首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The stable fly, Stomoxys calcitrans (L.), historically has been a pest of livestock in confined operations but seldom of animals on pastures or rangelands. In the past two decades, however, S. calcitrans has become a major pest of cattle and horses on pastures in the midwestern United States. Although there usually is an overabundance of diverse stable fly and house fly, Musca domestica L., larval habitats in confined livestock operations, no larval habitat for stable flies has been clearly identified in the pasture-range environment. Because the winter feeding of hay in round bales results in significant amounts of hay wastage that when mixed with manure, might develop into suitable larval habitats, this study evaluated these areas as developmental sites for the abundant stable flies in pastures. There was a trend for fly traps placed in the vicinity of hay feeding sites to catch more stable flies than those placed distant from these sites. Estimates of stable flies emerging from these sites ranged from 102 to 1225 flies per core sample (25 by 25 cm). The mean number of adult stable flies during May and June 2001 through 2004 correlated negatively with the average minimum temperatures during the preceding winter (November-February) but not with rainfall or temperatures during the spring. These results support the hypothesis that winter feeding sites of hay in round bales are the main source of stable flies in pastures.  相似文献   

2.
Residues at sites where stationary feeders were used to provide hay as supplemental forage for cattle during the winter are developmental substrates for immature stable flies, Stomoxys calcitrans (L.), in the central United States. Spatial patterns in physical (substrate depth, temperature, water content), chemical (pH, electrical conductivity [EC(lab)], total nitrogen [N] and carbon [C], ammoniacal nitrogen [NH(4)-N], extractable phosphorus [P]), and biological (microbial respiration rate) substrate properties for two feeding sites were estimated and the correlations between these properties and adult emergence were characterized. Hay feeding sites had a circular footprint with residues extending ≈7 m from the feeder. With the exception of extractable P and total N, all substrate properties exhibited spatial patterns centered on the feeder location. Adult stable fly emergence densities were significantly correlated with substrate microbial respiration rate, NH(4)-N concentration, EC(lab), total C concentration, pH, and moisture content. Logistic regression indicated that EC best predicted the probability of stable flies emerging from a substrate and that the other properties did not provide additional information. A better understanding of the physical, chemical, and biological conditions needed for stable fly larval development may help in identifying previously unrecognized developmental habitats and management of this pest. Targeted implementation of management practices such as sanitation and chemical treatments can be applied to smaller areas reducing labor and improving cost effectiveness.  相似文献   

3.
Throughout the winter and early spring months, stable fly, Stomoxys calcitrans (L.), and house fly, Musca domestica L., puparia were collected from silage, hay, and manure from six dairies in northwestern Florida and evaluated for parasitism. Of the puparia producing flies or parasites, 23% of the stable flies and 46% of the house flies were parasitized. The predominant parasite observed attacking muscoid flies (76% for stable flies and 58% for house flies) was Spalangia cameroni Perkins. Muscidifurax sp. was recovered from 11 and 36% of the stable fly and house fly pupae, respectively. Other parasite species encountered were Spalangia endius Walker and S. nigroaenea Curtis. Significantly more parasitized fly pupae were collected from silage than from hay residues or manure. Winter and early spring parasite populations in northwestern Florida appear to be present as long as viable fly pupae are available to support the developing parasites.  相似文献   

4.
Seven mark-recapture studies were conducted over 3 yr to assess dispersal of newly emerging adult stable flies, Stomoxys calcitrans L., from larval development sites in a mixed agricultural environment in northeastern Nebraska. Infested hay debris piles were marked by dusting their surfaces with fluorescent pigments, adults were captured with surrounding grids of Alsynite sticky traps, and specimens were dissected to determine feeding histories and reproductive age. Distances and directions of 3,889 marked specimens indicated males and females dispersed equally and in all directions. Midguts of males and females were equally likely to contain blood-meal remnants. Percentage with blood remnants and percentage of females with yolk increased with distance from mark origin, indicating survival and spread were positively associated with host finding success. A time-integrated diffusion model fit to results from the seven studies indicated 50% of stable fly adults had dispersed beyond 1.6 km of their natal site, but only 5% had dispersed beyond 5.1 km. These results indicate that stable fly adults on cattle in a given area are most likely to have originated from larval development sites within an ≈ 5 km radius of the subject cattle.  相似文献   

