) toxin-expressing cotton varieties and the necessity of ensuring adequate refuge areas to prevent the spread of Bt toxin resistance, it is crucial to identify the alternative plant hosts available for the fall armyworm population infesting cotton. Stable isotope analysis combined with the molecular analysis of strain-specific markers was used to investigate whether one or both strains routinely develop on cotton grown in the Mississippi delta. We found that the majority of fall armyworm adults present during the early cotton growing season arose from C4 plants (e.g., corn and sorghum, Sorghum vulgare Pers.) and that the only strain likely to be developing on cotton (a C3 plant) in substantial numbers was the corn-strain. The population distribution patterns observed were consistent with corn providing an important refuge for the fall armyworm strain infesting cotton and suggested that late season populations in the Mississippi delta may be migrants from more northern corn areas.  相似文献   

2.
Mitochondrial DNA from the fall armyworm, Spodoptera frugiperda (J.E. Smith), was cloned and characterized using restriction enzyme mapping. Genome size is approximately 16.3 kilobase (Kb), consistent with that of most animals. Three fragments, 8.1 Kb, 6.2 Kb, and 2.0 Kb, were produced by digestion with restriction enzyme Xbal and cloned into a pUC19 vector. Twenty-nine restriction enzymes were used to generate a detailed physical restriction enzyme map of the three cloned fragments. These data represent the first detailed characterization of a lepidopteran mitochondrial genome. © 1992 Wiley-Liss, Inc.  相似文献   

3.
Studies were undertaken to investigate vitellogenesis and its regulation in female adults of the fall armyworm, Spodoptera frugiperda. A single female-specific protein, likely to be the S. frugiperda vitellogenin (Vg), appeared approximately 5 h after adult eclosion in the hemolymph of virgin females. The concentration of the protein increased with age as sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) revealed. A protein with the same relative molecular mass was also present in egg extracts, but absent from hemolymph samples from male moths. The relative molecular mass of the designated S. frugiperda Vg was determined as 164.5+/-2.5 kDa. Vitellogenic oocytes became visible 36-48 h after emergence and egg deposition began on day 3 of adult life. Vg could not be detected in the hemolymph of females decapitated directly after eclosion. When decapitated virgin females were injected with the JH-mimic methoprene (MP), the level of Vg was comparable to that in non-decapitated moths, indicating that vitellogenesis in S. frugiperda depends on juvenile hormone (JH). However, the number of vitellogenic oocytes was somewhat lower than in non-decapitated virgin females. Injection of 20-hydroxyecdysone (20E) promoted Vg production to a similar extent in decapitated female moths, but in contrast to methoprene injection, treatment with 20E never resulted in the production of vitellogenic oocytes. In vitro cultivated ovaries of adult females dissected directly after eclosion produced lower amounts of ecdysteroids than those isolated on day 1 after emergence. Our results suggest a crucial role for 20E in the induction of vitellogenesis in the noctuid S. frugiperda, while JH seems to be essential for the continued uptake of Vg by developing oocytes and may trigger 20E biosynthesis in the ovary.  相似文献   

4.
Leaf-feeding damage by first generation larvae of fall armyworm, Spodopter frugiperda (J. E. Smith) (Lepidoptera: Noctuidae), and southwestern corn borer, Diatraea grandiosella Dyar (Lepidoptera: Crambidae), cause major economic losses each year in maize, Zea mays L. A previous study identified quantitative trait loci (QTL) contributing to reduced leaf-feeding damage by these insects in the maize line Mp704. This study was initiated to identify QTL and their interactions associated with first generation leaf-feeding damage by fall armyworm and southwestern corn borer. QTL associated with fall armyworm and southwestern corn borer resistance in resistant line Mp708 were identified and compared with Mp704. Multiple trait analysis (MTA) of both data sets was then used to identify the most important genetic regions affecting resistance to fall armyworm and southwestern corn borer leaf-feeding damage. Genetic models containing four and seven QTL explained southwestern corn borer and fall armyworm resistance, respectively, in Mp708. Key genomic regions on chromosomes 1, 5, 7, and 9 were identified by MTA in Mp704 and Mp708 that confer resistance to both fall armyworm and southwestern corn borer. QTL regions on chromosomes 1, 5, 7, and 9 contained resistance to both insects and were present in both resistant lines. These regions correspond with previously identified QTL related to resistance to other lepidopteran insects, suggesting that broad-spectrum resistance to leaf feeding is primarily controlled by only a few genetic regions in this germplasm.  相似文献   