5.
The stable fly, Stomoxys calcitrans (L.) (Diptera: Muscidae), is one of the most significant biting flies that affect cattle. The use of traditional insecticides for stable fly control has only a limited success owing to the insect's unique feeding behaviours and immature development sites. A laboratory study was conducted to evaluate the effects of two insect growth regulator (IGR) products, pyriproxyfen and buprofezin, on the development of the immature stages of the stable fly and the effects of pyriproxyfen on oviposition and egg hatch. Both pyriproxyfen and buprofezin had significant inhibitory effects on immature development. The LC50s of pyriproxyfen and buprofezin were 0.002 and 18.92 p.p.m., respectively. Topical treatment of adult females with different doses of pyriproxyfen had significant negative effects on both female oviposition and egg hatching when 1‐ and 3‐day‐old females were treated, and the effects were dose dependent. A significant reduction in the mean number of eggs laid was observed only at the highest pyriproxyfen dose (8 µg/fly) and egg hatch was unaffected by pyriproxyfen treatment when 5‐day‐old females were treated. Results from the present study indicate that pyriproxyfen has the potential to be used as part of an integrated stable fly management programme.  相似文献   

6.
Chemicals are important tools in our effort to control livestock ectoparasites, and they are likely to remain so in the foreseeable future. Chemical control is the most widely used and in most cases the only method available to the producer. Therefore, it is imperative that we continue to seek new chemicals as well as new systems for delivery of those chemicals in an effective, efficient, and safe manner.New approaches to chemical control involve both new chemicals and new delivery systems in a complementary and often a synergistic relationship. Three relatively new classes of chemicals, pyrethroids, insect growth regulators, and avermectins, have provided special opportunities for development of new delivery systems.The development of the insecticidal ear tag has been perhaps the most significant new approach to chemical control of livestock ectoparasites in recent years. Although originally developed for control of ear ticks, the tag has had its greatest impact on control of the horn fly, a major pest of cattle in the U.S. The pyrethroid tags provided season-long control of horn flies in most climates and at the same time dramatically reduced the use of pesticide. Unfortunately, the problem of resistance to pyrethroids in the tags has been encountered. Unless effective techniques for resistance management can be developed, the producer may lose this valuable new tool.Sustained-release boluses provide a means of delivering IGR's, such as methoprene and diflubenzuron, for control of immature stages of the horn fly and face fly in manure of cattle. These devices are designed to lodge in the reticulum of cattle and release the chemical to the digestive tract over an extended period. Bolus formulations may in fact provide a tool for management of horn fly resistance to pyrethroids.Ivermectin, a potent new chemical from a new class of agricultural pesticides, provides an important opportunity for developing innovative delivery systems for control of livestock pests. Its systemic activity against ticks and blood-sucking flies at extremely low dosages provides potential for development of long-lasting subcutaneous implants. Its ability to control immature stages of dung-breeding flies, such as the horn fly and face fly, offers the potential for development of sustained-release boluses for larvicidal treatments.These three selected examples of new approaches to chemical control of livestock ectoparasites point to two obvious trends: 1) reduction in quantity of a chemical to be applied without sacrifice of efficacy and 2) use of controlled-release technology to prolong effectiveness of the chemical. Although the examples presented are focused on applications to cattle, similar approaches have application for other livestock. New approaches such as these have important implications in implementation of either area-wide or IPM control programs. Such programs will need convenient and effective chemical delivery systems to be successful if in fact chemicals are to be a part of the programs.  相似文献   

7.
The stable fly, Stomoxys calcitrans (L.) (Diptera: Muscidae), is one of the most serious pests to livestock. It feeds mainly on cattle and causes significant economic losses in the cattle industry. Standard stable fly control involving insecticides and sanitation is usually costly and often has limited effectiveness. As we continue to evaluate and develop safer fly control strategies, the present study reports on the effectiveness of catnip (Nepeta cataria L.) oil and its constituent compounds, nepetalactones, as stable fly repellents. The essential oil of catnip reduced the feeding of stable flies by >96% in an in vitro bioassay system, compared with other sesquiterpene-rich plant oils (e.g. amyris and sandalwood). Catnip oil demonstrated strong repellency against stable flies relative to other chemicals for repelling biting insects, including isolongifolenone, 2-methylpiperidinyl-3-cyclohexen-1-carboxamide and (1S,2'S)-2-methylpiperidinyl-3-cyclohexen-1-carboxamide. The repellency against stable flies of the most commonly used mosquito repellent, DEET, was relatively low. In field trials, two formulations of catnip oil provided >95% protection and were effective for up to 6 h when tested on cattle. Catnip oil also acted as a strong oviposition repellent and reduced gravid stable fly oviposition by 98%.  相似文献   

8.
Populations of the bush fly Musca vetustissima were usually low in arid south-western Australia. Herbaceous plants that grew only after rain resulted in changes to cattle dung that increased its attractiveness to bush flies for oviposition in laboratory tests. Larvae reared in such dung consistently produced large flies of high fecundity, and larval survival was usually high. Similar responses to the dung were evident from examination of flies sampled in the field. Although greatly increased bush fly abundance was possible only after major improvement in cattle dung, it was not a general phenomenon as immature survival did not always increase. Even major population increases resulted from periods of high immature survival that were brief relative to the duration of favourable dung. Nematodes Heterotylenchus sp. appeared to be an important mortality factor of the immature stages at such times. Build-up of high bush fly populations occurred only in cattle-grazing areas, but base-level abundance was similar regardless of the presence of cattle. Almost all female flies were gravid when cattle dung was unfavourable for breeding, and in areas without cattle. In arid areas, acceptable oviposition sites probably are more limiting than are sources of protein for oögensis.  相似文献   

9.
Effects of azadirachtin, a triterpenoid extracted from neem seed, Azadirachta indica A. Juss., were similar to those of insect growth regulators against the immature stages of the born fly, Haematobia irritans (L.), the stable fly, Stomoxys calcitrans (L.), and the house fly, Musca domestica L. When an ethanolic extract of ground seed was blended into cow manure, LC50 and LC90's for larval horn flies were 0.096 and 0.133 ppm azadirachtin, respectively. An emulsifiable concentrate (EC) had an LC50 for larval horn flies of 0.151 ppm and an LC90 of 0.268 ppm. For larval stable flies, the EC formulation had an LC50 of 7.7 ppm and an LC90 of 18.7 ppm azadirachtin in manure. Against larval house flies, the LC50 and LC90 were 10.5 and 20.2 ppm, respectively. When the EC formulation was administered orally to cattle at a rate of greater than or equal to 0.03 mg azadirachtin per kg of body weight per day or when ground neem seed was given as a daily supplement of greater than or equal to 10 mg seed per kg body weight, horn fly development in the manure was almost completely inhibited. In contrast, ground seed mixed in cattle feed at the rate of 100-400 mg seed per kg of body weight per day caused less than 50% inhibition of stable flies in the manure.  相似文献   

10.
Cattle respond to the feeding of stable flies, Stomoxys calcitrans (L.), by bunching to protect their front legs. This bunching can increase heat stress which indirectly accounts for much of the reduction in cattle weight gains. We used fly-screened, self-contained feedlot pens which allowed regulation of fly populations feeding on cattle. The indirect fly effects (bunching and heat stress) accounted for 71.5% of the reduced weight gain. The direct effect of the biting flies and energy loss involved in fighting flies accounted for 28.5% of the reduced weight gain.  相似文献   

11.
A 3-yr study was done to determine where and at what relative frequency stable fly, Stomoxys calcitrans (L.), immatures develop in beef cattle feedlot pens and the relationship of stable fly immature versus adult sample densities. Pens within feedlots were divided into five areas (the feed apron, back fence, side fences, mound, and the general lot); from each area, three core samples were randomly taken weekly. In 1986 and 1987, the feed apron yielded the most immature stable flies (62.5%). The mound and side fences yielded a significant percentage of flies (24.6 and 8.4%, respectively). There was a strong correlation (overall r = 0.86) between numbers of immatures and numbers of adults 2 wk later. In 1988, a drought year, low numbers of immatures were collected, and only one correlation between numbers of immatures and adults was significant. In all 3 yr, sample densities of stable fly immatures peaked and began to decline by midseason. Waste management along the feed apron and mound areas could significantly reduce stable fly populations. Sampling immatures from these areas could permit prediction of adult numbers.  相似文献   