5.
The in vitro production of juvenile hormones (JH) was investigated by using corpora allata (CA) of larvae and corpora cardiaca-corpora allata (CC-CA) complexes of adult females of the fall armyworm Spodoptera frugiperda. In female moths, JH release was high compared to that in 5th and 6th instar larvae. Concentrations of 0.11-0.12 mM methionine, 180-200 mM Na(+), 5.8-8.3 mM K(+), 10-50 mM Ca(2+) and a pH range of 5.7-6.3 yielded optimal incorporation of L-[methyl-(3)H] methionine in vitro by CC-CA complexes. The highest hourly incorporation occurred during a 9-h incubation period following a 1.5-h lag-phase. JH release from CC-CA complexes of adult females was shown to be age-dependent with a peak value on day 2 (approx. 4 pmol h(-1) CA(-1)). By a combination of reversed phase (RP)- and normal phase (NP)-high performance liquid chromatography (HPLC), two major labelled products released by the complex were separated. One compound co-migrated with chemically synthesized JH II diol, the second compound with JH III diol. Only traces of JH II and III could be detected in some samples. Gland extracts also contained both the major radiolabelled products. Double labelling experiments using [3H]methionine and [14C]acetate confirmed their de novo synthesis in CC-CA complexes of female moths. The nature of chemically synthesized reference JH III diol was proved by LC-MS (ESI mass spectrometry) and 1H-NMR (nuclear magnetic resonance spectroscopy).  相似文献   

6.
草地贪夜蛾的性信息素通讯研究进展   总被引:5,自引:0,他引:5  
江南纪  王琛柱 《昆虫学报》2019,62(8):993-1002
草地贪夜蛾Spodoptera frugiperda原产于美洲,具有长距离迁飞特性。该虫于1988年入侵欧洲,2016年入侵非洲,并引起巨大的粮食损失,2018年入侵亚洲,2019年从缅甸传入中国,并在短时间扩散至全国10多个省。草地贪夜蛾依赖性信息素通讯,实现雌雄间识别、交配和繁衍,为了深入研究草地贪夜蛾的性信息素通讯及其机制并开发更高效的预测预报和防治技术,本文综述了草地贪夜蛾性信息素通讯的研究现状。1967年首次报道草地贪夜蛾性信息素为顺9-十四乙酸酯,随后发现有不同的鉴定结果,1986年确认其性信息素由顺9-十四乙酸酯和顺7-十二乙酸酯两个组分组成,其比例为96.6∶3.4时表现出最强的引诱活性。除此而外,对不同地理种群的研究发现,草地贪夜蛾雌蛾的信息素腺体提取物还存在顺9-十二乙酸酯、顺11-十六乙酸酯和反7-十二乙酸酯,田间实验表明这些物质在性信息素通讯中也可发挥作用。根据分子标记和喜食寄主,草地贪夜蛾可分为玉米品系和水稻品系。两个品系在外部形态上无法区分,性信息素组分也相同,但在组分比例上存在一定的差异。两个品系间存在一定程度的生殖隔离,但室内可以正交和反交并产生可育的F1代,F1代的性信息素比例与母本的比较相似。关于草地贪夜蛾雄性对性信息素的感受机制方面研究较少,仅见有感器形态的鉴定和对性信息素组分的触角电位反应研究的报道。根据目前草地贪夜蛾在我国的发生情况及其性信息素通讯机制的研究现状,我们建议尽快开展以下研究:(1)鉴定草地贪夜蛾我国入侵种群的雌性性信息素,尽快用于其种群动态监测及防治;(2)研究草地贪夜蛾雄性对性信息素的嗅觉编码机制;(3)研究草地贪夜蛾两个品系的行为隔离程度及其演化结局。  相似文献   