12.
The concentration of ivermectin in the serum of Hereford heifers treated with a single Ivomec SR bolus reached a maximum of 8.8 +/- 0.9 ppb at 2 wk post-treatment. The single bolus treatment resulted in <10% mortality of adult horn flies feeding on the blood of the treated animals over the 21-wk trial. Bioassays of the manure from treated cattle showed complete inhibition of development of immature horn flies through week 19 post-treatment. When the trial was repeated using two Ivomec SR boluses/heifer, the concentration of ivermectin in the serum of the treated cattle reached a maximum level of 31.2 +/- 3.9 ppb at week 13 post-treatment. During the first 17 wk of treatment, the use of two boluses/heifer resulted in 96.2 and 81.2% mortality of adult male and female horn flies feeding on the blood of treated animals, respectively. From these studies, we conclude that a single Ivomec SR bolus used as an anthelmintic treatment can be expected to provide significant control of immature horn flies developing in the manure, but not of adults feeding on the treated cattle.  相似文献   

13.
The value of cattle dung as a food resource for the bush fly Musca vetustissima (Walker) in the winter rainfall agricultural region of southwestern Australia was assessed by bioassay in the laboratory. The size (headwidth) of adult females was measured from flies reared on different samples of dung. Variation in size correlated with seasonal patterns of pasture growth, larger flies being produced during the growing season from autumn to spring. Size declined with senescence of annual pastures in late spring and early summer, occurring later in southern areas where the growing season was longer. After pasture senescence, dung from shorter growing season areas usually produced larger flies, apparently a result of the inverse relationship between digestibility of feed and length of growing season. Dung from irrigated perennial pastures never produced flies as large as that from annual pastures but generally high values were sustained during summer. Grazing of cereal stubble and feeding of hay in annual pasture areas during summer usually caused some increase in fly size. A spontaneous resurgence in the size of flies often occurred several weeks after pasture senescence and was attributed to more thorough digestion as a result of reduced intake of less palatable dry pasture.  相似文献   

14.
Stable flies, Stomoxys calcitrans (L.), are the most important pests of cattle in the United States. However, adequate management strategies for stable flies, especially for pastured cattle, are lacking. Microbial/symbiont-based approaches offer novel venues for management of insect pests and/or vector-borne human and animal pathogens. Unfortunately, the fundamental knowledge of stable fly-microbial associations and their effect on stable fly biology is lacking. In this study, stable flies laid greater numbers of eggs on a substrate with an active microbial community (> 95% of total eggs oviposited) than on a sterilized substrate. In addition, stable fly larvae could not develop in a sterilized natural or artificial substrate/medium. Bacteria were isolated and identified from a natural stable fly oviposition/developmental habitat and their individual effect on stable fly oviposition response and larval development was evaluated in laboratory bioassays. Of nine bacterial strains evaluated in the oviposition bioassays, Citrobacter freundii stimulated oviposition to the greatest extent. C. freundii also sustained stable fly development, but to a lesser degree than Serratia fanticola. Serratia marcescens and Aeromonas spp. neither stimulated oviposition nor supported stable fly development. These results demonstrate a stable fly bacterial symbiosis; stable fly larval development depends on a live microbial community in the natural habitat, and stable fly females are capable of selecting an oviposition site based on the microbially derived stimuli that indicate the suitability of the substrate for larval development. This study shows a promising starting point for exploiting stable fly-bacterial associations for development of novel approaches for stable fly management.  相似文献   

15.
The efficacy of the pupal parasitoid Spalangia cameroni Perkins as a biological control agent was tested against house flies Musca domestica Linnaeus and stable flies Stomoxys calcitrans (Linnaeus) in one dairy cattle and two pig installations in Denmark. Weekly releases of S. cameroni from April through to September-October 1999 and 2000 resulted in significant suppressions of house fly populations to below nuisance level, whereas no effect on stable flies was found. Parasitism was significantly higher in the release years compared to the control years, but was below 25% averaged over the fly season for each farm. A statistical model based on a functional relationship between the innate capacity of increase of the two fly species and three explanatory variables (air temperature, fly density and parasitism) provided a fairly good fit to data with the abundances of house flies and stable flies explained mostly by temperature, but intra- and interspecific competition, and parasitism had a significant effect as well. Overall, the model was capable of explaining 14% and 6.6% of the total variation in data for house fly and stable fly, respectively. Spalangia cameroni was the predominant parasitoid to emerge from exposed house fly pupae, but from mid summer onwards Muscidifurax raptor Girault & Sanders (Hymenoptera: Pteromalidae) was also quite common. The study indicated that biological control of house flies can be an efficient alternative to chemical control.  相似文献   

16.
b
The favourability of cattle dung from a native pasture near Rockhampton, Queensland, as a food source was tested monthly in the laboratory for 2 yr using 3 dung-breeding insects: the buffalo fly, Haematobia irritans exigua De Meijere; the bush fly, Musca vetustissima Walker; and a dung beetle, Euoniticellus intermedius (Reiche). Dung produced by cattle grazing on this pasture during the summer wet season yielded larger flies of both species and more broods from the dung beetle than dung from the same pasture in winter. When reared in summer dung, the buffalo fly almost attained its maximum recorded size but the bush fly and dung beetle reached ca two-thirds maximum recorded size and brood production respectively. Bush flies failed to breed in dung collected for 4 consecutive months in winter each year but survival of buffalo flies showed no seasonal trends.
The early response of the buffalo fly to improving dung quality in late winter/early spring gives it an advantage enabling its populations to increase earlier than those of its competitors, including the dung beetle, E. intermedius.  相似文献   

17.
Poultry litter usage in horticultural crop production is a contributor to nuisance fly populations, in particular stable flies (Stomoxys calcitrans L.) and house flies (Musca domestica L.). Extrapolation of adult emergence data suggests that approximately 1.5 million house flies and 0.2 million stable flies are emerging on average from every hectare of poultry litter applied as a preplant fertilizer for vegetable production in Perth, Western Australia. To a lesser extent, sideband applications to established crops may allow for the development of 0.5 million house flies and 45,000 stable flies per hectare. However, up to 1 million house flies, 0.45 million lesser house flies, Fannia cannicularis L., and 11,000 stable flies per hectare may be produced from surface dressings of poultry litter associated with turf production. Other nuisance flies present in poultry litter included the false stable fly, Muscina stabulans (Fallén), bluebodied blowfly, Calliphora dubia Hardy, black carrion fly, Hydrotaea rostrata Robineau-Desvoidy, Australian sheep blowfly, Lucilia cuprina Wiedemann, and flesh flies (Sarcophagidae). Only house flies developed in poultry litter for the first 4 d after application in the field. Stable flies were not present in poultry litter until 4-7 d after application, and were the only fly species developing in litter > 9 d after application.  相似文献   

18.
Beginning in November 2007 and continuing until December 2009, weekly stable fly, Stomoxys calcitrans (L.), surveillance was conducted at four equine facilities near Ocala, FL, by using alsynite sticky traps for adults and by searching immature developmental sites for pupae. Adult stable fly trap captures were highly variable throughout the year, ranging from 0 to 1,400 flies per trap per farm. The greatest adult stable fly activity was observed during the spring months of March and April, with weekly three-trap means of 121 and 136 flies per farm, respectively. The importance of cultural control measures was most apparent on the only farm with no reported insecticide use and the lowest stable fly trap captures, where an intense daily sanitation and composting program was conducted. A survey of on-site filth fly pupae revealed that 99.9% of all parasitoids recovered were Spalangia spp., consisting of Spalangia cameroni Perkins (56.5%), Spalangia nigroaenea Curtis (34.0%), Spalangia endius Walker (5.8%), and Spalangia nigra Latreille (3.7%). The implications of these findings are discussed.  相似文献   

19.
Stable flies (Stomoxys calcitrans [Diptera: Muscidae] L.) are blood‐feeding synanthropic pests, which cause significant economic losses in livestock. Stable fly antennae contain olfactory sensilla responsive to host and host environment‐associated odours. Field observation indicated that the abundance of stable flies increased significantly in grasslands or crop fields when cattle manure slurry was applied. Major volatile compounds emanating from manure slurry were collected and identified. Behavioural responses of stable flies to those compounds were investigated in laboratory bioassays and field‐trapping studies. Results from olfactometer assays revealed that phenol, p‐cresol and m‐cresol were attractive to adult stable flies. When tested individually, attraction was higher with lower dosages. Stable flies were most attracted to blends of phenol and m‐cresol or p‐cresol. Traps with binary blend lures caught more stable flies in field trials as well.  相似文献   

20.
Abstract.  The horn fly, Haematobia irritans (Linnaeus 1758) (Diptera: Muscidae) is one of the most widespread and economically important pests of cattle. Although insecticides have been used for fly control, success has been limited because of the development of insecticide resistance in all countries where the horn fly is found. This problem, along with public pressure for insecticide-free food and the prohibitive cost of developing new classes of compounds, has driven the investigation of alternative control methods that minimize or avoid the use of insecticides. This review provides details of the economic impact of horn flies, existing insecticides used for horn fly control and resistance mechanisms. Current research on new methods of horn fly control based on resistant cattle selection, semiochemicals, biological control and vaccines is also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号