7.
Grass selections including 10 zoysiagrasses, 18 paspalums, 34 Bermuda grasses, tall fescue, creeping red fescue, and perennial ryegrasses with and without endophyte were evaluated for potential resistance to fall armyworm, Spodoptera frugiperda (J. E. Smith), larvae. Laboratory evaluations assessed the degree of antibiosis among >70 grass lines to first-instar fall armvworms. When all parameters measured were considered, the trend in resistance to fall armyworm among endophyte-infected (E+) and endophyte-free (E-) cool season grasses from greatest to least was: 'Dawson' E+ > APR 1234 > 'Dawson' E- > 'Rosalin' E+ > Lp 5425, 'Rosalin' E-, ATF 480 > 'Tulsa' or: E+ slender creeping red fescue > E+ turf- type perennial ryegrass > E- slender creeping red fescue > E+ forage-type perennial ryegrass > E- forage-type perennial ryegrasses, and E+ tall fescue > E- turf-type tall fescue. Among warm season grasses larval weight gain was reduced on all zoysiagrasses. Larval weight gain also was lower on the Bermuda grasses 'Tifsport', 'Tifgreen', 97-4, 97-14, 97-22, 97-28, 97-39, 97-40,97-54, 98-15, 98-30, and 98-45 than when larvae were fed 'Tulsa' tall fescue or the diet control. Only APR1234 and 'Dawson' creeping red fescue reduced larval survival to the same extent that was observed for zoysiagrasses. Survival on Bermuda grasses was least on 97-8. Seashore paspalums were only rarely less susceptible to fall armyworm than tall fescue, although pupal weights were consistently lower on 'Temple 1' and 'Sea Isle 1' paspalums than that on 'Tulsa' tall fescue. Genetic resistance to key grass pests can reduce insecticide use and simplify management of these cultivars.  相似文献   

8.
Fall armyworm, Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae), is a major economic pest throughout the Western Hemisphere. Populations can be subdivided into two morphologically identical but genetically distinct strains (corn-strain and rice-strain) that differ in their host plant preferences. These strains can be distinguished by using polymorphisms in the mitochondrial cytochrome oxidase 1 gene. Additional sequence analysis of this locus identified two sites that were highly polymorphic in the corn-strain population and that produced four different haplotype subgroups. Comparisons of the frequency distribution of these haplotypes found no seasonal or plant host specificities, but they did demonstrate that the Brazil corn-strain population is different from corn-strain fall armyworm found in Florida. The development of a rapid means of distinguishing fall armyworm populations originating from Brazil versus Florida provides an opportunity for investigating and comparing the genetic complexity and long-range movements of this important agricultural pest.  相似文献   

9.
We examined 17 pairs of near-isogenic hybrids of Bacillus thuringiensis (Bt) (176, Mon810, and Bt11) and non-Bt corn, Zea mays L., to examine the effects of Bt on larval densities of Helicoverpa zea (Boddie) and Spodoptera frugiperda (J. E. Smith) (Lepidoptera: Noctuidae) during 2 yr. During ear formation, instar densities of H. zea and S. frugiperda were recorded for each hybrid. We found that H. zea first, second, and fifth instar densities were each affected by Mon810 and Bt11 Bt corn but not by 176 corn. Surprisingly, first and second instars were found in higher numbers on ears of Mon810 and Bt11 corn than on non-Bt corn. Densities of third and fourth instars were equal on Bt and non-Bt hybrids, whereas densities of fifth instars were lower on Bt plants. S. frugiperda larval densities were only affected during 1 yr when second, and fourth to sixth instars were lower on ears of Mon810 and Bt11 hybrids compared with their non-Bt counterparts. Two likely explanations for early instar H. zea densities being higher on Bt corn than non-Bt corn are that (1) Bt toxins delay development, creating a greater abundance of early instars that eventually die, and (2) reduced survival of H. zea to later instars on Bt corn decreased the normal asymmetric cannibalism or H. zea-S. frugiperda intraguild predation of late instars on early instars. Either explanation could explain why differences between Bt and non-Bt plants were greater for H. zea than S. frugiperda, because H. zea is more strongly affected by Bt toxins and more cannibalistic.  相似文献   

10.
Fall armyworm, Spodoptera frugiperda (J.E. Smith), and corn earworm, Helicoverpa zea (Boddie), perennially cause leaf and ear damage to corn, Zea mays L., in the southeastern United States. Transgenic Bacillus thuringiensis (Bt) hybrids with the Bt11, MON810, or 176 events expressing the Cry1Ab insecticidal endotoxin from were evaluated for control fall armyworm and corn earworm at seven locations in Georgia during 1999 and 2000. Corn was planted at the recommended time for each location and 1 and 2 mo later in the southern locations. All Bt events consistently reduced whorl infestation and damage, although event 176 did not prevent whorl damage in the later plantings in the southern locations in both years. All events also reduced seedling damage by the lesser cornstalk borer, Elasmopalpus lignosellus (Zeller), in one trial and stalk infestations and tunnel length by southwestern corn borers, Diatraea grandiosella Dyar, in another trial. Hybrids containing Bt11 and MON810 events reduced ear infestations in all trials, although reductions were small in later plantings. Nevertheless, both events reduced grain damage from earworms and armyworms by an average +/- SE of 52.5 +/- 5.1% in all trials. The hybrid containing event 176 did not reduce ear infestations and damage. Total grain aflatoxin concentrations were not significantly affected by Bt resistance in any trial (N = 17). Yield responses were variable with the prevention of yield loss being proportional to the severity of insect damage. Although plantings made after the recommended time did not consistently benefit from Bt resistance, Bt11 and MON810 events were effective in reducing damage to field corn when large infestations occurred. The Bt11 and MON810 events mitigated the risk of severe lepidopteran damage to corn, thereby making later plantings of corn feasible in double-cropping systems.  相似文献   

11.
Plant resistance is a useful component of integrated pest management for several insects that are economically damaging to maize, Zea mays L. In this study, 15 experimental lines of maize derived from a backcross breeding program were evaluated for resistance to corn earworm, Helicoverpa zea (Boddie); fall armyworm, Spodoptera frugiperda (J. E. Smith); southwestern corn borer, Diatraea grandiosella Dyar; and sugarcane borer, Diatraea saccharalis (F.). Experimental line 100-R-3 was resistant in the field to leaf feeding by fall armyworm and line 116-B-10 was resistant in the field to leaf feeding by fall armyworm and leaf and stalk feeding by southwestern corn borer. When corn earworm larvae were fed field harvested silks from experimental line 81-9-B in the laboratory, their pupal weights were significantly lower than the pupal weights of larvae that were fed silks from the resistant control, Zapalote Chico. Maysin levels lower than those commonly associated with corn earworm resistance were present in the resistant experimental line, 107-8-7, indicating a new basis confers resistance to corn earworm in this line. These resistant experimental lines will provide plant breeders with new sources of resistance to lepidopterous insects for the development of improved maize breeding populations.  相似文献   

12.
The noctuid moth Spodoptera frugiperda consists of two strains associated with different larval host plants (most notably corn and rice). These strains exhibit differential temporal patterns of female calling and copulation during scotophase, with the corn strain more active earlier in the night. We investigated strain‐specific constraints in reproductive timing, mating interactions between the two strains, and the mode of inheritance of timing of female calling, male calling, copulation and oviposition. We observed an allochronic shift of all reproductive behaviours by approximately 3 h and a parallel shift of nonreproductive locomotor activity, suggesting involvement of the circadian clock. The corn strain was more variable in the timing of calling and copulation than the rice strain. Rice strain females were more restricted in the timing of copulation than rice strain males, while such differences between the sexes were not apparent in the corn strain. There were significant interactions between the strains affecting onset times of copulation and male calling. The four investigated reproductive traits differed in their modes of inheritance: timing of female and male calling exhibited strong maternal effects, timing of copulation was controlled by a combination of maternal effects and corn strain dominant autosomal factors, and timing of oviposition was inherited in a corn strain dominant fashion. We conclude that the allochronic separation of reproduction between fall armyworm strains is asymmetric, less pronounced than previously thought, and under complex genetic control.  相似文献   

13.
【目的】本研究旨在明确氰氟虫腙对草地贪夜蛾Spodoptera frugiperda幼虫的毒力水平和田间防治效果,为科学使用氰氟虫腙防治草地贪夜蛾提供参考依据。【方法】采用饲料混毒法在室内测定了氰氟虫腙与4种常用杀虫剂甲维盐、氯虫苯甲酰胺、虱螨脲和茚虫威对草地贪夜蛾3和6龄幼虫的致死中浓度(LC50)及LC90值,以及LC90浓度的这些杀虫剂对3龄幼虫的致死中时(medium lethal time, LT50)值。采用人工喷雾方法测定了玉米田中22%氰氟虫腙悬浮剂(6.6 g/667 m2)、22%氰氟虫腙悬浮剂(17.6 g/667 m2)、5.7%甲维盐水分散剂(1 g/667 m2)和150 g/L茚虫威悬浮剂(2 g/667 m2)对草地贪夜蛾幼虫的防效。【结果】室内生测结果显示,供试的5种杀虫剂中氰氟虫腙对草地贪夜蛾3和6龄幼虫均具有较高的毒力,其LC50值分别为2.64和4.3...  相似文献   

14.
Abstract Three commercial neem [ Azadirachta indica A. Juss (Meliaceae)]-based insecticides, Agroneem, Ecozin, and Neemix, and a non-commercial neem leaf powder, were evaluated for oviposition deterrence, antifeedant effect on larvae, and toxicity to eggs and larvae of the beet armyworm, Spodoptera exigua (Hübner) (Lepidoptera: Noctuidae), on cotton leaves in the laboratory. Oviposition deterrence in no-choice, and two- and fivechoice assays, was observed for the neem-based insecticide treatments when compared with a non-treated control. Neem-based insecticides also deterred feeding by beet armyworm larvae. Direct contact with neem-based insecticides decreased the survival of beet armyworm eggs. Survival of beet armyworm larvae fed for 7 days on leaves treated with neembased insecticides was reduced to 27, 33, 60, and 61% for neem leaf powder, Ecozin, Agroneem, and Neemix, respectively. Possibilities for adoption of neem-based insecticides in commercial cotton for beet armyworm control are discussed.  相似文献   

15.
16.
A high level of genetic variability was detected in North American fall armyworm (FA W), Spodoptera frugiperda (J. E. Smith), populations by restriction fragment length polymorphism (RFLP) analysis of genomic DNA. In nearly all cases individual larvae could be differentiated using 22 probe-enzyme combinations. Laboratory colonies formed distinct groups based on RFLP analysis. Individuals from a colony of the previously determined ‘rice strain’ formed a group showing obvious deviation in RFLP patterns from the other five populations, which included a population from a ‘com strain’ colony. The results were consistent with previous studies using allozymes which indicated that there are two genetically differentiated forms of the fall armyworm. Diagnostic markers were also found that distinguish these two groups.  相似文献   

17.
Fall armyworm, Spodoptera frugiperda (J. E. Smith) (Lepidoptera: Noctuidae), infestations in most of North America north of Mexico arise from annual migrations of populations that overwinter in southern Texas and Florida. A comparison of the cytochrome oxidase I haplotype profiles within the fall armyworm corn-strain, the subgroup that preferentially infests corn (Zea mays L.) and sorghum (Sorghum vulgare Pers.), identified significant differences in the proportions of certain haplotypes between the Texas and Florida populations. These proportional differences were preserved as the populations migrated, providing a molecular metric by which the source of a migrant population could be identified. The migratory pattern derived from this method for several southeastern states was shown to be consistent with predictions based on analysis of historical agricultural and fall armyworm infestation data. These results demonstrate the utility of haplotype proportions to monitor fall armyworm migration, and they also introduce a potential method to predict the severity of cotton crop infestations in the short term.  相似文献   

18.
为了明确广东省草地贪夜蛾Spodoptera frugiperda(J. E. Smith)种群周年消长动态及发生特征,根据2020年和2021年广东省草地贪夜蛾性诱监测及田间调查数据,分析不同生态区草地贪夜蛾成虫及幼虫种群周年发生动态。结果表明:(1)草地贪夜蛾在广东省大部分冬种玉米区可以周年繁殖,仅在清远、韶关、河源等地未发现幼虫为害;不同地区之间草地贪夜蛾越冬虫源基数差异较大,粤西发生为害较重,珠三角及粤东地区发生相对较轻;(2)周年繁殖区草地贪夜蛾成虫和幼虫全年均可发生为害,而季节发生区一般于3-4月才零星始见草地贪夜蛾成虫和幼虫,且诱蛾量、幼虫种群数量及为害程度均相对较低;(3)广东省草地贪夜蛾种群消长动态呈多峰型,发生高峰期主要集中于5-10月,期间出现多个大小不等的高峰,但峰期、蛾量和虫量在不同地区之间差异较大。本研究明确了广东省不同生态区草地贪夜蛾种群的周年消长动态及发生特征,为广东省乃至全国草地贪夜蛾的早期预警和精准防控提供重要参考。  相似文献   

19.
The fall armyworm (FAW), Spodoptera frugiperda, is a major pest of maize in North and South America. It was first reported from Africa in 2016 and currently established as a major invasive pest of maize. A survey was conducted to explore for natural enemies of the fall armyworm in Ethiopia, Kenya and Tanzania in 2017. Smallholder maize farms were randomly selected and surveyed in the three countries. Five different species of parasitoids were recovered from fall armyworm eggs and larvae, including four within the Hymenoptera and one Dipteran. These species are new associations with FAW and were never reported before from Africa, North and South America. In Ethiopia, Cotesia icipe was the dominant larval parasitoid with parasitism ranging from 33.8% to 45.3%, while in Kenya, the tachinid fly, Palexorista zonata, was the primary parasitoid with 12.5% parasitism. Charops ater and Coccygidium luteum were the most common parasitoids in Kenya and Tanzania with parasitism ranging from 6 to 12%, and 4 to 8.3%, respectively. Although fall armyworm has rapidly spread throughout these three countries, we were encouraged to see a reasonable level of biological control in place. This study is of paramount importance in designing a biological control program for fall armyworm, either through conservation of native natural enemies or augmentative release.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号